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Abstract

When developing a SAT solver, one of the most important parts is to perform experi-
ments so as to evaluate its performance. Most of the time, this process remains the same,
so that everybody collects almost the same statistics about the solver execution. However,
how many scripts are there to retrieve experimental data and draw scatter or cactus plots?
Probably as many as researchers in the domain. Based on this observation, this paper in-
troduces Metrics, a Python library, aiming to unify and make easier the analysis of solver
experiments. The ambition of Metrics is to provide a complete toolchain from the execu-
tion of the solver to the analysis of its performance. In particular, this library simplifies the
retrieval of experimental data from many different inputs (including the solver’s output),
and provides a nice interface for drawing commonly used plots, computing statistics about
the execution of the solver, and effortlessly organizing them (e.g., in Jupyter notebooks).
In the end, the main purpose of Metrics is to favor the sharing and reproducibility of
experimental results and their analysis.

1 Introduction

In the context of computer science research (and more generally, in any field requiring the design
of software programs), it is necessary to carry out experiments to ensure that the produced
programs work as intended. In particular, one needs to ensure that the resources it uses remain
reasonable. To do so, software solutions such as runsolver [8] have been developed to measure
and limit the consumption of the temporal and spatial resources of the program under test.
However, respecting these limits is generally not sufficient to assess the program behaviour. It is
often necessary to collect additional statistics, which are usually provided by the program (e.g.,
via software logs) or by tools such as runsolver. The collected data has then to be aggregated
to evaluate the quality of the results of the program through a statistical analysis.

Statistics provide many mathematical tools, and choosing one over another can introduce
biases in the results or their analysis. Thus, over the years, many cases of erroneous analyses
have been identified. One of the most famous such analysis is an article on economics by
Reinhart and Rogoff [7], for which analytical errors were detected only three years later [4]. As a
countermeasure to such errors, the principles of transparent science and reproducibile results are
increasingly being applied. They have been the subject of an OECD recommendation [6], and
scientists have introduced many approaches favoring reproducibility in the context of computer
experiments [3,5]. Towards this direction, it is recommended to open the source of the software
program (or, at least, provide its binaries), and to make available the data used to evaluate it
(e.g., using software forges). It is also important to make the analysis of the results reproducible,
which can be done using tools such as RMarkdown or Jupyter notebooks.

In the SAT research community (as well as in the CP, PB, QBF communities, and many
more), there is not a great difference between how the different solvers are executed. Indeed,
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solvers are often required to provide command line interfaces that meet the requirements of the
environment in which they are being executed (e.g., during competitions). As such, the main
difference between these programs are their actual implementation. Also, it appears that most
of the data collected when running the solvers remains almost the same (e.g., runtime, memory
usage, etc.). In this context, the creation of a tool that is able to run the program, collect the
data it produces and analyze it would have multiple advantages: testing new features is simpler,
both in terms of execution and analysis, and the reproducibility of the results is automatically
ensured.

Based on these observations, this paper introduces Metrics (mETRICS stands for rEpro-
ducible sofTware peRformance analysls in perfeCt Simplicity), a (work-in-progress) Python
library, aiming to unify and make easier the analysis of solver experiments. The ambition of
Metrics is to provide a complete toolchain from the execution of the solver to the analysis of
its performance. Currently, this library contains two main components: scalpel (sCAIPEL
stands for extraCting dAta of exPeriments from softwarE Logs) and wallet (wALLET stands
for Automated tooL for expLoiting Experimental resulTs). On the one hand, scalpel, is de-
signed to simplify the retrieval of experimental data. It is able to handle a wide variety of
inputs, including CSV files or even the solver’s output thanks to a description file provided by
the user. This makes the tool easy to configure and highly flexible. On the other hand, wallet
provides a nice interface for drawing commonly used plots (such as scatter or cactus plots)
and computing statistics about the execution of the different solvers (in particular, their score
using classical performance measures). The design of wallet makes easier the integration of
the analysis in Jupyter notebooks which can easily be shared online (for instance, GitHub is
able to render such files), which also favors the reproducibility of the analysis.

The rest of this paper is organized as follows. As preliminaries, we introduce different
vocabulary notions that we use throughout the paper. We then present the different plots
and statistics classically used when analyzing solvers, and the tools that are generally used to
generate them. Next, we present an overview of the Metrics library and of its components
before considering a use case of Metrics on the results of the last SAT competition. We finally
conclude with some perspectives of improvement for Metrics, which would allow to make it a
unified library for experimenting solvers.

2 Preliminaries

In this section, we introduce some of the vocabulary used when talking about Metrics. We also
describe the main figures and statistics used to compare the performance of different solvers,
and make a tour of the existing libraries allowing to compute them.

2.1 Description

First, let us define the vocabulary used in this paper. The main object handled by Metrics is
a campaign, which contains all the experimental data that has been collected, and defines the
experimental setup (time and memory limit, computer configuration, etc.). During a campaign,
experimentwares are being experimented. We use experimentware as a generic name to charac-
terize software with the ability of being experimented (as a more general notion than solvers).
Different experimentwares may be either different programs or the same program with different
configurations or settings. The campaign is also characterized by the input-sets it uses, i.e., the
inputs that are given to the different experimentwares. Note that, in this context, all experi-
mentwares are given exactly the same input-set. Finally, an experiment depicts the execution
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of a particular experimentware on a particular input, so that the set of experiments corresponds
to the cartesian product of the input and experimentware sets. Experiments are characterized
by the data that are relevant for our analyses, such as the runtime and memory usage of the
experimentware (and many other statistics, depending on the user configuration).

Example 1. Let us consider a campaign in which we would like to compare the two solvers
Satdj [2] and Glucose [1]. These solvers are our experimentwares. Suppose that we want
to compare them on two inputs: a sudoku instance sudoku.cnf and a pigeonhole problem
pigeonhole.cnf. The input-set we consider is composed of these two instances. The experi-
ments of this campaign are thus:

e the execution of Satdj on sudoku.cnf,
e the execution of Satdj on pigeonhole.cnf,
o the execution of Glucose on sudoku.cnf, and

e the execution of Glucose on pigeonhole.cnf.

2.2 Statistics

After executing such a campaign, we need tools to analyze the collected results. Even though
a large variety of analyses exists, most of the time, the prefered way of comparing solvers is
to consider the number of solved inputs and the time taken to solve them, as shown in this
section.

First, let us describe the relevant statistics for Metrics. As we said above, one of the most
important and trivial ways of comparing experimentwares is to count the number of solved
inputs. This allows to have a quick overview of the behaviour of each experimentware. That is
not the only way to compare their efficiency, though. Indeed, an experimentware could solve
the highest number of inputs while having taken a time close to the timeout to solve each of
them. These experimentwares could thus beat another solver that solves the same inputs twice
as fast, except one that is not solved at all (which we admit is quite rare in practice). That is
why counting the number solved inputs is not a sufficient measure to assess the performance of
a solver, and we need to consider another criterion: time.

In this case, there exist also many ways to compare the runtime of the different solvers. One
of them is the PARx method, computed with the cumulated sum of the runtime of the solver
on each solved input, to which the runtime of unsolved inputs (equal to the timeout) is added
with a penalty (by being multiplied by x). Common PARxs are PAR1, PAR2 or PARI10, which
correspond to the original timeout, the timeout multiplied by 2 or by 10, respectively.

However, such measures may be considered as arbitrary: the runtime of different solvers
that do not solve a given input will be set to the same value for this instance (the timeout with
a penalty), whereas their actual runtime would probably be different (if they had enough time
to solve it). We thus also consider another measure, called common solved inputs. It consists in
avoiding to take into account instances that were not solved by at least one solver or, otherwise
said, to only consider instances solved by all solvers. The score of each solver is computed
as with PARx methods on this subset of inputs, with the difference that, as all solvers solved
these instances, there is no need for penalties. However, the main drawback of this measure
is that the more experimentwares, the less inputs in the considered subset. As a symmetrical
measure, we also consider the uncommon solved inputs. Such inputs are solved by at least one
experimentware but unsolved by at least another one. This set allows to compare the different
solvers on the inputs considered as “hard” (as opposed to the “easy” common solved inputs).

3
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In all cases, considering only one measure is often not enough, and it is preferable to consider
a combination of them instead.

2.3 Plots

In general, figures such as scatter or cactus plots are a good way to visualize statistics and
to get a preview of solvers behaviour. In the following we present plots that may be used to
display a wide variety of statistics, and especially the two main measures described above: the
runtime and the number of solved inputs.

A first kind of plots that allows to consider an overview of all the experimentwares is the
cactus plot (see, e.g., Figures 3 and 4). A cactus plot considers all solved inputs of each
experimentware. Each line in the plot represent an experimentware. Inputs are ordered by
solving time for each experimentware to build this figure: the x-axis corresponds to the rank
of the solved input and the y-axis to the time taken to solve the input, so that the righter the
line, the better the solver. Note that we can also cumulate the runtime of each solved inputs
to get a smoother plot.

In addition to cactus plots, one may consider box plots (see, e.g., Figure 6) to get more
detailed results about the runtime of each solver. A box in such a plot represents the distribution
of each experiment time of a given experimentware. In particular, such plots allow to easily
locate medians, quartiles and means for all experimentwares in a single figure. We can find a
practical application of this plot in the case of randomized algorithms: it permits to visualize
the variance and to simply compare the effect of changing the random function seed for a given
fixed solver configuration using it.

Finally, to get a more detailed comparison of two experimentwares, one can use scatter
plots (see, e.g., Figure 5). Each axis in this plot corresponds to an experimentware and displays
its runtime (between 0 and the timeout). We can place each input in the plot as a point
corresponding to the time taken by both experimentwares to solve this input. We can quickly
observe if there exists a trend for one experimentware or the other in terms of efficiency.

Once again, it is important to note that a combination of all plots is often required before
actually making conclusions.

2.4 Technologies

Many technologies have been proposed to implement the statistics and plots described above.
We focus here on the most popular ones.

Created in 1986, GNUPIot is one of the oldest plot libraries which is still used today by the
community. It has a great success among computer scientists, as it is a full command-line driven
graphing utility. In our case, and for the many perspectives we give to Metrics, this library
does not fit our needs, as we need a complete programming language allowing to do more than
just plotting figures, for instance to parse the log data produced by the experimentware during
its execution.

Another well-known technology is the statistic-oriented R language. This language not only
allows to build all the possible figures and statistics we need, it also natively supports the
reproducibility of experimental analyses thanks to RMarkdown, which allows to combine both
textual format (Markdown) and code (R, Python, etc.). However, we believe that the use of a
language that is not so widespread in the community will make the adoption of Metrics harder.

From these observations we decided to use Python. Indeed, the Python community has
implemented a library that imitates the R standard library named pandas. This library provides
R-like data-frames, which are a particular data structure allowing to simply filter and manage

4
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data extracted from the considered experiments. Python also provides a library to create
dynamic plots (plotly, or more classically matplotlib). All these tools may be integrated
in Jupyter notebooks, the Python counterpart of RMarkdown. We also note that some tools
have also been developed by the community, such as mkplot!, but do not provide a complete
toolchain as Metrics is intended to. Finally, Python is a well-known language, and its simple
syntax will make easier the use of our library by end users.

3 Presentation of the Library

This section presents a quick overview of the design of Metrics.

3.1 Metrics at a Glance

The component diagram presented in Figure 1 shows an overview of Metrics. This library
exposes two main components, metrics-scalpel and metrics-wallet, which rely on the same
metrics-core component (which is not intended to be used by end users).

metrics-scalpel\ metrics-wallet \

extraction-log i plot-generation
- metrics-core | -

extraction-csv » object-model | i table-generation
| =

extraction-json i statistical-analysis

Figure 1: Component diagram of Metrics

The metrics-core component contains the definition of Metrics’ object model. Figure 2
provides a description of how this model is designed, which is an object-oriented implementation
of the vocabulary defined in Section 2.1.

The two other components, namely metrics-scalpel and metrics-wallet are indepen-
dent. It is thus possible to use metrics-scalpel without using metrics-wallet and vice-versa.
But it is not possible to use metrics-scalpel nor metrics-wallet without metrics-core, as
it provides the internal representation of the campaign used by these components. Note that
metrics-scalpel may be used to transform data to fit the metrics-core representation.

Thttps://github.com/alexeyignatiev/mkplot.git
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@Campaign

©Input5et
name : str
timeout : float name : str
memout: float

|

@ExperimentWare @Input

name : str path : str

N\ [/

@Experiment

time: float

Figure 2: Class diagram of metrics-core

3.2 A Closer Look on metrics-scalpel

sCAIPEL (“extraCt dAta of exPeriments from softwarE Logs”) allows to extract the data
collected during a campaign into the internal representation defined by metrics-core.

These results may have already been collected within a CSV file (or any *SV file, actually),
and will then be interpreted by Scalpel as a Campaign object. Results can also be extracted “as
is” from the logs produced by the solver or by the environment in which it has been executed.
In particular, metrics-scalpel provides a simplified way of describing how to extract relevant
variables from such files. Finally, metrics-scalpel is designed to read JSON representations
of the campaign to consider (for now, only JSON files that match exactly the representation
defined by metrics-core are supported).

3.3 A Closer Look on metrics-wallet

wALLET (“Automated tooL for expLoiting Experimental resulTs”) provides tools allowing to
compute the statistics and draw the plots described in Sections 2.2 and 2.3. Under the hood,
metrics-wallet converts a Campaign (as built by metrics-scalpel, for instance) into a data-
frame of the pandas library (which thus also allows to use the classical pandas and matplotlib
methods on this representation).

metrics-wallet is divided into two modules. The first one allows to draw static plots (as
those described previously) and to compute tables showing different statistic measures. These
figures can easily be exported in a format specified by the user, such as HTML or LaTeX for
tables, or PNG images and vector graphics (such as SVG or EPS images). Static plots are
highly configurable in order to fit in their final destination. This is why it is possible with these
specific plots to set the font (family, size and color), using LaTeX commands in the different
titles, mapping specific colors or shapes to experimentwares, customizing legend format, etc.
This module is mainly based on the matplotlib library. The second module allows to build
dynamic figures, using the plotly library. It makes possible to the user to interact with the
plot, for example, by zooming in or out in the plots, selecting subparts of the legend, displaying
additional data thanks to mouse hovering, etc. Users may also customize their plots through
the interface given by Jupyter notebooks and with the parameters given to the plots at their
creation.
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4 Metrics in Action

To introduce the capabilities of Metrics, let us consider as an example the analysis of the results
of the last SAT competition®. In this competition, 51 experimentwares (a.k.a. solvers) were
experimented on 400 instances. Each experiment (i.e., execution of a particular solver on a
particular instance) was set a timeout of 5000 seconds and the memory usage was limited to
128 GB.

As the competition is stiff between solvers, a tool as Metrics is welcome to observe what
happened globally in the competition and more precisely between the best solvers of the event.
If you are interested in reproducing the analysis proposed in this paper, you may find Metrics
on GitHub?.

4.1 Extracting Data with metrics-scalpel

In order to retrieve experimental data with metrics-scalpel, a YAML configuration file may
be used to describe how to extract them from different files. First, this file may declare metadata
about the campaign being analyzed, especially regarding the experimental setup.

name: SAT Race 2019
date: July 12th, 2019
setup:
timeout: 5000
memout: 128000

This file also contains the informations about the experimentwares executed in the campaign
(not all of them are listed in the example below for space reason). This is quite a strong
requirement (and we plan to automatically discover the solvers in a future version of Metrics),
but this approach has been designed to allow, when needed, to specify more informations about
the solvers (such as their version, their command line, their fingerprint etc.).

experiment-wares:
- CCAnrSim default

- smallsat default

Similarly, the list of considered inputs must be specified in the YAML configuration. In the
following example, the inputs are retrieved from a hierarchy. More precisely, metrics-scalpel
explores the file hierarchy rooted at the given directory to discover each file it contains. It is
also possible to give directly the list of the files, or to give a path to a file that contains this
list. Once again, future versions of Metrics will be able to discover this list automatically.

input-set:
name: sat-race-2019
type: hierarchy
path-list:
- /path/to/the/benchmarks/of/sat/race/2019/

To specify in which file Scalpel must look to retrieve the data, its path is set as follows.

?http://sat-race-2019.ciirc.cvut.cz
Shttps://github.com/crillab/metrics
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source:
path: /path/to/the/results/of/sat-2019.csv

Now comes what is probably the most important section of the configuration file, which
actually describes how to retrieve the data from the source file. In our example, as this file is
a CSV file, there is not many thing to declare in the data field. The only relevant information
to provide here is in the mapping section, which allows to retrieve from the CSV file (in this
case) which columns correspond to the data expected by Scalpel. Note that the fields in this
example are required as the column names do not match the naming convention of Metrics,
and also that the identification of the experimentwares is spanned on two columns (the name
of the solver and its configuration), which explains why a list is required there.

data:
mapping:
input: benchmark
experiment_ware:
- solver
- configuration
cpu-time: solver time

Let us now make an important side note here. In many cases, the experimental data has
to be retrieved from the log files produced by the solver. To do so with Scalpel, all log files
must be put in a single directory (if there is exactly one file per experiment), or in different
directories (with one directory per experiment, which may itself contain multiple regular files).
In both cases, the path specified as source is the directory at the root of all experiment files,
and Scalpel will explore the entire hierarchy to retrieve all the relevant data. If some files of
the hierarchy are raw log files, Scalpel will consider the description of the data they contain,
which must also be set in the data section of the configuration file. The following example
illustrate two different ways for describing the data to extract: either with a regular expression
or with a simplified pattern. An interesting advantage of our simplified patterns is that they
support many common expressions (integer, real, word or any) and that white spaces are
interpreted as “any number of white spaces” (including tabulations). When using classical
regular expressions, the data to extract must be properly identified with a group.

data:
rawv-data:

- log-data: memory
file: mysolver.log
regex: "c Memory usage: (\d+.\d+) Mo"

- log-data: cpu_time
file: mysolver.log
pattern: "c CPU time: {real} seconds"

In all cases, it is the user’s responsibility to ensure that all the data needed to perform the
analysis may be retrieved by Scalpel, either with the corresponding log-data or mapping.

Once the YAML configuration file is properly set up, we can load the whole campaign it
describes, corresponding here to the SAT competition.

from metrics.scalpel import read_yaml
campaign = read_yaml("/path/to/configuration.yml")

8
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4.2 Exploiting Data with metrics-wallet

Now that we have extracted the relevant data from our campaign, we can start building figures.
The first step consists in extracting a data-frame from the read campaign.

from metrics.wallet.dataframe.builder import CampaignDataFrameBuilder
campaign df = CampaignDataFrameBuilder (campaign).build from_campaign()

A campaign data-frame is a Metrics object encapsulating a pandas data-frame and allowing
to simply manage experiments and apply operations such as filtering. Filtering operations
permit to select a subset of experimentwares, inputs, and more generally making a subset of
any column provided by the data-frame. With this data-frame, we may now build all the
figures provided by Metrics. First, let us make a global overview of the solvers submitted to
the competition with a cactus plot. To do so, one just needs to create a CactusPlotly figure
from the campaign dataframe and call the method get_figure():

from metrics.wallet.figure.dynamic_figure import CactusPlotly
cactus = CactusPlotly(campaign df, cactus_col="cpu time")
cactus.get_figure()

Comparison of experimentwares

= CaDiCalL default

~—— MapleLCMDistChronoBT-DL-v2.2 default

—— MapleLCMDistChronoBT-DL-v2.1 default

—— cmsatvs6-walksat-chronobt default

—— MapleLCMDiscChronoBT-DL-v3 default

—— MapleLCMdistCBTcoreFirst default

——— MapleLCMChronoBT_DEL default

—— expMaple_CM _GCBumpOnlyLRE default
crsatyse-yalsat default

——— PSIDS_MapleLCMDistChronoBT default

—— expMaple_CM _GCBump default

= cmsatv36-yalsat-chronobt default

—— cmsatvs6-walksat default

= PADC_MapleLCMDistChronoBT nbincRedDE_5_CT_0

——— PADC_Maple_LCM_Dist default

—— MapleLCMChronoBT Ider default

——— MLDChronoBT_GCBump default

—— Relaxed_LCMDistChronoBT_p9 default
PADC_MapleLCMDistChrenoBT default

——— Relaxed LCMDistChronoBT default

—— Relaxed_LCMDistChronoBT_Scavel default

~——— optsat default

5000

4000

w
=}
=}
=)

2000

Time to selve an input

1000

50 100 150 200

Number of solved inputs

Figure 3: Cactus plot of the solvers submitted to the SAT Race 2019.

The cactus plot in Figure 3 is hard to interpret. Indeed, there are many plot lines with a
lot of colors, but it is impossible to discriminate the solvers. Observe that solvers are ordered
in the legend by decreasing number of solved instances to help reading the plot. Also, in this
dynamic figure produced by Metrics, one may select solvers by clicking on their names in the

9
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legend to highlight the corresponding line. Nevertheless, it remains hard to see something in
the current view.

Using the same kind of plots, we want to apply a filter to compare only the best solvers.
To do so, we create the subset of solvers we are interested in and give it to the filter method of
the campaign data-frame while specifying on which column the filter must be applied. We get
thus a new campaign data-frame as follows:

subset = {
"CaDiCaL default",
"MapleLCMDistChronoBT-DL-v2.2 default",
"MapleLCMDistChronoBT-DL-v2.1 default",
"MaplelLCMDiscChronoBT-DL-v3 default",
"cmsatvb6-walksat-chronobt default"

}

campaign df best = campaign df.sub_data_frame("experiment ware", subset)

We may now, using the same process as described above, create a cactus plot displaying
only the specified solvers. To do so, we use the new campaign data-frame to create it, and add
two new parameters. The first one, show_marker, specifies that we want to show the markers
for each solved instance of each solver. The second one, min_solved_inputs, specifies that we
want to start showing plot lines after 200 solved instances:

cactus = CactusPlotly(
campaign_df _best,
show_marker=True,
min_solved_inputs=200

)

cactus.get_figure()

Figure 4 shows now clearer results. Indeed, we see now that CaDiCalL is leading the race
in terms of number of solved instances. As said in Section 2.2, it is however also important to
consider the runtime of the different solvers. We can also observe in this figure that CaDiCalL
takes more time to solve the inputs ranked between the 200th and 235th instances compared to
MapleLCMDistChronoBT-DL solvers. That is why it is interesting to now consider the runtime
to compare these solvers.

For this time analysis, let us introduce another capability of Metrics: computing Virtual
Best Solvers (VBS). A VBS selects the best experiment for each input from a selection of real
solvers. We now want to create two different VBSs, simply called vbs1 and vbs2. To do so, we
call the method add_vbew(...), to which we specify the set of solvers to consider, the column
from which the VBS is computed and the name of the VBS.

10
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Comparison of experimentwares

—e— CaDiCal default

—s— MapleLCMDistChronoBT-DLv2.2 default
—+— MapleLCMDistChronoBT-DL-v2.1 default
4500 —+— cmsatv56-walksat-chronobt default
—#— MapleLCMDiscChronoBT-DL-v3 default

5000

4000

E
g
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g 3500
3
2
= 3000
E
S

2500

2000

1500

200 210 220 230 240
Number of solved Inputs
Figure 4: Cactus plot of the leading solvers of the SAT Race 2019.
vbsl = {

"CaDiCaL default",
"MapleLCMDistChronoBT-DL-v2.2 default"
}
vbs2 = {
"CaDiCaL default",
"MapleLCMDiscChronoBT-DL-v3 default"

}

campaign df best _plus_vbs = campaign df best\
.add_vbew(vbsl, "cpu_ time", vbew name="vbsl")\
.add_vbew(vbs2, "cpu. time", vbew_name="vbs2")

We may now create a table with these VBSs and other time statistics using these three lines
of code:

from metrics.wallet.figure.static_figure import StatTable
stat = StatTable(campaign df best_plus_vbs)
stat.get_figure()

Table 1 shows, from left to right, the solvers ordered by number of solved inputs. Ob-
viously, we can observe that VBSs have best ranks. They are followed by CaDiCaL and
MapleLCMDistChronoBT-DL solvers. Thanks to this view, we can also remark that time
(PAR1) is not continuously increasing. Indeed, we can see that, in spite of a lower number of
solved instances and the penalty of the PAR1, Maple-based solvers have lower results in terms

11
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of time than CaDiCaL. This is also the case when considering the cumulated time of common
solved instances (common_sum is computed on 202 instances).

vbsl vbs2 CaDiCal. MapleLCM...-v2.2 MapleLCM...-v2.1  MapleLCM...v3  cmsatv56-walksat-chronobt
count 264 262 244 241 241 240 240
sum (PARL) 224776 240614 408361 385357 385468 365054 449371
common_count 202 202 202 202 202 202 202
common_sum 106496 101773 198214 182257 185539 140238 202954
uncommon_count 62 60 42 39 39 38 38
total 400 400 400 400 400 400 400

Table 1: Table of solved instances and runtime statistics of the leading solvers of the SAT Race
2019.

Another way to observe in details the behaviour of CaDiCal and MapleLCMDistChronoBT-
DL-v2.2 is to use a scatter plot:

from metrics.wallet.figure.dynamic_figure import ScatterPlotly
stat = ScatterPlotly(
campaign df,
"CaDiCaL default", "MapleLCMDistChronoBT-DL-v2.2 default",
scatter_col="cpu_time"
)
stat.get_figure()

Comparison of CaDiCal default and MapleLCMDistChronoBT-DL-v2.2 default
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Figure 5: Scatter plot of two leading solvers of the SAT Race 2019.
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The produced scatter plot, as shown in Figure 5 does not show any significative trend
between the solvers, as we can see an equivalent repartition of points on both sides of the
diagonal. However, the capacity to mouse hover the points and show metadata about the
different instances could help understand the behaviour of each solver. Also, it is possible to
give another column to plot (e.g. scatter_col="memory_usage") permitting to possibly observe
a new way to discriminate these two solvers, which are quite close.

Finally, let us introduce a new kind of plots that completes the information provided by the
cactus plot: boxplots. Such plots display informations about mean and quartiles. As previously,
we just need to instantiate a BoxPlotly object with the campaign we want to observe:

from metrics.wallet.figure.dynamic_figure import BoxPlotly
box = BoxPlotly(campaign df best)
box.get_figure()

The resulting boxplots are shown in Figure 6. Each boxplot is composed, from the bottom
to the top, of the minimum value, the first and third quartile (the square) and the maximum.
The maximum values, in this example, are overwritten by the third quartile. We can observe
that CaDiCalL is the first solver starting to solve instances. In the box (between first and third
quartiles), we see other informations: the full line corresponds to the median, and the dotted
line to the mean. As exposed in Table 1, we can extract the information that the time is slightly
better for Maple-based solvers: their median is lower than that of CaDiCalL.

Comparison of experimentwares
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Figure 6: Boxplots comparing the runtime of the best solvers of the SAT Race 2019.
Finally, through the statistics and figures provided by Metrics, we observe that having a

global overview of the campaign corresponding to the SAT Race 2019 is quite hard. Never-
theless, thanks to some filtering operations, we fastly identified the best solvers and compared
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them to get more precise conclusions. Nevertheless, it is hard to find a good tie-break method
to compare the performance of the different solvers, so as to take into account the number of
solved inputs and the time taken to solve them. That is why a diversity of tools have been
designed to clarify the situation.

In the actual competition, MapleLCMDiscChronoBT-DL-v3 won the race by applying a
scoring method based on PAR2 to rate solvers. This result is in accordance to our results as
this solver takes place in the best ones, with the lowest PAR1 time and a common time, even
though CaDiCalL solves more inputs within the time limit.

5 Conclusion

In this paper, we presented Metrics, a work-in-progress library providing an easy-to-use toolchain
for retrieving experimental data and analyzing this data through the computation of statistics
and the drawing of different kinds of plots. Users are free to organize and customize this anal-
ysis according to their needs thanks to the use of Jupyter notebooks. This allows to share the
results of the conducted experiments and to make possible the reproducibility of their analysis.

Currently, Metrics is a “young” project, and we plan to add more features to this library,
so as to make a deeper analysis of the results and draw different kinds of plots. Even though
users can still use the data-frames of the campaign and make their analysis with the functions
already provided by pandas and matplotlib, we believe that, to make the user’s life easier,
Metrics should provide such features by default.

Moreover, to become a complete toolchain, Metrics has the ambition to extend its capabil-
ities by providing a command-line interface as well as a web application to perform standard
operations, by automating the process of collecting and analyzing data. In particular, by prop-
erly configuring their Metrics installation, users would be able to submit their softwares directly
from Metrics’ interface, so that everything from the execution of the solver (including on remote
machines, e.g., in the cloud or on clusters) to the writing of a complete report, with little effort
required from the users.
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