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Abstract:
Argumentation is a reasoning model based on the
construction and evaluation of arguments. Dung has
proposed an abstract argumentation framework in which
arguments are assumed to have the same strength.
This assumption is unfortunately not realistic. Conse-
quently, three main extensions of the framework have
been proposed in the literature. The basic idea is that
if an argument is stronger than its attacker, the attack fails.

The aim of the paper is twofold : First, it shows that the
three extensions of Dung framework may lead to uninten-
ded results. Second, it proposes a new approach that takes
into account the strengths of arguments, and that ensures
sound results. We start by presenting two minimal requi-
rements that any preference-based argumentation frame-
work should satisfy, namely the conflict-freeness of argu-
ments extensions and the generalization of Dung’s frame-
work. Inspired from works on handling inconsistency in
knowledge bases, the proposed approach defines a binary
relation on the powerset of arguments. The maximal ele-
ments of this relation represent the extensions of the new
framework.
Keywords: Argumentation, Preferences

1 Introduction

Preferences are used in most models that have
been developed to solve conflicts (e.g. [6, 8,
9, 11]). Conflicts have a better chance to be
solved in presence of such information. Prefe-
rences have also been introduced into argumen-
tation theory. Argumentation is a reasoning mo-
del based on the construction and the evalua-
tion of arguments. An argument gives a rea-
son to believe a statement, to perform an action,
or to choose an option, etc. Due to its expla-
natory power, argumentation is gaining an in-
creasing interest in Artificial Intelligence, na-
mely for handling inconsistency (e.g. [1, 7, 14]),
and decision making (e.g. [3]). Most of the mo-
dels that treat the cited applications are instan-
tiations of an abstract framework developed in
[10]. This framework consists of a set of argu-
ments and a binary relation that captures attacks
among arguments. Arguments are assumed to
have all the same strength. This assumption is
unfortunately not realistic since it may be the
case that an argument relies on certain informa-
tion, while another argument is built from less

certain ones. The former is clearly stronger than
the latter. In [6, 9, 13, 14] different preference
relations between arguments have been defined.
A preference relation captures differences in ar-
guments’ strengths.

In [2], a first extension of Dung’s framework has
been proposed. It takes as input a set of argu-
ments, an attack relation, and a preference rela-
tion between arguments. This relation is abstract
and can be instantiated in different ways. This
proposal has recently been generalized in [12]
in order to reason even about preferences. Thus,
arguments may support preferences about argu-
ments. The last extension of Dung’s framework
has been proposed in [5]. It assumes that each
argument promotes a value, and a preference
between two arguments comes from the impor-
tance of the respective values that are promo-
ted by the two arguments. Whatever the source
of the preference relation is, the idea behind the
three extensions is that an attack from an argu-
ment a to an argument b fails if b is stronger than
a.

The aim of the paper is twofold : First, it
shows that while the above idea is interes-
ting and seems meaningful, the three extensions
return unintended results. Second, it proposes
a new preference-based argumentation frame-
work (PAF) that ensures sound results. We start
by defining two basic requirements that any PAF
should satisfy. Namely, the extensions should be
conflict-free w.r.t. the attack relation. The se-
cond requirement consists of recovering Dung’s
acceptability extensions in case preferences are
not available. We then propose a new approach
which defines a binary relation on the powerset
of arguments. The maximal elements of this re-
lation are the extensions of the new framework.
Three relations are particularly proposed in the
paper. They capture respectively stable exten-
sions, preferred extensions and grounded exten-
sions of Dung’s framework.

The paper is organized as follows : Section 2
recalls briefly Dung’s framework as well as its
extensions with preferences. Section 3 presents



their limits through a simple example. Section
4 develops the new approach, and Section 5
concludes.

2 Dung’s Framework And Its Ex-
tensions

In the seminal paper [10], an argumentation fra-
mework is a pair AF = 〈A,R〉, where A is
a set of arguments and R is a binary relation
between arguments, representing attacks among
them (R ⊆ A × A). The notation (a, b) ∈ R or
aRb means that the argument a attacks the ar-
gument b. Different acceptability semantics for
evaluating arguments have been proposed. Be-
fore recalling them, let us first define the notions
of conflict-free and defense.

Definition 1 (Conflict-free, Defense) Let B ⊆
A and a ∈ A.
– B is conflict-free iff ! a, b ∈ B s.t. aRb.
– B defends a iff ∀b ∈ A if bRa, then ∃c ∈ B
s.t. cRb.

The main semantics introduced by Dung are re-
called in the following definition.

Definition 2 (Acceptability semantics) Let
AF = 〈A,R〉 be an argumentation framework,
and B be a conflict-free set of arguments.
– B is a admissible iff it defends all its elements.
– B is a preferred extension iff it is a maximal
(w.r.t. set ⊆) admissible set.

– B is a stable extension iff it is a preferred ex-
tension that attacks any argument in A \ B.

– B is a grounded extension, denoted GE, iffB is
the least fixpoint of a function F where F(S)
= {a ∈ A | S defends a}, for S ⊆ A.

In [2], a first extension of Dung’s framework
has been proposed. It takes as input a set A of
arguments, an attack relation R, and a (partial
or total) preorder1 ≥ on A. This preorder is
a preference relation between arguments. The
expression (a, b) ∈≥ or a ≥ b means that the
argument a is at least as strong as b. The symbol
> denotes the strict relation associated with ≥.
Indeed, a > b iff a ≥ b and not (b ≥ a). From
the two relations R and ≥, a new binary rela-
tion, Def, is defined as follows : a Def b iff aRb
and not (b > a). This means that among all the
attacks in R, only the ones that hold between

1A binary relation is a preorder iff it is reflexive and transitive.

incomparable and indifferent arguments and the
ones that agree with the preference relation are
kept. In order to evaluate the acceptability of
the arguments, Dung’s acceptability semantics
are applied to the framework 〈A, Def〉.

In [12], the preference relation ≥ is given
by arguments.The idea is that an argument
may support a preference between two other
arguments. Two attack relations are assumed :
a classical one denoted by R, and another rela-
tion,D, that ranges from an argument ofA to an
element of R. An expression (a, (b, c)) means
that the argument a supports a preference of c
over b. This preference conflicts with the fact
that b attacks c. A new relation, Def, is defined
as follows : a DefS b iff aRb and ∃c ∈ S such
that (c, (a, b)) ∈ D, where S ⊆ A.

The extension proposed in [5], called value-
based framework, assumes that a set V of va-
lues is available. Each argument in A promotes
one value given by a function val (i.e. val :
A )→ V). The values may not have the same
importance and this is captured by a binary re-
lation Pref. This latter is assumed to be irre-
flexive, asymmetric and transitive. Like in [1],
a new relation, called defeats, is defined as
follows : (a, b) ∈ defeats iff (a, b) ∈ R
∧ (val(b), val(a)) /∈ Pref. Dung’s accepta-
bility semantics are applied to the framework
〈A, defeats〉.

3 Critical Examples

This section shows through a simple example
that the above two extensions may lead to
counter-intuitive results.

Let us consider a case of an agent who wants
to buy a given violin. An expert says that the
violin in question is produced by Stradivari (s),
that’s why it is expensive (s → e). This agent
has thus an argument a1 whose conclusion is
“the violin is expensive". Suppose now that the
3-years old son of this agent says that the violin
was not produced by Stradivari (¬s). Thus, an
argument a2 which attacks a1 is given. In sum,
A = {a1, a2} and R = {(a2, a1)}. According
to Dung’s framework, argument a2 wins. This
is inadmissible, especially since it is clear that
an argument of an expert is stronger than an
argument given by a 3-years old child. In the
framework presented in [1], the fact that a1 is



stronger than a2 is taken into account. Thus,
the relation ≥= {(a1, a1), (a2, a2), (a1, a2)}
is available. However, in this framework the
relation Def is empty. Consequently, both argu-
ments are in the unique preferred extension of
the framework 〈A, Def〉. This means that this
extension is not conflict-free. Moreover, both s
and ¬s are deduced.

According to [12], there are three arguments :
a1, a2 and a3 where a3 expresses the fact that a1
is strictly preferred to a2. Thus,A = {a1, a2, a3},
R = {(a2, a1)}, and D = {(a3, (a2, a1))}. The
set {a1, a2, a3} is a preferred extension which is
not conflict-free w.r.t.R.

The same problem holds in the value-based
framework of [5]. Assume that the set of va-
lues is V = {expert, child} and, of course,
(expert, child) ∈ Pref. The value of a1 is ex-
pert while the value of a2 is child. The new re-
lation defeats is empty. So, like with the pre-
vious preference-based framework, the two ar-
guments appear in the same extension which is
not conflict-free.

4 A New Approach

The previous section has highlighted the limits
of existing preference-based argumentation fra-
meworks. Even if the idea pursued by these
frameworks is intuitive and meaningful, their
results are not satisfactory and violate a key
property. This property concerns the conflict-
freeness of their extensions w.r.t. the attack re-
lation R. In this section, we propose a new
preference-based argumentation framework. It
takes as input three elements : a set A of ar-
guments, an attack relation R, and a (partial or
total) preorder ≥. It returns extensions that are
subsets of A. These extensions satisfy the two
following basic requirements :

Conflict-freeness : If E is an extension of
(A,R, ≥), then E is conflict free w.r.t.R.

Generalization : If (!a, b ∈ A) s.t. (a, b) ∈
R and (b, a) ∈>, then any extension of
(A,R, ≥) is also an extension of Dung’s
framework 〈A,R〉 and vice versa.

The first requirement ensures that the extensions
returned by the new framework are conflict-free.
This is important since it ensures safe results

in the sense that inconsistent conclusions are
avoided. The second one captures the idea that
an attack fails in case the attacker is weaker than
its target. Moreover, it states that the proposed
approach extends Dung’s framework, i.e. it
refines its acceptability semantics.

In what follows, we show how extensions of a
PAF are computed. We follow the same reaso-
ning as in some approaches developed for hand-
ling inconsistency in knowledge bases, namely
the coherence-based ones. In [9], for instance,
an inconsistent knowledge base Σ is equipped
with a partial or total preorder, meaning that for-
mulas of Σ have not the same priority. Then,
preference relations among consistent sub-bases
of Σ are defined. The maximal elements w.r.t.
those preference relations represent the prefer-
red ones. We apply the same idea in an argu-
mentation context. Indeed, by analogy, the in-
consistent base represents our conflicting set of
arguments, and the priorities between formulas
of Σ are the preferences between arguments.
We define preference relations, denoted by ,,
between the different conflict-free sets of argu-
ments. Thus, , ⊆ 2A × 2A. The relation - is
the strict version of ,, that is for E , E ′ ⊆ A,
E - E ′ iff E , E ′ and not (E ′ , E). The maxi-
mal elements of , are the extensions of a PAF.
This notion of maximality is defined as follows.

Definition 3 (Maximal elements) Let E be a
conflict-free set of arguments. E is maximal
w.r.t. , iff :
1. (∀E ′ ⊆ A) ((E ′ is conflict-free) ⇒ (E ,

E ′))
2. No strict superset of E is conflict-free and
verifies (1)

Let,max denote the set of maximal sets w.r.t.,.

The above definition privileges maximal (for set
inclusion) sets of arguments among the conflict-
free ones. It is worth mentioning that different
relations , can be defined, and may lead to dif-
ferent sets of extensions. Moreover, those exten-
sions are not necessarily the ones got by Dung’s
acceptability semantics. The new preference-
based argumentation framework is defined as
follows.

Definition 4 (PAF) A PAF is a tuple (A,R, ≥),
where A is a set of arguments, R is an attack
relation, and ≥ is a (partial or total) preorder
on A. Extensions of (A,R, ≥) are the maximal



elements of a relation, ⊆ 2A×2A that satisfies
the two basic requirements.

In what follows, we propose three relations
which generalize respectively stable, preferred
and grounded semantics. Note that, without loss
of generality, we assume that there are no self-
attacking arguments, i.e., (!x ∈ A) s.t. (x, x) ∈
R. Moreover, the set A is assumed to be finite.

4.1 Generalization Of Stable Semantics

This section presents a relation , that genera-
lizes stable semantics. The idea behind this re-
lation is the following : given two conflict-free
sets of arguments, E and E ′, we say that E ′ is
better then E iff any argument in E \ E ′ is wea-
ker than at least one argument in E ′ \ E or is
attacked by it. Formally :

Definition 5 Let E , E ′ be two conflict-free sets
of arguments. E ′ , E iff (∀x ∈ E \ E ′) (∃x′ ∈
E ′ \ E) s.t. (((x′, x) ∈ R ∧ (x, x′) /∈>) ∨
(x′, x) ∈>).

Let us illustrate this definition through the follo-
wing simple example.

Example 1 Let A = {a, b, c},
≥= {(a, a), (b, b), (a, b)} and R =
{(a, b), (b, a), (b, c), (c, b)}. The conflict-free
sets of arguments are : E1 = ∅, E2 = {a},
E3 = {b}, E4 = {c}, and E5 = {a, c}. It can
be checked that the following relations hold :
E2 , E1, E3 , E1, E4 , E1, E5 , E1, E5 , E4,
E5 , E2, E5 , E3, E4 , E3, E3 , E4, and
E2 , E3. It can be checked that ,max= {E5}.

Note that relation , is not transitive. However,
the following property states that this relation
privileges maximal for set inclusion elements.

Property 1 Let E , E ′ be conflict-free sets of ar-
guments. If E " E ′ then E ′ - E .

Proof Let us prove that E ′ , E . We have that
E \E ′ = ∅, and, consequently, there are no argu-
ments in E \ E ′. Let us now see why ¬(E , E ′).
Since E " E ′, then ∃x′ ∈ E ′ \ E . But, from
the fact that E \ E ′ is empty, we conclude that
!x ∈ E \ E ′ s.t. (x, x′) ∈> or ((x, x′) ∈ R ∧
(x′, x) /∈>).

With the above relation, Definition 3 can be sim-
plified.

Property 2 Let E ′ be a conflict-free set of argu-
ments. It holds that E ′ ∈,max iff (∀E ⊆ A) ((E
is conflict-free) ⇒ (E ′ , E)).

Proof ⇒ Trivial, according to Definition 3.

⇐ Let (∀E ⊆ A) ((E is conflict-free) ⇒ (E ′ ,
E)). We will prove that (!E ′′ ⊆ A) s.t. E ′′

is conflict-free ∧ E ′ " E ′′ ∧ (∀E ′′′ ⊆ A)
(E ′′′ conflict-free ⇒ E ′′ , E ′′′). Suppose the
contrary. Since E ′ " E ′′ then Property 1 implies
that ¬(E ′ , E ′′). Contradiction.

The following property shows that the maximal
sets of arguments w.r.t. the relation , given in
Definition 5 are maximal conflict-free subsets of
A.

Property 3 Let E be a conflict-free set of argu-
ments. If E ∈,max, then E is a maximal conflict-
free set.

Proof Suppose the contrary, i.e., that E ∈,max
and that E is not a maximal conflict-free set.
This means that (∃x ∈ A) s.t. x /∈ E and
E ∪ {x} is conflict-free. According to Property
1, (E ∪ {x}) - E . Contradiction with the fact
E ∈,max.

The converse is not true, as illustrated by the
next example.

Example 2 (Ex. 1 Cont.) The set E3 is maximal
conflict-free but does not belong to ,max.

We can show that the proposed framework
handles correctly the example discussed in Sec-
tion 3.

Example 3 Recall that A = {a1, a2}, R =
{(a2, a1)} and ≥= {(a1, a1), (a2, a2), (a1, a2)}.
Conflict-free sets are : E1 = ∅, E2 = {a1}, E3 =
{a2}. It can easily be checked that,max= {E2}.
Thus, the new PAF has a unique extension which
is {a1}.

The extensions of the new PAF are conflict-free
w.r.t the attack relationR.



Property 4 Let (A,R, ≥) be a preference-
based argumentation framework. The exten-
sions of this framework w.r.t. the relation , gi-
ven in Definition 5 are conflict-free w.r.t.R.

Proof This follows from the definition of ,.

Regarding the second requirement, the follo-
wing theorem proves that the extensions of
our preference-based argumentation framework
coincide with stable extensions in case prefe-
rences are not available and when any attacked
argument is not stronger than its attacker.

Theorem 1 Let (A,R, ≥) be a preference-
based argumentation framework, and
E1, . . . , En denote its extensions w.r.t. ,. If
(!x, y ∈ A) s.t. (x, y) ∈ R ∧ (y, x) ∈>, then
each Ei is a stable extension of 〈A,R〉 and vice
versa.

Proof ⇒ Let E ′ ∈,max.
– Since E ′ ∈,max then it is conflict-free.
– We will now prove that E ′ defends all its ele-
ments. Let us suppose that (∃a ∈ E ′) (∃x ∈
A) s.t. (x, a) ∈ R ∧ (!y ∈ E ′) (y, x) ∈ R.
Since E ′ is conflict-free, then x /∈ E ′. Let
E = {x}∪{t ∈ E ′ | (x, t) /∈ R ∧ (t, x) /∈ R}.
It is clear the E is conflict-free since E is union
of two conflict-free sets which do not attack
one another. Since E ′ ∈,max then E ′ , E . In
particular, since x ∈ E\E ′, then (∃x′ ∈ E ′\E)
s.t. ((x′, x) ∈ R ∧ (x, x′) /∈>) ∨ (x′, x) ∈>.
Since (!y ∈ E ′) (y, x) ∈ R, then it must be
the case that (x′, x) /∈ R and (x′, x) ∈>.
Since x′ ∈ E ′ and x′ /∈ E then, with respect
to definition of E , from x′ /∈ E we have that
(x, x′) ∈ R or (x′, x) ∈ R. Since we have just
seen that (x′, x) /∈ R, it must be that (x, x′) ∈
R. Recall that we have (x′, x) ∈>. But we
supposed that (!z, z ′ ∈ A) s.t. (z, z′) ∈ R
and (z′, z) ∈>. Contradiction. Thus, E ′ de-
fends its arguments.

– We have just shown that E ′ is admissible, i.e.,
it is conflict-free and it defends all its argu-
ments. We will now prove that E ′ attacks all
arguments in A \ E ′. Let x /∈ E ′ be an argu-
ment and suppose that (!y ∈ E ′) (y, x) ∈ R.
Either x attacks some argument of E ′ or not.
If it is the case, i.e., (∃a ∈ E ′) s.t. (x, a) ∈ R
then, since E ′ defends all its elements, it holds
that (∃y ∈ E ′) s.t. (y, x) ∈ R. Contradiction.
So, it must be that (!a ∈ E ′) s.t. (x, a) ∈ R.
This means that E = E ′ ∪ {x} is conflict-
free. According to Property 1, it holds that

¬(E ′ , E). Contradiction with the fact that
E ′ ∈,max.
So, E is conflict-free and it attacks all argu-
ments in A \ E . This means that E is a stable
extension of framework AF = 〈A,R〉.

⇐ Let E ′ be a stable extension of the framework
AF = 〈A,R〉 and let us prove that E ′ ∈,max.
– Since E ′ is stable then it is conflict-free.
– We will prove that for an arbitrary conflict-
free set of arguments E it holds that E ′ , E .
Let E ⊆ A be a conflict-free set. If E \ E ′ =
∅ the proof is over. If it is not the case, let
x ∈ E \ E ′. Since x /∈ E ′ and E ′ is a stable
extension, then (∃x′ ∈ E ′) s.t. (x′, x) ∈ R.
We supposed that (!z, z′ ∈ A) s.t. (z, z′) ∈ R
and (z′, z) ∈>. Thus, (x, x′) /∈>. Since x ∈
E \ E ′ was arbitrary, it holds that E ′ , E .

– Using Property 2, we conclude that E ′

∈,max.

From this result it follows that when preferences
are not available, stable extensions are retrieved.

Corollary 1 Let (A,R, ≥) be a preference-
based argumentation framework, and
E1, . . . , En denote its extensions w.r.t. ,. If
≥= {(x, x) | x ∈ A}, then each Ei is a stable
extension of 〈A,R〉 and vice versa.

Proof Since ≥= {(x, x) | x ∈ A} then
(!x, y ∈ A) s.t. x 3= y ∧ (x, y) ∈ R ∧
(y, x) ∈>. Since we supposed that (!x ∈ A)
s.t. (x, x) ∈ R then (!x, y ∈ A) s.t. (x, y) ∈ R
∧ (y, x) ∈>. Thus, Theorem 1 implies that ex-
tensions of (A,R, ≥) are exactly the stable ex-
tensions of 〈A,R〉.

Note that the relation , gives more informa-
tion than Dung’s acceptability semantics. In-
deed, even when preferences are not available,
the relation , compares conflict-free sets of
arguments, as can be shown on the following
example.

Example 4 Let A = {a, b, c}, ≥=
{(a, a), (b, b), (c, c)} and R = {(a, b), (b, c)}.
Note that in this case, the preference relation
≥ is useless. Thus, the only stable extension of
〈A,R〈 is {a, c}. This is also the only maximal
element of the relation ,. However, in the new
PAF, it is also possible to compare the two sets :
{a} and {b}. It can be checked that {a} , {b}.



4.2 Generalization Of Preferred Semantics

In this section, we define a relation , that al-
lows to retrieve preferred extensions in case pre-
ferences between arguments are not available or
are not important. The basic idea behind this re-
lation is that a set E ′ is better than E iff for every
attack from E to E ′ which does not fail E ′ is ca-
pable to defend the attacked argument and that
for every attack from E ′ to E which fails, there
is another attack from E ′ which defends the ar-
gument which failed in its attack.

Definition 6 Let E , E ′ be conflict-free sets of ar-
guments. E ′ , E iff (∀x′ ∈ E ′)(∀x ∈ E)
if (((x, x′) ∈ R ∧ (x′, x) /∈>) or ((x′, x) ∈
R∧ (x, x′) ∈>)) then ((∃y′ ∈ E ′) s.t. ((y′, x) ∈
R ∧ (x, y′) /∈>)).

Let us illustrate this definition through the next
example.

Example 5 (Ex. 1 Cont.) One can easily see
that it holds that E2 - E3, E3 , E4, E4 , E3,
E5 - E3, . . . It can also be checked that ,max=
{E5}.

Note that this relation is not transitive. It is
also clear from the above definition that the
corresponding framework satisfies the conflict-
freeness requirement.

Property 5 Let (A,R, ≥) be a preference-
based argumentation framework. The exten-
sions of this framework w.r.t. , given in Defi-
nition 6 are conflict-free w.r.t.R.

Proof This follows from the definition of ,.

Regarding the second requirement, the follo-
wing theorem shows that the preference-based
framework that uses this relation generalizes
preferred extensions.

Theorem 2 Let (A,R, ≥) be a preference-
based argumentation framework, and
E1, . . . , En denote its extensions w.r.t. ,. If
(!x, y ∈ A) s.t. (x, y) ∈ R ∧ (y, x) ∈>, then
each Ei is a preferred extension of 〈A,R〉 and
vice versa.

Proof Since we supposed that (!x, y ∈ A) s.t.
(x, y) ∈ R ∧ (y, x) ∈> then E ′ , E iff (∀x′ ∈
E ′) (∀x ∈ E) if (x, x′) ∈ R then (∃y′ ∈ E ′) s.t.
(y, x) ∈ R.

⇐ Let E ′ be a preferred extension of AF =
〈A,R〉.
– Since E ′ is a preferred extension then it is
conflict-free.

– Let us prove that E ′ ∈,max. Suppose the
contrary. This means that one of the following
is true :
1. (∃E ⊆ A) s.t. E is conflict-free and

¬(E ′ , E)

2. (∃E ⊆ A) s.t. E is conflict-free ∧ E ′ " E
∧ (∀E ′′ ⊆ A) if E ′′ is conflict-free then
E , E ′′

Let (1) be the case. Since ¬(E ′ , E) then
(∃x′ ∈ E ′)(∃x ∈ E) s.t. (x, x′) ∈ R ∧
(!y′ ∈ E ′) s.t. (y′, x) ∈ R. This leads to the
conclusion that E ′ does not defend its argu-
ments, thus it cannot be a preferred extension.
Contradiction. So, it must be that (2) holds.
Since E ′ is preferred and E ′ " E then E is not
admissible. From the fact that E is conflict-
free, one concludes that it does not defend
its arguments. Thus, (∃x′′ ∈ E ′′ \ E ′) s.t.
(∃y ∈ A) s.t. (y, x′′) ∈ R ∧ (!z′′ ∈ E ′′) s.t.
(z′′, y) ∈ R. Hence, ¬(E ′′ , {y}). Contra-
diction.

⇒ Let E ′ ∈,max. We will prove that E ′ is a pre-
ferred extension of Dung’s argumentation fra-
mework AF = 〈A,R〉.
– Since E ′ ∈,max then it is conflict-free.
– Let us prove that E ′ defends all its arguments.
Suppose not. This means that (∃y ∈ A) s.t.
(y, x′) ∈ R ∧ (!z′ ∈ E ′) s.t. (z′, y) ∈ R. This
means that ¬(E ′ , {y}). Contradiction.

– We have just seen that E ′ is admissible. Let
us prove that E ′ is a preferred extension of
AF = 〈A,R〉. Suppose the contrary, i.e.,
(∃E ⊆ A) s.t. E is a preferred extension and
E ′ " E . Since E ′ ∈,max then E /∈,max. On
the other hand, since E is a preferred exten-
sion, then E ∈,max, as we have proved in the
first part of this theorem. Contradiction.

When preferences are not available, the frame-
work that uses the relation, retrieves preferred
extensions.

Corollary 2 Let (A,R, ≥) be a preference-
based argumentation framework, and
E1, . . . , En denote its extensions w.r.t. ,. If



≥= {(x, x) | x ∈ A}, then each Ei is a
preferred extension of 〈A,R〉 and vice versa.

Proof Since ≥= {(x, x) | x ∈ A} then
(!x, y ∈ A) s.t. x 3= y ∧ (x, y) ∈ R ∧
(y, x) ∈>. Since we supposed that (!x ∈ A)
s.t. (x, x) ∈ R then (!x, y ∈ A) s.t. (x, y) ∈ R
∧ (y, x) ∈>. Theorem 2 now implies that ex-
tensions of (A,R, ≥) are exactly the preferred
extensions of 〈A,R〉.

4.3 Generalization Of Grounded Semantics

In this section, we define a relation, that allows
to retrieve the grounded extension in case prefe-
rences between arguments are not available or
are not important. The basic idea behind this re-
lation is that a set is not worse than another if it
can strongly defend all its arguments against all
attacks that come from another set.

We first generalize the notion of strong defense
by taking into account preferences between ar-
guments. The idea is that an argument has ei-
ther to be preferred to its attacker or has to be
defended by arguments that themselves can be
strongly defended without using the argument
in question.

Definition 7 (Strong defense) Let E ′ ⊆ A. E ′

strongly defends an argument x from attacks of
a set E , denoted by sd(x, E ′, E) iff (∀y ∈ E) if
(((y, x) ∈ R ∧ (x, y) /∈>) or ((x, y) ∈ R ∧
(y, x) ∈>)) then ((∃z ∈ E ′ \ {x}) s.t. ((z, y) ∈
R ∧ (y, z) /∈> ∧sd(z, E ′ \ {x}, E))).
If the third argument of sd is not specified, then
sd(x, E) ≡ sd(x, E ,A).

Let us illustrate this notion through the follo-
wing example.

Example 6 (Ex. 1 Cont.) It holds that
sd(a, {a}, {b}) since a is strictly preferred
to b thus it can defend itself. However, we have
¬sd(b, {b}, {c}) since b cannot defend itself
against c. On the other hand, it does hold that
sd(c, {a, c}, {b}) since a can defend c against
b and a is protected from b since it is strictly
preferred to it.

This relation amounts to prefer the subsets that
strongly defend all their arguments. In particu-
lar, E ′ , E iff E ′ strongly defends all its argu-
ments against all attacks of E .

Definition 8 Let E , E ′ be conflict-free sets of ar-
guments. We say that E ′ , E iff (∀x′ ∈ E ′)
sd(x′, E ′, E).

Example 7 Let A = {a, b, c},
≥= {(a, a), (b, b), (b, a)} and R =
{(a, b), (b, a), (b, c), (c, b)}. One can check
that there is exactly one subset of A which is
preferred to all other subsets of arguments.
This set is the empty one. While we do have
{b} , {a}, we have ¬({b} , {c}), so {b}
is not an extension of (A,R, ≥). We have
also ¬({a} , {b}), ¬({c} , {b}) and
¬({a, c} , {b}). This is expected and a natural
output since neither b nor c are capable to
defend strongly themselves and, on the other
hand, it can be said that a is the worst argument
in this framework, thus not strong enough to be
better than b.

Theorem 3 Let (A,R, ≥) be a preference-
based argumentation framework. If (!x, y ∈ A)
s.t. (x, y) ∈ R ∧ (y, x) ∈>, then,max contains
exactly one element which coincides with the
grounded extension of 〈A,R〉.

Proof Since we supposed that (!x, y ∈ A)
s.t. (x, y) ∈ R ∧ (y, x) ∈> then we can sim-
plify Definition 7 which becomes : sd(x, E ′, E)
iff (∀y ∈ E) (if (y, x) ∈ R then (∃z ∈ E ′ \ {x})
s.t. ((z, y) ∈ R ∧ sd(z, E ′ \ {x}, E))). In this
particular case when no attacked argument is
strictly preferred to its attacker, our definition of
sd(x, E) becomes exactly the same as Definition
13 in [4]. Thus, using Proposition 50 and Pro-
position 51 of the same paper, we conclude that
x ∈ GE iff sd(x, GE), where GE is the grounded
extension of the framework AF = 〈A,R〉. ⇐
Let E ′ be the grounded extension of 〈A,R〉.
– Since E ′ is the grounded extension then it is
conflict-free.

– We will prove that for an arbitrary conflict-
free set E ⊆ A it holds that E ′ , E . Let
E ⊆ A be conflict-free. Since E ′ is the groun-
ded extension then x ∈ E ′ ⇒ sd(x, E ′). On
the other hand, (∀x ∈ E ′) sd(x, E ′) implies
that sd(x, E ′, E). Thus, E ′ , E . Since E was
arbitrary, then (∀E ⊆ A) ((E is conflict-free)
⇒ (E ′ , E)).

– We will now prove that (!E ⊆ A) s.t. E is
conflict-free and E ′ " E and ((∀E ′′ ⊆ A)
(E ′′ conflict-free) ⇒ (E , E ′′)). Suppose
the contrary. Suppose also that (∀x ∈ E)
sd(x, E). If this is the case, according to Pro-
position 51 in [4], E ⊆ GE. Contradiction. So,



it must be that (∃x ∈ E) s.t. ¬sd(x, E). Thus,
(∃y ∈ A) s.t. ¬sd(x, E , {y}). Consequently,
¬(E , {y}). Contradiction. So, we have pro-
ved that E ′ ∈,max.

⇒ Let E ′ ∈,max and let us prove that E ′ =
GE. Since (∀x ∈ A) E ′ , {x} then (∀x′ ∈
E ′) sd(x′, E ′). From the fact that (∀x′ ∈ E ′)
sd(x, E ′) and Proposition 51 of [4] we have
that E ′ ⊆ GE. Let us now prove that E ′ = GE.
Suppose not, i.e., suppose that E ′ " GE. We
have proved in the first part of this theorem that
GE ∈,max. Contradiction, since we have sup-
posed that E ′ ∈,max and we have E ′ " GE.

When preferences are not available, the frame-
work that uses the relation , retrieves exactly
grounded extension.

Corollary 3 Let (A,R, ≥) be a preference-
based argumentation framework. If ≥= {(x, x)
| x ∈ A}, then ,max contains exactly one ele-
ment which coincides with the grounded exten-
sion of 〈A,R〉.

Proof Since ≥= {(x, x) | x ∈ A} then
(!x, y ∈ A) s.t. x 3= y ∧ (x, y) ∈ R ∧
(y, x) ∈>. Since we supposed that (!x ∈ A)
s.t. (x, x) ∈ R then (!x, y ∈ A) s.t. (x, y) ∈
R ∧ (y, x) ∈>. Theorem 3 now implies that
(A,R, ≥) has exactly one extension which is the
grounded extension of 〈A,R〉.

5 Conclusion

This paper has shown through a simple example
that existing preference-based argumentation
frameworks may lead to undesirable results.
This means that the way preferences between
arguments are taken into account is not ap-
propriate. We have then proposed an alterna-
tive approach that satisfies two basic require-
ments : conflict-freeness of extensions, and re-
covering Dung’s acceptability semantics when
preferences are not available. The approach
amounts to define a relation on the powerset
of arguments. In other words, it compares pairs
of conflict-free subsets of arguments. The best
elements w.r.t. this relation are the extensions
of the new framework. The approach has three
main advantages : i) it is general since dif-
ferent relations can be defined, ii) it enforces
the new framework to satisfy key properties, na-
mely conflict-freeness of the extensions and re-
covering Dung’s semantics, iii) it allows to com-
pare any pair of subsets of arguments, contrary

to Dung’s approach in which there are only two
categories of sets : the ones that are considered
as extensions and all the remaining ones. The
results presented in this paper show also how
to characterize Dung’s semantics in terms of a
relation between subsets of arguments. To the
best of our knowledge this is the first work in
this direction. It allows to better understand the
underpinning of those semantics.
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