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Abstract
While sets of probability measures and imprecise prob-
abilities in general, are widely accepted as a powerful
and unifying framework for handling uncertain and in-
complete information, updating such belief sets with
new uncertain inputs has not received enough atten-
tion. In this paper, we provide an analysis of Jeffrey’s
rule of conditioning for updating sets of probability
measures with new information, possibly uncertain and
imprecise, also expressed as sets of probability mea-
sures. The paper first provides properties for updat-
ing sets of probability measures in the spirit of Jef-
frey’s rule, then provides and analyses extensions of
Jeffrey’s rule to three main imprecise probability repre-
sentations: i) finite sets of probability measures and ii)
convex set of probability measures specified by extreme
points. The proposed extensions capture the proposed
postulates and recover the standard Jeffrey’s rule in
case where the updated set and the new input are sin-
gle probability measures.

Introduction
Imprecise probability theory (Levi 1980; Walley 2000)
is a unifying uncertainty theory particularly suited for
encoding and reasoning with imprecise or ill-known in-
formation. This framework is often seen as a probabilis-
tic setting with relaxed parameters and it is typically
used to reason with multiple expert information (Nau
2002), perform sensitivity analysis (Bock, de Campos,
and Antonucci 2014), decision making with incomplete
or scarce information (Antonucci, Piatti, and Zaffalon
2007), etc. Imprecise probabilities are often associated
with a robust Bayesian interpretation (Berger et al.
1994) assuming that the probability measure corre-
sponding to the actual beliefs exists and it is unique
but it is unknown, that’s why it is expressed in an
imprecise way using the concept of sets of probability
measures, credal sets (Levi 1980; Walley 2000) or using
other representations (such as interval-based probabil-
ities (de Campos, Huete, and Moral 1994) and proba-
bilistic logic programs (Lukasiewicz 2001)).
Given a set of initial uncertain beliefs, one may have
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new information which can be in the form of a hard
evidence or in the form of uncertain or soft evidence
(e.g. unreliable input) or simply new uncertain infor-
mation regarding some events1. Our focus is on updat-
ing a set of probability measures with new informa-
tion expressed also as a set of probability measures. In
the standard probabilistic setting, Jeffrey’s rule (Jeffrey
1965) generalizes the standard probabilistic condition-
ing to the case of uncertain inputs. This conditioning
rule has been adapted and studied in many uncertainty
settings (for instances, see (Dubois and Prade 1997) for
the possibilistic setting, (Ma et al. 2011) for Dempster-
Shafer theory). In (Benferhat et al. 2010), it is claimed
that this rule can successfully recover most of belief re-
vision rules such as natural and drastic belief revision.
Many works highlighted the necessity of updating prob-
abilistic information with sets of probability measures
(Karlsson, Johansson, and Andler 2011; Skulj 2006;
Tang and Zheng 2006; Rens, Meyer, and Casini 2016).
For example, in (Skulj 2006), the author updates a
probability measure to create some neighborhood of
imprecise probabilities for some events. In (Karlsson,
Johansson, and Andler 2011), the authors study com-
bining multiple evidences provided in the form of credal
sets. There is to the best of our knowledge no study on
an extension of Jeffrey’s rule to sets of probability mea-
sures. The main contributions of the paper are:
i) We provide natural properties that an extension of
Jeffrey’s rule to imprecise probabilistic settings should
satisfy.
ii) We provide extensions of Jeffrey’s rule to sets of
probability measures and convex credal sets.
iii) We study the properties of the proposed extensions.
Interestingly enough, the proposed extensions satisfy
the defined postulates and collapse to the standard Jef-
frey’s rule in case where the prior belief set and the new
input consist only in single probability measures.

Imprecise probabilities: Basic concepts
In the following, Ω={ω0, ω1, .., ωm} denotes the uni-
verse of discourse (all possible states of the world) and

1On the different meanings of hard, soft and uncertain
evidence, see (Ma and Liu 2011).



ωi denotes a given state (also called interpretation).
Sets of interpretations ϕ⊆Ω, ψ⊆Ω are called events.

Sets of probability measures and credal sets
Let ∆ denote the set of all probability measures over
Ω. A set of probability measures K is a subset of ∆. K
denotes a finite2 or inifinite set of classical probability
measures p over Ω. In order to avoid heavy notations, a
set of probability measures will be denoted K, the same
notation used for credal sets. In this paper, a credal set
represents all the probability measures satisfying some
requirements or constraints. More precisely, a credal set
is defined as follows:
Definition 1 (Credal set) A credal setK is a closed con-
vex set of probability distributions.
Credal sets are generally induced by probabilistic beliefs
encoded by means of interval-based probabilities (de
Campos, Huete, and Moral 1994) or probabilistic con-
straints as in conditional logic programs (Lukasiewicz
2001). Intuitively, if K is a convex set of probability
measures, then linearly mixing3 any two distributions
p1 and p2 from K will result in a distribution p be-
longing to K. Given that a credal set may contain
an infinite number of probability measures, there are
three main commonly used ways to encode imprecise
beliefs. i) Vertex-based representation where the un-
certainty is encoded by a finite set of standard proba-
bility distributions representing extreme points of the
convex set K. ii) Interval-based representation where
every interpretation ω∈Ω is associated with upper and
lower probabilities. iii) Constraint-based representation
where the uncertainty is specified by means of con-
straints as in the comparative probabilities framework
(Miranda and Destercke 2013) or in probabilistic logic
programs (Lukasiewicz 2001). In this paper, we focus
only on the vertex representation.

Vertex-based representation
This representation defines a convex credal set K by
a finite number of probability measures called extreme
points. Such a credal set is called a finitely generated
credal set. Any probability measure of K can be ex-
pressed as linear combination of extreme points.
Definition 2 (Extreme point) An extreme point (also
called vertex) p of a credal set K is a probability mea-
sure such that it is impossible to find two different
probability distributions p1∈K and p2∈K such that
p=α*p1+(1-α)*p2 with α∈]0, 1[.
This representation is for instance used in the Jav-
aBayes4 platform for modeling and reasoning with

2For instance, in case we have 10 experts where each
expert i having his own beliefs in the form of a probability
measure pi then this set is composed by the 10 probability
measures p1,..,p10.

3Mixing here means linearly combining a set of distribu-
tions p1 .. pk as follows: p=

∑k
i=1(ai ∗ pi) where

∑k
i=1 ai=1.

4http://www.cs.cmu.edu/~javabayes/Home/

Bayesian and credal networks (Cozman 2000). In the
following, ext(K) denotes the set of extreme points of
the credal set K.
Definition 3 (Convex hull) The convex hull of credal
set K, denoted CH(K) is the closed set of probabil-
ity measures whose polytope is characterized by the set
of extreme points ext(K).
Example 1 In Figure 1, a convex credal set K is
depicted using a barycentric representation. Here
Ω={ω0, ω1, ω2} and K is finitely generated by three
extreme points p1=(.45, 0, .55), p2=(.7, .1, .2) and
p3=(.1, .6, .3).

w0(1, 0, 0)

w1(0, 1, 0) w2(0, 0, 1)

p1
p2

p3

Figure 1: Example of extreme points p1, p2 and p3 using
a barycentric representation.

Note that any closed convex set can be encoded by a
finite number of extreme points (Levi 1980; Wallner
2007).

Reasoning with credal sets
Reasoning tasks are performed on sets of probability
measures or credal sets by exploring all the models of
that credal set5. For instance, marginalizing a credal set
K(X,Y ) on two sub-sets of variables X and Y is done
as follows:

K(X) = {
∑
Y

p(X,Y ) : p ∈ K(X,Y )} (1)

Conditioning on an event ϕ⊆Ω is defined as follows:

K(ωi|ϕ) = {p(ωi|ϕ) : p ∈ K and p(ϕ) > 0} (2)

Note that for practical computational reasons, reason-
ing on K is done on ext(K) which provides an equiva-
lent representation. Indeed, inference on a credal set
K is equivalent to inference on its extremes points
(de Campos, Huete, and Moral 1994). For instance, for
marginalization, given a credal setK(X,Y ) on two sub-
sets of variables X and Y . Then,

K(X) = CH({p(X) : p ∈ ext(K(X,Y )}) (3)

We assume that K is a finitely generated credal set,
namely K is the convex hull of its set of extreme points
ext(K). In the following, we propose extensions of Jef-
frey’s rule to sets of probability measures.

5Alternative approaches consist for instance in selecting
the most informative model (in the sense of information en-
tropy for example) of K to draw inferences as it is done in
(Lukasiewicz 2001).



Extending Jeffrey’s rule to sets of probability
measures

This section analyzes a straightforward extension of Jef-
frey’s rule to sets of probability measures.

Motivating example
Let us assume we are dealing with learning probabili-
ties from a dataset over five boolean variables X1, X2,
X3, X4 and X5. Suppose a small dataset D is collected
where the values of some variables are missing. Assume
also we are interested in deriving an imprecise probabil-
ity distribution (here an interval-based probability dis-
tribution) from this small dataset. In this case, for each
configuration x1..x5 of the five variables (X1, .., X5), we
will have a lower bound l corresponding to the fre-
quency of x1..x5 in D and an upper bound u corre-
sponding to the proportion of entries of D that are ei-
ther x1..x5 or that can be x1..x5 (for instance, if the
value of variable X5 is missing in a given entry of D
then it can be any value of X5). Let P be the interval-
based probability distribution derived from D.

X1 X2 X3 X4 X5 P (X1X2X3X4X5)

0 0 0 0 0 [.001, .04]

0 0 0 0 1 [.02, .1]

... ... ... ... ... ...

1 1 1 1 1 [.005, .035]

Assume now that we have a latest and bigger dataset
D′ but only on a subset of variablesX1..X2.D′ also con-
tains some missing data. Let P ′ be the interval-based
probability distribution computed from D′.

X1 X2 P (X1X2)

0 0 [.025, .059]

0 1 [.2, .35]

... ... ...

1 1 [.5, .7]

It fully makes sense to revise the initial distribution
P by P ′ since this latter is more recent and more repre-
sentative of the problem as it concerns a large amount
of data. It is important to note that the information to
update is a set of probablity measues (all probability
measures complying with the intervals of P ) and the
new input is also a set of probability measures. This
update task is fully in the spirit of Jeffrey’s rule but
there is to the best of our knowledge no extension of
Jeffrey’s rule to sets of probability measures. Of course,
the need to revise sets of probabilities by new sets of
probabilities can be encountered either when dealing
with empirical data (typical situations are dealing with
missing data and small datasets) or when dealing with
subjective beliefs of agents.

Jeffrey’s rule
Jeffrey’s rule (Jeffrey 1965) is an extension of the clas-
sical probabilistic conditioning to the case where the
new observation is uncertain. It allows to update an

initial probability distribution p into a posterior one p′
given the uncertainty bearing on a set of mutually ex-
clusive and exhaustive events λ1,..,λn. The new input
is of the form (λi, αi), i=1..n where αi denotes the new
probability of λi. Jeffrey’s rule lies on the two following
principles:
i) Success principle: After the update operation, the
posterior probability of each event λi must be equal
to αi, namely ∀λi, p′(λi)=αi.
ii) Probability kinematics principle: This constraint
ensures a kind of minimal change principle. Jeffrey’s
method assumes that in spite of the disagreement about
the events λi in the initial distribution p and the new
one p′, the conditional probability of any event ϕ⊆Ω
given any uncertain event λi remains the same in the
original and the revised distributions. Namely,

∀λi ⊆ Ω, ∀ϕ ⊆ Ω, p(ϕ|λi) = p′(ϕ|λi). (4)

Given a probability measure p encoding the initial
beliefs and new inputs the form (λi, αi). The updated
probability degree of any event ϕ⊆Ω, is done as follows:

p′(ϕ) =
∑
λi

αi ∗
p(ϕ, λi)

p(λi)
. (5)

The posterior distribution p′ obtained using Jeffrey’s
rule always exists and it is unique (Chan and Darwiche
2005).

Jeffrey’s rule for sets of probability measures
Recall that our focus is not the foundations
and justifications of Jeffrey’s rule in impre-
cise probabilities. Interested readers can re-
fer for instance to (Chan and Darwiche 2005;
Grove and Halpern 1998; Skulj 2006;
Yue and Liu 2008). For the sake of simplicity,
the input, the belief set to update is given in the form
of a credal set denoted K. The new information is also
given in the form of a credal set Kin over a partition
of Ω. This form for the inputs is general enough to
capture sure observations, uncertain observations and
imprecise ones. Moreover, we assume that K and
Kin are not empty sets. Let K ′ be a the updated set
obtained by updating K with Kin. Let us now see
what an extension of Jeffrey’s rule could aim to satisfy
in an imprecise probabilistic setting.

(P1) K ′(λ1..λn)⊆ Kin

(P2) ∀λi⊆Ω, ∀ϕ⊆Ω, K(ϕ|λi)=K ′(ϕ|λi)
(P3) udp(K,Kin)=

∪
p∈K,pin∈Kin

udp(p, pin).
Postulate P1 corresponds to the success postulate en-

suring that the new information should be accepted (the
inputs are seen as constraints to be satisfied). Of course,
the success postulate may be questionable in some con-
texts, but it may be a desired property in some ap-
plications such as in (Skulj 2006). In order to stay in
Jeffrey’s rule spirit, we just rephrase this postulate in
the context of sets of probabilities. The converse in-
clusion Kin⊆K ′(λ1..λn) is strong as there may exist λi
and pin∈Kin such that pin(λi)>0 while ∀p∈K, p(λi)=0



preventing the application of Jeffrey’s rule on an a pri-
ori impossible event as in the standard case.
P2 is the statement of kinematics principle adapted to
the case of sets of probability measures. This postulate
aims to ensure that K ′ and K preserve the conditional
credal sets on the events λ1,..,λn.
P3 extends the one proposed in (Grove and Halpern
1998) in order to capture the fact that updating a set of
probability measures by another set of measures should
take into account every measure in the initial set and ev-
ery measure in the new input. This makes sense within
a robust Bayesian interpretation of sets of probability
measures.
Lemma 1 If |K|=|Kin|=1 then postulates P1 and P2
recover with the success and probability kinematics
principles of Jeffrey’s rule respectively.
Obviously, if the credal sets K and Kin are singletons
(namely, each one composed of only one probability
measure), then P1 will recover the success principle (the
input Kin is fully accepted as in Jeffrey’s rule) while P2
will recover the probability kinematics principle. Con-
sequently, the only solution satifying these properties
is the one obtained using Jeffrey’s rule and it always
exists (Chan and Darwiche 2005).

Conditioning sets of probabiliy measures with
uncertain inputs

One direct way to extend Jeffrey’s rule to finite sets of
probability measures is to update every member of the
belief set K by every member of the new input Kin as
follows:
Definition 4 LetK be a set of probability measures rep-
resenting the current beliefs over the universe of dis-
course Ω. Let the new information be Kin.
K′ = {p′ : p′ = Jeffrey(p, pin), p ∈ K : ∀λi, p(λi) > 0, pin ∈ Kin}

(6)
where Jeffrey(p, pin) is the update according to Jeffrey’s
rule given in Equation 5 of the probability measure p
with the new input pin=(pin(λ1), ..,pin(λn)).
Updating using Definition 4 in straightforward in case
where the belief sets K and Kin consist of finite sets
of probability measures. It is clear that if both K and
Kin contain only one probability measure then Defi-
nition 4 comes down to Jeffrey’s rule in the standard
probabilistic setting.
Example 2 Let us assume that
Ω={a1b1, a1b2, a2b1, a2b2} and that the current
beliefs about a given problem over two binary variables
A and B is a set composed of three probability
distributions p1, p2 and p3. Suppose that we receive
new information (for example new data) saying that
the probability pin(b1)=.9 and pin(b2)=.1. Applying
Jeffrey’s rule to each probability measure p1, p2 and p3
will give three updated distributions p′1, p′2 and p′3.
Proposition 1 Let K be a finite set probability mea-
sures over Ω. Let the new information be Kin which

A B p1(AB) p2(AB) p3(AB)

a1 b1 .6 .65 .7
a2 b1 .15 .1 .1
a1 b2 .1 .1 .1
a2 b2 .15 .15 .1

Table 1: Example of a belief set K characterized by
three extreme points p1, p2 and p3.

A B p′
1(AB) p′

2(AB) p′
3(AB)

a1 b1 .72 .78 .79
a2 b1 .18 .12 .11
a1 b2 .04 .04 .05
a2 b2 .06 .06 .05

Table 2: The posterior set K ′ obtained from K of Table
1.

is a set on an exhaustive and mutually exclusive set of
events λ1,..λn. Let K ′ be the results of updating K ′

with Kin using Definition 4. Then K ′ satisfies postu-
lates P1, P2 and P3.
Proof 1 (Sketch)
• For P1, to show that K ′(λ1..λn)⊆Kin, let p′∈K ′

and show that ∀λi, ∃pin∈Kin s.t. p′(λi)=pin(λi).
If p′∈K ′ then ∃p∈K and ∃pin∈Kin such that
p′=Jeffrey(p, pin). Since p′ is obtained by updating p
with pin with Jeffrey’s rule, then ∀λi, p′(λi)=pin(λi).

• For P2 and P3, the proof is also straightforward for
finite sets of probability measures since by Definition
4 the update is done using Jeffrey’s rule applied indi-
vidually on each member of K and on each member
of Kin.

In practice, the credal set K to update may be finite
or infinite (in case of convex sets). In the following, we
extend Jeffrey’s rule to closed convex credal sets.

Conditioning credal sets with uncertain inputs
In this section, the belief set to update is a closed convex
set K specified by its extreme points ext(K) and the
new input Kin is also a closed convex set specified by
its extreme points ext(Kin). One direct way to extend
Jeffrey’s rule is to update only extreme points of K
with the ones of Kin, namely update each p∈ext(K)
with each pin∈ext(Kin) using Jeffrey’s rule.
Definition 5 Let K be the closed convex set to update.
Let the new information beKin which is a closed convex
set on set of exhaustive and mutually exclusive events
λ1,..,λn.

K′ = CH({p′ : p′ = jeffrey(p, pin); p ∈ ext(K) and
pin ∈ ext(Kin), ∀λi, p(λi) > 0}),

(7)

Given that it is impossible to update every p∈K, update
of Definition 5 proceeds by updating only the set of
extreme points of K by the set of extreme points of
Kin then recovers a convex set using the convex hull
operator.



Example 3 (Example 1 continued) Let us reuse the
credal set K of Example 1 where Ω={ω0, ω1, ω2}
and K is finitely generated by three extreme points
p1=(.45, 0, .55), p2=(.7, .1, .2) and p3=(.1, .6, .3). As-
sume now that new information Kin regarding two
events λ1={ω1, ω2} and λ2={ω3} has become avail-
able. Assume also that ext(Kin) consists of two extreme
points {(.7, .3); (.6, .4)}.

w0(1, 0, 0)

w1(0, 1, 0) w2(0, 0, 1)

p′1p′′1p′2

p′′2
p′3

p′′3

Figure 2: Credal set K ′ obtained by updating K
of Figure 1 with Kin whose extreme points are
{(.7, .3); (.6, .4)}.

As shown in Figure 2, the number of extreme points of
K ′ is at most to |ext(K)|*|ext(Kin)|.
Proposition 2 Let K be the closed convex set to update
and Kin be the new input. Let K ′ be the updated set
computed according to Definition 5 then K ′ satisfies
postulates P1-P3.
Proof 2 (Proof sketch)
For P1, in order to show that K ′(λ1..λn)⊆Kin,
let p′∈K ′ and show that ∃pin∈Kin s.t.
p′(λ1..λn)=pin(λ1..λn). Since p′∈K ′ then p′∈CH({p′ :
p′=Jeffrey(p, pin); p ∈ ext(K), pin ∈ ext(Kin)}). It
is clear that in case where p’=Jeffrey(p, pin) with
p∈ext(K) and pin∈ext(Kin) then p′(λ1..λn)∈Kin

since p′ is obtained by updating p with pin using
Jeffrey’s rule. Now, for any p′∈K ′ that is not an
extreme point of K ′, p′ can be expressed using the
extreme points ext(K ′) as a convex combination of
extreme points of K ′: p′(ω)=

∑
i,j αi,j ∗ p′i,j(ω) where

p′i,j∈ext(K ′) obtained by updating the extreme point
pi∈ext(K) with the extreme point pin j∈ext(Kin) us-
ing Jeffrey’s rule, namely p′i,j(ω)=

pi(ω)∗pin j(λ)
pi(λ)

. Hence,
p′(λ)=

∑
ω∈λ(

∑
i,j αi,j ∗ p′i,j(ω)) with

∑
i,j αi,j=1. The

proof is consists in starting with expressing p′(λ) as
a convex combination of extreme points of ext(K ′)
and ending up with expressing p′(λ) as a convex
combination of ext(Kin).
For P2, it is enough to see that if p′∈ext(K ′)
then necessarily ∃p∈ext(K) and ∃pin∈ext(Kin)
such that p′=Jeffrey(p, pin). Hence, ∀ψ⊆Ω, ∀λi⊆Ω,
p(ϕ|λi)=p′(ϕ|λi). Since K and Kin are convex
sets, then ∀p′∈K ′, ∃p∈K and ∃pin∈Kin such
that p′=Jeffrey(p, pin). Hence, ∀ψ⊆Ω, ∀λi⊆Ω,
p(ϕ|λi)=p′(ϕ|λi).
For P3, the idea of the proof is based on the convexity
of K ′ obtained by combining two convex sets K and
Kin. Indeed, K ′ is obtained by the convex hull operator

on a kind of cartesian product of elements of ext(K)
and ext(Kin). Let K ′

pin
be the credal set obtained by

updating K with only one point pin∈Kin. Then ∀p∈K,
∃p′inK ′

pin
s.t. p′in=Jeffrey(p, pin). Now, by updating K

by every member of Kin and taking the convex hull
of the obtained points, it holds that ∀p∈K, ∀pin∈Kin,
∃p′∈K ′ s.t. p′=Jeffrey(p, pin). □
In the following, we study Jeffrey’s rule extension in
another widely used representation of imprecise proba-
bilities, namely interval-based probability distributions.

Updating interval-based probability measures
Let us see now how to uptate interval-based probability
distributions as the ones of the motivating example. Let
P be an interval-based probability distribution (IPD for
short) encoding the initial beliefs where each interpre-
tation ω∈Ω is associated with a sub-interval of [0, 1].
Given an IPD P encoding the current knowledge and
new information Pin, there are basically two possible
ways to update P with Pin:
• A credal-based method: This consists in updating the

credal set K underlying P (denoted K(P ) and con-
taining all the models of P ) by the credal set Kin

underlying Pin (denoted Kin(Pin)) using Definition
5. Once K ′ computed, the IPD P ′ can be computed
from K ′.

• An interval-based method: The main drawback of up-
dating at the credal level is that it manipulates ex-
tremes points of IPDs while the number of such ex-
treme points for an IPD with m interpretations can
be up to m! (Wallner 2007). The alternative then is
to manipulate directly the intervals of the IPD to
accommodate the input Pin. This method will be ad-
dressed in future works.

The credal-based update method is defined as follows:
Definition 6 Let P be IPD to update and Pin be the
new input IPD on set of exhaustive and mutually ex-
clusive events λ1,..,λn. Let K ′ be the updated credal
set computed according to Definition 5 on K(P ) and
Kin(Pin). P ′ is an IPD on Ω such that ∀ωi∈Ω,

P ′(ωi) = [infp′∈K′(p′(ωi)), supp′∈K′(p′(ωi))]. (8)

Example 4 Let us assume in this example that the cur-
rent beliefs about a given problem over two binary vari-
ables A and B are given by the IPD P (AB). In Ta-
ble 3, we have the marginal distribution of A (namely,
P (A)), the one of B (namely, P (B)) and the condi-
tional distribution of B given A (namely, P (B|A)).
Let us now assume that we have new uncertain in-
puts given in probability distribution Pin(B) such that
Pin(B=b1)=[.7, .8] and Pin(B=b2)=[.2, .3]. In order to
update P to accommodate Pin using Definition 6, we
update K(P ) with Kin(Pin) using Definition 5. Note
that K(P )) has two extreme points p1=(.70, .05, .1, .15)
and p2=(.50, .25, .1, .15) and Kin(Pin) has also two ex-
treme points, namely pin1

=(.7, .3) and pin2
=(.8, .2).

p1 will be updated into p′1=(.65, .05, .12, .18) and



A B P (AB)

a1 b1 [.50, .70]
a2 b1 [.05, .25]
a1 b2 [.10, .10]
a2 b2 [.15, .15]

A P (A)

a1 [.60, .80]
a2 [.20, .40]

B P (B)

b1 [.75, .75]
b2 [.25, .25]

A B P (A|B)

a1 b1 [.67, .93]
a2 b1 [.07, .33]
a1 b2 [.40, .40]
a2 b2 [.60, .60]

Table 3: Example of an initial IPD P and the underlying
marginal and conditional distributions.

p′′1=(.75, .05, .08, .12) and p2 will be updated into
p′2=(.47, .23, .12, .18) and p′′2=(.53, .27, .08, .12). Hence
K ′=CH({p′1, p′′1 , p′2, p′′2}).

The updated distribution is given by P ′ of Table
4. Table 3 and 4 show that the input beliefs encoded

A B P ′(AB)

a1 b1 [.47, .75]
a2 b1 [.05, .27]
a1 b2 [.08, .12]
a2 b2 [.12, .18]

A P ′(A)

a1 [.59, .83]
a2 [.17, .41]

B P ′(B)

b1 [.7, .8]
b2 [.2, .3]

A B P ′(A|B)

a1 b1 [.67, .93]
a2 b1 [.07, .33]
a1 b2 [.40, .40]
a2 b2 [.60, .60]

Table 4: Updated beliefs of the distribution given in
Table 3.

by P ′(B) are fully accepted (see the marginal distri-
bution P ′(B) computed from the updated distribution
P ′(AB)).
Proposition 3 states that this updating ensures that the
postulates P1-P3 are satisfied.
Proposition 3 Let P be IPD to update. Let the new
information be the IPD Pin on set of exhaustive and
mutually exclusive events λ1,..,λn. Let K ′ be the up-
dated credal set computed according to Definition 5 on
K(P ) and Kin(Pin). Let P ′ the posterior IPD com-
puted from P and Pin following Definition 6. Then P ′

satisfies P1-P3.
Proof 3 (Sketch) The proof directly follows from the
fact that K(P ) is an equivalent representation of mod-
els of P and the fact that updating using Definition 5
satisfies P1-P3.

Related works and concluding remarks
This paper proposed extensions of Jeffrey’s rule of con-
ditioning to the case where the information is encoded
in an imprecise probabilistic setting. More precisely,
the paper rephrases the two postulates of Jeffrey’s rule
and added another one to enforce the update opera-
tion to take into account every member of the initial
set of probability measures and every member of the
new input set. The paper extends Jeffrey’s rule to i)

sets of probability measures and ii) convex credal sets
in a vertex-based representation. These extensions are
shown to satisfy the proposed postulates and collapse
to standard Jeffrey’s rule when the initial set and new
information are singleton distributions.
Updating sets of probability measures is not a new topic
(Grove and Halpern 1998)(Levi 1980)(Walley 2000).
However, all these works update sets of probability mea-
sures with hard evidence or observations while the fo-
cus of the work is updating sets of probability measures
with new inputs expressed by means of a set of prob-
ability measures. The existing extensions of Jeffrey’s
rule are limited to special imprecise probabilistic in-
formation such as the extensions proposed in (Ma et
al. 2011) for Dempster-Shafer theory or the possibilis-
tic extension of Jeffrey’s rule proposed in (Dubois and
Prade 1997). In (Skulj 2006), the author use Jeffrey’s
rule to update a single probability distribution in order
to obtain the desired neighborhood of events of inter-
est expressed only in terms of interval probabilities. In
(Yue and Liu 2008), the authors dealt with updating
imprecise knowledge in the framework of probabilistic
logic programming. In case where the imprecise knowl-
edge is compactly encoded by means of belief graphical
models called credal networks, there is only one work
(J. C. F. da Rocha and de Campos 2008) dealing with
updating with soft evidence.
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