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While sets of probability measures and imprecise probabilities in general, are widely accepted as a powerful and unifying framework for handling uncertain and incomplete information, updating such belief sets with new uncertain inputs has not received enough attention. In this paper, we provide an analysis of Jeffrey's rule of conditioning for updating sets of probability measures with new information, possibly uncertain and imprecise, also expressed as sets of probability measures. The paper first provides properties for updating sets of probability measures in the spirit of Jeffrey's rule, then provides and analyses extensions of Jeffrey's rule to three main imprecise probability representations: i) finite sets of probability measures and ii) convex set of probability measures specified by extreme points. The proposed extensions capture the proposed postulates and recover the standard Jeffrey's rule in case where the updated set and the new input are single probability measures.

Introduction

Imprecise probability theory [START_REF] Levi | The enterprise of knowledge : an essay on knowledge, credal probability, and chance / Isaac Levi[END_REF][START_REF] Walley | Towards a unified theory of imprecise probability[END_REF] is a unifying uncertainty theory particularly suited for encoding and reasoning with imprecise or ill-known information. This framework is often seen as a probabilistic setting with relaxed parameters and it is typically used to reason with multiple expert information [START_REF] Nau | The aggregation of imprecise probabilities[END_REF], perform sensitivity analysis [START_REF] Bock | Global sensitivity analysis for MAP inference in graphical models[END_REF], decision making with incomplete or scarce information [START_REF] Antonucci | Credal networks for operational risk measurement and management[END_REF], etc. Imprecise probabilities are often associated with a robust Bayesian interpretation [START_REF] Berger | An overview of robust bayesian analysis[END_REF] assuming that the probability measure corresponding to the actual beliefs exists and it is unique but it is unknown, that's why it is expressed in an imprecise way using the concept of sets of probability measures, credal sets [START_REF] Levi | The enterprise of knowledge : an essay on knowledge, credal probability, and chance / Isaac Levi[END_REF][START_REF] Walley | Towards a unified theory of imprecise probability[END_REF] or using other representations (such as interval-based probabilities (de Campos, Huete, and Moral 1994) and probabilistic logic programs [START_REF] Lukasiewicz | Probabilistic logic programming with conditional constraints[END_REF]). Given a set of initial uncertain beliefs, one may have new information which can be in the form of a hard evidence or in the form of uncertain or soft evidence (e.g. unreliable input) or simply new uncertain information regarding some events1 . Our focus is on updating a set of probability measures with new information expressed also as a set of probability measures. In the standard probabilistic setting, Jeffrey's rule [START_REF] Jeffrey | The logic of decision[END_REF] generalizes the standard probabilistic conditioning to the case of uncertain inputs. This conditioning rule has been adapted and studied in many uncertainty settings (for instances, see [START_REF] Dubois | A synthetic view of belief revision with uncertain inputs in the framework of possibility theory[END_REF] for the possibilistic setting, (Ma et al. 2011) for Dempster-Shafer theory). In [START_REF] Benferhat | A framework for iterated belief revision using possibilistic counterparts to jeffrey's rule[END_REF], it is claimed that this rule can successfully recover most of belief revision rules such as natural and drastic belief revision. Many works highlighted the necessity of updating probabilistic information with sets of probability measures [START_REF] Karlsson | Characterization and empirical evaluation of bayesian and credal combination operators[END_REF][START_REF] Skulj | Jeffrey's conditioning rule in neighbourhood models[END_REF][START_REF] Tang | Generalized jeffrey's rule of conditioning and evidence combining rule for a priori probabilistic knowledge in conditional evidence theory[END_REF][START_REF] Rens | On revision of partially specified convex probabilistic belief bases[END_REF]. For example, in [START_REF] Skulj | Jeffrey's conditioning rule in neighbourhood models[END_REF], the author updates a probability measure to create some neighborhood of imprecise probabilities for some events. In [START_REF] Karlsson | Characterization and empirical evaluation of bayesian and credal combination operators[END_REF], the authors study combining multiple evidences provided in the form of credal sets. There is to the best of our knowledge no study on an extension of Jeffrey's rule to sets of probability measures. The main contributions of the paper are: i) We provide natural properties that an extension of Jeffrey's rule to imprecise probabilistic settings should satisfy. ii) We provide extensions of Jeffrey's rule to sets of probability measures and convex credal sets. iii) We study the properties of the proposed extensions. Interestingly enough, the proposed extensions satisfy the defined postulates and collapse to the standard Jeffrey's rule in case where the prior belief set and the new input consist only in single probability measures.

Imprecise probabilities: Basic concepts

In the following, Ω={ω 0 , ω 1 , .., ω m } denotes the universe of discourse (all possible states of the world) and ω i denotes a given state (also called interpretation). Sets of interpretations ϕ⊆Ω, ψ⊆Ω are called events.

Sets of probability measures and credal sets

Let ∆ denote the set of all probability measures over Ω. A set of probability measures K is a subset of ∆. K denotes a finite 2 or inifinite set of classical probability measures p over Ω. In order to avoid heavy notations, a set of probability measures will be denoted K, the same notation used for credal sets. In this paper, a credal set represents all the probability measures satisfying some requirements or constraints. More precisely, a credal set is defined as follows: Definition 1 (Credal set) A credal set K is a closed convex set of probability distributions.

Credal sets are generally induced by probabilistic beliefs encoded by means of interval-based probabilities (de Campos, Huete, and Moral 1994) or probabilistic constraints as in conditional logic programs [START_REF] Lukasiewicz | Probabilistic logic programming with conditional constraints[END_REF]. Intuitively, if K is a convex set of probability measures, then linearly mixing 3 any two distributions p 1 and p 2 from K will result in a distribution p belonging to K. Given that a credal set may contain an infinite number of probability measures, there are three main commonly used ways to encode imprecise beliefs. i) Vertex-based representation where the uncertainty is encoded by a finite set of standard probability distributions representing extreme points of the convex set K. ii) Interval-based representation where every interpretation ω∈Ω is associated with upper and lower probabilities. iii) Constraint-based representation where the uncertainty is specified by means of constraints as in the comparative probabilities framework [START_REF] Miranda | Extreme points of the credal sets generated by elementary comparative probabilities[END_REF] or in probabilistic logic programs [START_REF] Lukasiewicz | Probabilistic logic programming with conditional constraints[END_REF]. In this paper, we focus only on the vertex representation.

Vertex-based representation

This representation defines a convex credal set K by a finite number of probability measures called extreme points. Such a credal set is called a finitely generated credal set. Any probability measure of K can be expressed as linear combination of extreme points.

Definition 2 (Extreme point) An extreme point (also called vertex) p of a credal set K is a probability measure such that it is impossible to find two different probability distributions p 1 ∈K and p 2 ∈K such that p=α*p 1 +(1-α)*p 2 with α∈]0, 1[. This representation is for instance used in the Jav-aBayes 4 platform for modeling and reasoning with 2 For instance, in case we have 10 experts where each expert i having his own beliefs in the form of a probability measure pi then this set is composed by the 10 probability measures p1,..,p10.

3 Mixing here means linearly combining a set of distributions p1 .. p k as follows: p= ∑ k i=1 (ai * pi) where ∑ k i=1 ai=1. 4 http://www.cs.cmu.edu/~javabayes/Home/ Bayesian and credal networks [START_REF] Cozman | Credal networks[END_REF]. In the following, ext(K) denotes the set of extreme points of the credal set K. Definition 3 (Convex hull) The convex hull of credal set K, denoted CH(K) is the closed set of probability measures whose polytope is characterized by the set of extreme points ext(K).

Example 1 In Figure 1, a convex credal set K is depicted using a barycentric representation. Here Ω={ω 0 , ω 1 , ω 2 } and K is finitely generated by three extreme points p 1 =(.45, 0, .55), p 2 =(.7, .1, .2) and p 3 =(.1, .6, .3).
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Figure 1: Example of extreme points p 1 , p 2 and p 3 using a barycentric representation.

Note that any closed convex set can be encoded by a finite number of extreme points [START_REF] Levi | The enterprise of knowledge : an essay on knowledge, credal probability, and chance / Isaac Levi[END_REF][START_REF] Wallner | Extreme points of coherent probabilities in finite spaces[END_REF].

Reasoning with credal sets

Reasoning tasks are performed on sets of probability measures or credal sets by exploring all the models of that credal set5 . For instance, marginalizing a credal set K(X, Y ) on two sub-sets of variables X and Y is done as follows:

K(X) = { ∑ Y p(X, Y ) : p ∈ K(X, Y )} (1)
Conditioning on an event ϕ⊆Ω is defined as follows:

K(ω i |ϕ) = {p(ω i |ϕ) : p ∈ K and p(ϕ) > 0} (2)
Note that for practical computational reasons, reasoning on K is done on ext(K) which provides an equivalent representation. Indeed, inference on a credal set K is equivalent to inference on its extremes points (de Campos, Huete, and Moral 1994). For instance, for marginalization, given a credal set K(X, Y ) on two subsets of variables X and Y . Then,

K(X) = CH({p(X) : p ∈ ext(K(X, Y )}) (3)
We assume that K is a finitely generated credal set, namely K is the convex hull of its set of extreme points ext(K). In the following, we propose extensions of Jeffrey's rule to sets of probability measures.

Extending Jeffrey's rule to sets of probability measures

This section analyzes a straightforward extension of Jeffrey's rule to sets of probability measures.

Motivating example

Let us assume we are dealing with learning probabilities from a dataset over five boolean variables X 1 , X 2 , X 3 , X 4 and X 5 . Suppose a small dataset D is collected where the values of some variables are missing. Assume also we are interested in deriving an imprecise probability distribution (here an interval-based probability distribution) from this small dataset. In this case, for each configuration x 1 ..x 5 of the five variables (X 1 , .., X 5 ), we will have a lower bound l corresponding to the frequency of x 1 ..x 5 in D and an upper bound u corresponding to the proportion of entries of D that are either x 1 ..x 5 or that can be x 1 ..x 5 (for instance, if the value of variable X 5 is missing in a given entry of D then it can be any value of X 5 ). Let P be the intervalbased probability distribution derived from D.

X1 X2 X3 X4 X5 P (X1X2X3X4X5) 0 0 0 0 0 [.001, .04] 0 0 0 0 1 [.02, .1] ... ... ... ... ... ... 1 1 1 1 1 [.005, .035]
Assume now that we have a latest and bigger dataset D ′ but only on a subset of variables X 1 ..X 2 . D ′ also contains some missing data. Let P ′ be the interval-based probability distribution computed from D ′ . It fully makes sense to revise the initial distribution P by P ′ since this latter is more recent and more representative of the problem as it concerns a large amount of data. It is important to note that the information to update is a set of probablity measues (all probability measures complying with the intervals of P ) and the new input is also a set of probability measures. This update task is fully in the spirit of Jeffrey's rule but there is to the best of our knowledge no extension of Jeffrey's rule to sets of probability measures. Of course, the need to revise sets of probabilities by new sets of probabilities can be encountered either when dealing with empirical data (typical situations are dealing with missing data and small datasets) or when dealing with subjective beliefs of agents.

Jeffrey's rule

Jeffrey's rule [START_REF] Jeffrey | The logic of decision[END_REF]) is an extension of the classical probabilistic conditioning to the case where the new observation is uncertain. It allows to update an initial probability distribution p into a posterior one p ′ given the uncertainty bearing on a set of mutually exclusive and exhaustive events λ 1 ,..,λ n . The new input is of the form (λ i , α i ), i=1..n where α i denotes the new probability of λ i . Jeffrey's rule lies on the two following principles: i) Success principle: After the update operation, the posterior probability of each event λ i must be equal to α i , namely ∀λ i , p ′ (λ i )=α i . ii) Probability kinematics principle: This constraint ensures a kind of minimal change principle. Jeffrey's method assumes that in spite of the disagreement about the events λ i in the initial distribution p and the new one p ′ , the conditional probability of any event ϕ⊆Ω given any uncertain event λ i remains the same in the original and the revised distributions. Namely,

∀λi ⊆ Ω, ∀ϕ ⊆ Ω, p(ϕ|λi) = p ′ (ϕ|λi).
(4)

Given a probability measure p encoding the initial beliefs and new inputs the form (λ i , α i ). The updated probability degree of any event ϕ⊆Ω, is done as follows:

p ′ (ϕ) = ∑ λ i αi * p(ϕ, λi) p(λi) . ( 5 
)
The posterior distribution p ′ obtained using Jeffrey's rule always exists and it is unique (Chan and Darwiche 2005).

Jeffrey's rule for sets of probability measures [START_REF] Yue | Revising imprecise probabilistic beliefs in the framework of probabilistic logic programming[END_REF]. For the sake of simplicity, the input, the belief set to update is given in the form of a credal set denoted K. The new information is also given in the form of a credal set K in over a partition of Ω. This form for the inputs is general enough to capture sure observations, uncertain observations and imprecise ones. Moreover, we assume that K and K in are not empty sets. Let K ′ be a the updated set obtained by updating K with K in . Let us now see what an extension of Jeffrey's rule could aim to satisfy in an imprecise probabilistic setting.

(P1) K ′ (λ 1 ..λ n )⊆ K in (P2) ∀λ i ⊆Ω, ∀ϕ⊆Ω, K(ϕ|λ i )=K ′ (ϕ|λ i ) (P3) udp(K, K in )=
∪ p∈K,pin∈Kin udp(p, p in ). Postulate P1 corresponds to the success postulate ensuring that the new information should be accepted (the inputs are seen as constraints to be satisfied). Of course, the success postulate may be questionable in some contexts, but it may be a desired property in some applications such as in [START_REF] Skulj | Jeffrey's conditioning rule in neighbourhood models[END_REF]. In order to stay in Jeffrey's rule spirit, we just rephrase this postulate in the context of sets of probabilities. The converse inclusion K in ⊆K ′ (λ 1 ..λ n ) is strong as there may exist λ i and p in ∈K in such that p in (λ i )>0 while ∀p∈K, p(λ i )=0

preventing the application of Jeffrey's rule on an a priori impossible event as in the standard case. P2 is the statement of kinematics principle adapted to the case of sets of probability measures. This postulate aims to ensure that K ′ and K preserve the conditional credal sets on the events λ 1 ,..,λ n . P3 extends the one proposed in [START_REF] Grove | Updating sets of probabilities[END_REF] in order to capture the fact that updating a set of probability measures by another set of measures should take into account every measure in the initial set and every measure in the new input. This makes sense within a robust Bayesian interpretation of sets of probability measures.

Lemma 1 If |K|=|K in |=1 then postulates P1 and P2 recover with the success and probability kinematics principles of Jeffrey's rule respectively.

Obviously, if the credal sets K and K in are singletons (namely, each one composed of only one probability measure), then P1 will recover the success principle (the input K in is fully accepted as in Jeffrey's rule) while P2 will recover the probability kinematics principle. Consequently, the only solution satifying these properties is the one obtained using Jeffrey's rule and it always exists [START_REF] Chan | On the revision of probabilistic beliefs using uncertain evidence[END_REF].

Conditioning sets of probabiliy measures with uncertain inputs

One direct way to extend Jeffrey's rule to finite sets of probability measures is to update every member of the belief set K by every member of the new input K in as follows:

Definition 4 Let K be a set of probability measures representing the current beliefs over the universe of discourse Ω. Let the new information be K in .

K ′ = {p ′ : p ′ = Jeffrey(p, pin), p ∈ K : ∀λi, p(λi) > 0, pin ∈ Kin} (6)
where Jeffrey(p, p in ) is the update according to Jeffrey's rule given in Equation 5 of the probability measure p with the new input p in =(p in (λ 1 ), ..,p in (λ n )).

Updating using Definition 4 in straightforward in case where the belief sets K and K in consist of finite sets of probability measures. It is clear that if both K and K in contain only one probability measure then Definition 4 comes down to Jeffrey's rule in the standard probabilistic setting.

Example 2 Let us assume that Ω={a 1 b 1 , a 1 b 2 , a 2 b 1 , a 2 b 2 } and that the current beliefs about a given problem over two binary variables A and B is a set composed of three probability distributions p 1 , p 2 and p 3 . Suppose that we receive new information (for example new data) saying that the probability p in (b 1 )=.9 and p in (b 2 )=.1. Applying Jeffrey's rule to each probability measure p 1 , p 2 and p 3 will give three updated distributions p ′ 1 , p ′ 2 and p ′ 3 . Proposition 1 Let K be a finite set probability measures over Ω. Let the new information be K in which Table 2: The posterior set K ′ obtained from K of Table 1.

is a set on an exhaustive and mutually exclusive set of events λ 1 ,..λ n . Let K ′ be the results of updating K ′ with K in using Definition 4. Then K ′ satisfies postulates P 1, P 2 and P 3.

Proof 1 (Sketch) • For P1, to show that K ′ (λ 1 ..λ n )⊆K in , let p ′ ∈K ′ and show that ∀λ i , ∃p in ∈K in s.t. p ′ (λ i )=p in (λ i ).
If p ′ ∈K ′ then ∃p∈K and ∃p in ∈K in such that p ′ =Jeffrey(p, p in ). Since p ′ is obtained by updating p with p in with Jeffrey's rule, then ∀λ i , p ′ (λ i )=p in (λ i ). • For P2 and P3, the proof is also straightforward for finite sets of probability measures since by Definition 4 the update is done using Jeffrey's rule applied individually on each member of K and on each member of K in .

In practice, the credal set K to update may be finite or infinite (in case of convex sets). In the following, we extend Jeffrey's rule to closed convex credal sets.

Conditioning credal sets with uncertain inputs

In this section, the belief set to update is a closed convex set K specified by its extreme points ext(K) and the new input K in is also a closed convex set specified by its extreme points ext(K in ). One direct way to extend Jeffrey's rule is to update only extreme points of K with the ones of K in , namely update each p∈ext(K) with each p in ∈ext(K in ) using Jeffrey's rule. Definition 5 Let K be the closed convex set to update.

Let the new information be K in which is a closed convex set on set of exhaustive and mutually exclusive events λ 1 ,..,λ n .

K ′ = CH({p ′ : p ′ = jeffrey(p, pin); p ∈ ext(K) and pin ∈ ext(Kin), ∀λi, p(λi) > 0}), (7) 
Given that it is impossible to update every p∈K, update of Definition 5 proceeds by updating only the set of extreme points of K by the set of extreme points of K in then recovers a convex set using the convex hull operator.

Example 3 (Example 1 continued) Let us reuse the credal set K of Example 1 where Ω={ω 0 , ω 1 , ω 2 } and K is finitely generated by three extreme points p 1 =(.45, 0, .55), p 2 =(.7, .1, .2) and p 3 =(.1, .6, .3). Assume now that new information K in regarding two events λ 1 ={ω 1 , ω 2 } and λ 2 ={ω 3 } has become available. Assume also that ext(K in ) consists of two extreme points {(.7, .3); (.6, .4)}.
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K ′ is at most to |ext(K)|*|ext(K in )|.
Proposition 2 Let K be the closed convex set to update and K in be the new input. Let K ′ be the updated set computed according to Definition 5 then K ′ satisfies postulates P1-P3.

Proof 2 (Proof sketch) For P1, in order to show that

K ′ (λ 1 ..λ n )⊆K in , let p ′ ∈K ′ and show that ∃p in ∈K in s.t. p ′ (λ 1 ..λ n )=p in (λ 1 ..λ n ). Since p ′ ∈K ′ then p ′ ∈CH({p ′ : p ′ =Jeffrey(p, p in ); p ∈ ext(K), p in ∈ ext(K in )}).
It is clear that in case where p'=Jeffrey(p, p in ) with p∈ext(K) and p in ∈ext(K in ) then p ′ (λ 1 ..λ n )∈K in since p ′ is obtained by updating p with p in using Jeffrey's rule. Now, for any p ′ ∈K ′ that is not an extreme point of K ′ , p ′ can be expressed using the extreme points ext(K ′ ) as a convex combination of extreme points of K ′ : p ′ (ω)= ∑ i,j α i,j * p ′ i,j (ω) where p ′ i,j ∈ext(K ′ ) obtained by updating the extreme point p i ∈ext(K) with the extreme point p in j ∈ext(K in ) using Jeffrey's rule, namely

p ′ i,j (ω)= pi(ω) * pin j (λ) pi(λ) . Hence, p ′ (λ)= ∑ ω∈λ ( ∑ i,j α i,j * p ′ i,j (ω)) with ∑ i,j α i,j =1.
The proof is consists in starting with expressing p ′ (λ) as a convex combination of extreme points of ext(K ′ ) and ending up with expressing p ′ (λ) as a convex combination of ext(K in ). For P2, it is enough to see that if p ′ ∈ext(K ′ ) then necessarily ∃p∈ext(K) and ∃p in ∈ext(K in ) such that p ′ =Jeffrey(p, p in ). Hence, ∀ψ⊆Ω, ∀λ i ⊆Ω, p(ϕ|λ i )=p ′ (ϕ|λ i ). Since K and K in are convex sets, then ∀p ′ ∈K ′ , ∃p∈K and ∃p in ∈K in such that p ′ =Jeffrey(p, p in ). Hence, ∀ψ⊆Ω, ∀λ i ⊆Ω, p(ϕ|λ i )=p ′ (ϕ|λ i ). For P3, the idea of the proof is based on the convexity of K ′ obtained by combining two convex sets K and K in . Indeed, K ′ is obtained by the convex hull operator on a kind of cartesian product of elements of ext(K) and ext(K in ). Let K ′ pin be the credal set obtained by updating K with only one point p in ∈K in . Then ∀p∈K, ∃p ′ in K ′ pin s.t. p ′ in =Jeffrey(p, p in ). Now, by updating K by every member of K in and taking the convex hull of the obtained points, it holds that ∀p∈K, ∀p in ∈K in , ∃p ′ ∈K ′ s.t. p ′ =Jeffrey(p, p in ). □

In the following, we study Jeffrey's rule extension in another widely used representation of imprecise probabilities, namely interval-based probability distributions.

Updating interval-based probability measures

Let us see now how to uptate interval-based probability distributions as the ones of the motivating example. Let P be an interval-based probability distribution (IPD for short) encoding the initial beliefs where each interpretation ω∈Ω is associated with a sub-interval of [0, 1].

Given an IPD P encoding the current knowledge and new information P in , there are basically two possible ways to update P with P in :

• A credal-based method: This consists in updating the credal set K underlying P (denoted K(P ) and containing all the models of P ) by the credal set K in underlying P in (denoted K in (P in )) using Definition 5. Once K ′ computed, the IPD P ′ can be computed from K ′ . • An interval-based method: The main drawback of updating at the credal level is that it manipulates extremes points of IPDs while the number of such extreme points for an IPD with m interpretations can be up to m! [START_REF] Wallner | Extreme points of coherent probabilities in finite spaces[END_REF]. The alternative then is to manipulate directly the intervals of the IPD to accommodate the input P in . This method will be addressed in future works. The credal-based update method is defined as follows: Definition 6 Let P be IPD to update and P in be the new input IPD on set of exhaustive and mutually exclusive events λ 1 ,..,λ n . Let K ′ be the updated credal set computed according to Definition 5 on K(P ) and K in (P in ). P ′ is an IPD on Ω such that ∀ω i ∈Ω,

P ′ (ωi) = [inf p ′ ∈K ′ (p ′ (ωi)), sup p ′ ∈K ′ (p ′ (ωi))]. (8) 
Example 4 Let us assume in this example that the current beliefs about a given problem over two binary variables A and B are given by the IPD P (AB). In Table 3 3.

by P ′ (B) are fully accepted (see the marginal distribution P ′ (B) computed from the updated distribution P ′ (AB)).

Proposition 3 states that this updating ensures that the postulates P1-P3 are satisfied.

Proposition 3 Let P be IPD to update. Let the new information be the IPD P in on set of exhaustive and mutually exclusive events λ 1 ,..,λ n . Let K ′ be the updated credal set computed according to Definition 5 on K(P ) and K in (P in ). Let P ′ the posterior IPD computed from P and P in following Definition 6. Then P ′ satisfies P1-P3.

Proof 3 (Sketch) The proof directly follows from the fact that K(P ) is an equivalent representation of models of P and the fact that updating using Definition 5 satisfies P1-P3.

Related works and concluding remarks

This paper proposed extensions of Jeffrey's rule of conditioning to the case where the information is encoded in an imprecise probabilistic setting. More precisely, the paper rephrases the two postulates of Jeffrey's rule and added another one to enforce the update operation to take into account every member of the initial set of probability measures and every member of the new input set. The paper extends Jeffrey's rule to i) sets of probability measures and ii) convex credal sets in a vertex-based representation. These extensions are shown to satisfy the proposed postulates and collapse to standard Jeffrey's rule when the initial set and new information are singleton distributions. Updating sets of probability measures is not a new topic [START_REF] Grove | Updating sets of probabilities[END_REF] [START_REF] Levi | The enterprise of knowledge : an essay on knowledge, credal probability, and chance / Isaac Levi[END_REF]) [START_REF] Walley | Towards a unified theory of imprecise probability[END_REF]. However, all these works update sets of probability measures with hard evidence or observations while the focus of the work is updating sets of probability measures with new inputs expressed by means of a set of probability measures. The existing extensions of Jeffrey's rule are limited to special imprecise probabilistic information such as the extensions proposed in (Ma et al. 2011) for Dempster-Shafer theory or the possibilistic extension of Jeffrey's rule proposed in [START_REF] Dubois | A synthetic view of belief revision with uncertain inputs in the framework of possibility theory[END_REF]. In [START_REF] Skulj | Jeffrey's conditioning rule in neighbourhood models[END_REF], the author use Jeffrey's rule to update a single probability distribution in order to obtain the desired neighborhood of events of interest expressed only in terms of interval probabilities. In [START_REF] Yue | Revising imprecise probabilistic beliefs in the framework of probabilistic logic programming[END_REF], the authors dealt with updating imprecise knowledge in the framework of probabilistic logic programming. In case where the imprecise knowledge is compactly encoded by means of belief graphical models called credal networks, there is only one work (J. C. F. da Rocha and de Campos 2008) dealing with updating with soft evidence.
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 2 Figure 2: Credal set K ′ obtained by updating K of Figure 1 with K in whose extreme points are {(.7, .3); (.6, .4)}.

Table 1 :

 1 Example of a belief set K characterized by three extreme points p 1 , p 2 and p 3 .

	A	B	p1(AB)	p2(AB)	p3(AB)
	a1	b1	.6	.65	.7
	a2	b1	.15	.1	.1
	a1	b2	.1	.1	.1
	a2	b2	.15	.15	.1
	A	B	p ′ 1 (AB)	p ′ 2 (AB)	p ′ 3 (AB)
	a1	b1	.72	.78	.79
	a2	b1	.18	.12	.11
	a1	b2	.04	.04	.05
	a2	b2	.06	.06	.05

  , we have the marginal distribution of A (namely, P (A)), the one of B (namely, P (B)) and the conditional distribution of B given A (namely, P (B|A)).Let us now assume that we have new uncertain inputs given in probability distribution P in (B) such that P in (B=b 1 )=[.7, .8] and P in (B=b 2 )=[.2, .3]. In order to update P to accommodate P in using Definition 6, we update K(P ) with K in (P

					A	P (A)
	A a1 a2 a1 a2	B b1 b1 b2 b2	P (AB) [.50, .70] [.05, .25] [.10, .10] [.15, .15]	a1 a2 B b1 b2	[.60, .80] [.20, .40] P (B) [.75, .75] [.25, .25]
			A	B	P (A|B)
			a1	b1	[.67, .93]
			a2	b1	[.07, .33]
			a1	b2	[.40, .40]
			a2	b2	[.60, .60]

in ) using Definition 5. Note that K(P )) has two extreme points p 1 =(.70, .05, .1, .15) and p 2 =(.50, .25, .1, .15) and K in (P in ) has also two extreme points, namely p in1 =(.7, .3) and p in2 =(.8, .2). p 1 will be updated into p ′ 1 =(.65, .05, .12, .18) and

Table 3 :

 3 Example of an initial IPD P and the underlying marginal and conditional distributions. The updated distribution is given by P ′ of Table4. Table3 and 4show that the input beliefs encoded

	p ′′ 1 =(.75, .05, .08, .12) and p 2 will be updated into p ′ 2 =(.47, .23, .12, .18) and p ′′ 2 =(.53, .27, .08, .12). Hence K ′ =CH({p ′ 1 , p ′′ 1 , p ′ 2 , p ′′ 2 }).
	A a1 a2 a1 a2	B b1 b1 b2 b2	P ′ (AB) [.47, .75] [.05, .27] [.08, .12] [.12, .18]	A a1 a2 B b1 b2	P ′ (A) [.59, .83] [.17, .41] P ′ (B) [.7, .8] [.2, .3]	A a1 a2 a1 a2	B b1 b1 b2 b2	P ′ (A|B) [.67, .93] [.07, .33] [.40, .40] [.60, .60]

Table 4 :

 4 Updated beliefs of the distribution given in Table

On the different meanings of hard, soft and uncertain evidence, see(Ma and Liu 

2011).

Alternative approaches consist for instance in selecting the most informative model (in the sense of information entropy for example) of K to draw inferences as it is done in[START_REF] Lukasiewicz | Probabilistic logic programming with conditional constraints[END_REF]).