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Abstract—Multi-label classification is a very active research
area and many real-world applications need efficient multi-
label learning. During recent years, explaining machine learning
predictions is also a very hot topic. A lot of approaches have
been proposed for explaining multi-class classifier predictions.
However, almost nothing has been proposed for multi-label and
ensemble approaches. This paper brings two main contributions.
It first proposes a natural framework consisting in reasoning with
base classifier explanations in order to provide explanations for
the multi-label predictions. The second contribution focuses on
binary relevance, a widely used approach in multi-label classi-
fication, and distinguishes two kinds of explanations: common
explanations shared by all base classifiers predicting positive
labels and joint explanations combining explanations from each
base classifier predicting a positive label. The paper proposes an
efficient approach for deriving such explanations. Experimental
studies show positive results that can be achieved on many multi-
label datasets.

Index Terms—Multi-label classification, explanation, binary
relevance

I. INTRODUCTION

Explaining machine learning predictions and AI systems

is not a recent topic [1] but it has peaked after the rise and

success of the last few years of machine learning techniques.

Roughly, generating explanations consists of linking data and

predictions in a way that is interpretable and understandable

by the user [12]. Often, what can be generated as explanations

depends on the model and the objectives of the application

considered. Moreover, there is no consensus at the moment

on the notions of quality of an explanation and no consensus

on formal quality properties of explanations [6], [9].

There are now several explanation approaches in machine

learning but they are all dedicated to the multi-class

classification problem (where a data instance is associated

with a single class). Almost nothing has been proposed to

explain the multi-label classification techniques (where we

associate a subset of labels to the data instance to classify)

and ensemble approaches (except few works [7] on explaining

Random Forest classifiers).

This work is intended to contribute filling this gap by

proposing an approach to explain the predictions of

a multi-label system. This is an attempt to extend a

symbolic explanation approach from the case of multi-class

classification to the multi-label case. First, we propose a

natural framework for reasoning with explanations of base

classifiers to derive explanations for multi-label predictions.

Some interesting and natural properties to be satisfied in this

context are also proposed. In a second step, we extend the

approach based on knowledge compilation for the multi-class

explanation case to the multi-label case. Our approach

builds upon this symbolic approach to generate explanations

for Binary Relevance (BR), a widely used multi-label

classification technique. We start with extending the definition

of explanations called PI (Prime Implicants) to the multi-label

case. We then define two types of explanations: Common

explanations (CE) based on selecting shared subsets of base

classifiers explanations and joint ones (JE) obtained by

joining base classifiers explanations. We propose an efficient

procedure to derive the BR explanations guaranteeing

interesting performances especially in terms of size of the

target representations and number of explanations compared

to base classifiers ones.

The rest of this paper is organized as follows: Section 2

fixes the notations that will be used along with this paper.

Section 3 briefly recalls the multi-label classification problem

then focuses on the Binary Relevance approach to multi-

label classification. In Section 4, we present our approach for

explaining multi-label BR predictions. Section 5 provides our

experimental study while Section 6 provides discussions and

concluding remarks.

II. NOTATIONS AND DEFINITIONS

Along with this paper, we will use the following notations:

• A multi-label classification problem is defined by two

sets of variables: feature space X={X1, .., Xn} and label

space Y ={Y1, .., Yk} (the label space is interchangeably

denoted as L={l1, .., lk}) consisting of k binary variables

encoding the presence/absence of the k labels. This is

a common representation of multi-label classification

problems. Xi denotes ith feature while xi denotes a value

that can taken by Xi. lj denotes the jth label. We say that

a label is positive if lj=1 and we will use interchangeably

positive/1 and negative/0.

• For each input data instance x, a multi-label classifier is

a function predicting f(x)=y. For the sake of simplicity,

the features are also binary variables.



• An instance x is a complete assignation of values for

all variables of X . A partial instance z is a subset of

a complete instance x denoted z⊆x. For example if

X={X1, X2, X3} then a complete instance of X could

be x=(x1=1,x2=1,x3=0) and a partial instance z could

be z=(x1=1,x3=0). Where there is no ambiguity, we’ll

simply write x=110.

• Also, the labels y of a data instance x will be compactly

denoted when there is no ambiguity by a set instead of a

vector. For is instance, instead of writing y=(1, 0, 0, 0, 1)
(here |Y |=5), we will write y={y0, y4}.

III. MULTI-LABEL EXPLANATIONS

A. Multi-label classification

Multi-label classification is a well-known predictive task

in many real-world problems such as text categorization

where each document can belong at the same time to several

predefined topics (for example, a newspaper article may

at the same time be classified as sport and science). We

find this problem in different application areas such as

objects recognition in images, sentiment analysis in social

network data, etc. In multi-class classification, classes are

mutually exclusive, while for multi-label problems, classes

do not exclude each other allowing the same input instance

to be classified into multiple classes at the same time. A

multi-label classification problem is formally defined by a

set of feature variables X={X1, .., Xn} and label (binary)

variables Y ={Y1, .., Yk}. A classifier is a function mapping

each instance x of X to y, instance of Y . Abusing notation,

we denote y the subset of Y set positively (only predicted

labels). A dataset in multi-label classification problems is a

collections of couples <x,y> where x is an instance of X

and y an instance of Y .

Example 1: Assume a multi-label classification problem

where web pages are labeled in one or more categories (labels).

For the sake of simplicity, assume that each web page is de-

scribed by a set of keywords (content or metadata keywords for

instance). Hence, using a binary bag-of-words representation,

each web page will have a set of binary features where feature

Xi=1 (resp. Xi=0) denotes that keyword Xi is present (resp.

absent) in the web page content or metadata. Similarly, label

variable Yj=1 (resp. Yj=0) denotes the fact the current web-

page is positively labelled (resp. not labelled) in category Yi. In

the example of Table I, the feature space is X={A,B,C,D,E,F}
composed of six binary variables A,B,C,D,E, F and three

label variables Y ={Y1,Y2,Y3}. A dataset can be in the form

shown in Table I:

Regarding multi-label classification techniques, there are

three main categories:

1) Problem transformation approaches where the multi-

label classification problem is transformed into a set

of multi-class classification or mono-label regression

problems. Examples of methods in this category are

Binary Relevance (BR), ) Classifier Chains (CC) and

X={A,B,C,D,E,F} Y ={Y1 ,Y2,Y3}
0 1 1 0 1 1 1 1 0
1 1 1 0 0 1 1 0 0
0 1 1 0 1 0 0 1 0
1 1 1 0 1 0 1 1 1
0 1 0 0 0 1 1 0 1
0 1 1 1 1 0 1 1 1

... ...
0 1 1 0 0 1 1 0 0

TABLE I
EXAMPLE OF MULTI-LABEL DATASET

Label Powerset (LP). In general, problem transformation

methods rely on binary classifiers to predict labels

individually and then use a combination strategy to make

the final prediction.

2) Method adaptation approaches based on extending

multi-class techniques to predict instead of one single

class a set of relevant labels. Examples of this category

are ML-kNN [14], ML-C4.5 [4].

3) Ensemble approaches that combine ideas from the two

first categories. RAndom k labEL sets (RAkEL), Hier-

archy Of multi-label classifiERs (HOMER), Ensemble

of Classifier Chains (ECC) and Ensemble of Binary

Relevance (EBR). An ensemble approach is built upon

a set of weak binary or multi-class classifiers, then

the outputs of base classifiers are usually combined by

weighted or unweighted averaging.

Another difference worth mentioning compared with the

multi-class case is related to evaluation metrics used to as-

sess the accuracy of multi-label techniques. Indeed, standard

multi-class classification are no more enough and appropriate

measures are specifically designed for this purpose (example

of measure used in multi-label classification is the Hamming-

Loss).

B. Binary relevance approach

Binary relevance is the main baseline for multi-label clas-

sification methods [10]. It is based on the label independence

assumption which may be seen as a strong assumption and not

verified in many domains. Despite this fact, a lot of studies

highlighted the interesting properties and nice performances of

this method [10]. The strategy of BR is to break the multi-label

learning problem into a set of binary classification problems,

one per label. The label independence assumption allows to

learn each individual model fi independently, using only the

data of the label li. As said earlier, in spite of the fact that BR

does not take into account label dependencies, BR has several

obvious advantages such as linear complexity (w.r.t the number

of labels), possibility of parallelization, good accuracy, etc.

making it the main baseline method for assessing multi-label

approaches.

C. Natural properties of BR explanations

Let us first focus on some natural properties that explana-

tions should have in the context of multi-label classification.



• Minimality: Require only the minimal subset of x that

will trigger the prediction y=f(x).
• Unanimity: If an explanation e is provided for each

predicted label then e should also be an explanation for

the multi-label prediction. Namely, if e∈exp(fi(x)=1)

then e∈exp(f(x)). Here exp(f(x)) denotes the set of

explanations for data instance x using classifier f .

• Decomposability: In the context of multi-label classifi-

cation, explaining a prediction y should lead to explain

each label composing y.

• Explanation independence: If labels are (assumed) inde-

pendent, then so should be individual label explanations.

Namely, if a label li can be predicted with any other label

lj , then any base classifier explanation ei∈exp(fi(x))
could come with any other base classifier explanation

ej∈exp(fj(x)).

While the Minimality property is not specific to multi-label

tasks, the Unanimity, Decomposability and Explanation inde-

pendence properties are particularly relevant for BR approach

and multi-label approaches more generally. For instance, the

Explanation independence property naturally follows from the

label independence assumption that is the basis of BR.

IV. FROM MULTI-CLASS EXPLANATIONS TO MULTI-LABEL

EXPLANATIONS

Our approach for explaining BR instance predictions is in

line with the BR schema, namely we first explain individual la-

bel predictions by individual base classifiers then use/combine

such explanations to build those explaining the multi-label

prediction.

A. Explaining individual/base classifier predictions

Let us first recall the formal definition of classifier instance

explanation our BR explanation approach is lying on and

rephrase it in the context of multi-label tasks. As mentioned

in the introduction, our approach for explanation in the multi-

label case is based on the extension of a recently proposed

symbolic approach for Bayesian classifiers [13]. In this ap-

proach, the authors propose two categories of explanations:

Minimum Cardinality (MC) and Prime Implicant (PI) expla-

nations. MC explanations are special case of PI explanations.

Formally,

Definition 1 (PI explanation [13]): Let f(X) denote the

decision function associated to a classifier. A partial instance

z of x is a PI-explanation of f(x) if

• (a) z⊆x,

• (b) f(x) = f(x∗) for every instance x∗ such that z⊆x∗,

and

• (c) no other partial instance y⊂z satisfies (a) and (b).

Intuitively, an PI explanation identifies which part of the

instance x suffices to give the prediction f(x). Hence filling

arbitrarily in the remaining attributes will not change the

classifier prediction.

In [13], the authors propose i) first compiling a Bayes

network classifier decision function into an equivalent

decision function in the form of an Ordered Decision

Diagram (ODD1) which is a tractable representation of a

decision function and ii) use a polynomial algorithm in the

size of the ODD to compute for each data instance x its

PI explanations (we refer to this algorithm PIAlgo in the

following2).

The authors in [13] show experimentally that compiling

Bayes network classifiers into ODDs can be handled efficiently

and the number of PI explanations remains reasonable. In our

work, we will rely on this symbolic approach for deriving PI

explanations of base Bayes classifiers used by the BR method.

B. Explaining BR predictions

Our approach for explaining a BR multi-label classifier is to

first derive base classifier explanations then reason with them

to infer BR explanations. Basically, one can do two kinds of

tasks with base classifiers explanation:

• i) selecting base classifier explanations that can explain

all the predicted labels for a data instance x or

• ii) combining base classifier predictions to build the BR

explanations.

Before extending and applying this approach to multi-label

classification, let us first adapt Definition 1 for the case of

multi-label task.

Definition 2 (BR PI explanation): Let f(X) denote a BR

multi-label classifier. A partial instance z of x is a PI-

explanation of f(x)=y if

• (a) z⊆x,

• (b) f(x) = f(x∗) for every instance x∗ such that z⊆x∗,

and

• (c) no other partial instance z′⊂z satisfies (a) and (b).

• (d) for each positively predicted label li in y=f(x),
there exists a partial instance zi⊆z such that zi is a PI

explanation of fi(x) (in the sense of Definition 1).

Condition (b) aims to ensure that all (complete) instances x∗

containing the partial instance z will be associated with the

same multi-label prediction while condition (c) ensures the

minimality of z in terms of the number of variables involved

in z. Condition (d) ensures that a BR explanation e for an

instance x should include a PI explanation ei for each base

classifier prediction fi(x)=1.

Now given an input instance x to classify, one may be

interested in the following explanations

• Common explanations (CE): A common (or universal)

explanation is provided by all base classifiers predicting

positively for the data instance x. This is a simple

selection strategy for inferring BR explanations from base

classifiers’ ones.

1An ODD is a rooted directed acyclic graph representing a Boolean
function. The nodes of an ODD consist of variable nodes depending on the
modeled function and two value nodes. The value of the modeled function
for a given variable instantiation is determined by traversing the ODD from
its root to a value node.

2PIAlgo refers to Algorithm 5 encoding PI explanation given an ODD
(see [13] for more details).



• Joint explanations (JE): A joint explanation involves

exactly one explanation from each individual classifier

fi explanations where the label li is predicted positively.

Here, it is a simple combination strategy for inferring BR

explanations from base classifiers’ ones.

By definition, both of CE and JE explanations can explain

a BR prediction. While the number of JE explanations can

be very large, the number of CE ones can be very small

as we will see in our experimental study. In addition to CE

and JE explanations, one may be interested in other types of

explanations such most frequent or smallest ones (in terms of

the number of involved variables). Let us focus more closely

on CE and JE explanations.

1) Common explanations (CE):

Definition 3: Let f(X) denote a BR multi-label classifier

where base classifiers are denoted fi for i=1..k. The set of

common explanations is defined as follows: CE(x)={e ∈
∩i|fi(x)=1PIi(x)} where PIi(x) denotes the set of PI expla-

nations provided for the base classifier prediction fi(x)=1.

Definition 3 defines a CE explanation of an instance x as the

intersection of PI explanations of base classifiers predicting

labels positively. The intersection operation here denotes the

set intersection operation.

Lemma 1: Let f(X) denote a BR multi-label classifier

where base classifiers are denoted fi for i=1..k. Let also

CE(x) be defined according to Definition 3, then ∀e∈CE(x),
e is a BR PI explanation and satisfies conditions (a)-(d) of

Definition 2.

It is obvious that if e is a PI explanation of all base classifiers

fi predicting positively li then e is a PI explanation for the

BR classifier prediction and conditions (a)-(d) of Definition 2

are satisfied.

As it will be shown in the experiments, the number of

CE explanations could be small especially if labels are not

overlapping. Indeed, if the labels do not overlap (share data

instances), the predictions and explanations are very likely not

to coı̈ncide.

2) Joint explanations (JE):

Definition 4: Let f(X) be the BR multi-label classifier.

A prediction y for an instance x is provided by k bi-

nary base classifier f1(X),..,fk(X) (each label li is posi-

tively predicted or not by the corresponding binary classifier

fi(X)). Let PIi(x) be the set of PI explanations of fi(x)=1.

Let JE(x) be the set of explanations obtained as follows:

JE(x)={∧i=1..k|yi=1ei ∈ PIi(x)}.

A joint explanation e is obtained by combining a PI expla-

nation from each base classifier predicting positively using

the logical conjunction operation. For instance, let e1=x3x̄6x7

be an explanation provided by a classifier f1 and e2=x̄2x3 be

another explanation provided by a classifier f2 then conjoining

e1 and e2 gives e1e2=x̄2x3x̄6x7.

Example 2: Assume the multi-label classification problem

of Example 1.

In the example of Table II, the classifiers f1 and f3
predicted positively for the instance x=(1, 0, 1, 1, 0, 0).
Classifier f1 has three PI explanations for predicting postively

X={A,B,C,D,E,F} Y ={Y1 ,Y2,Y3} PIi(x) JE(x)

1, 0, 1, 1, 0, 0 101 PI1={b̄cd, b̄cf̄ , cdf̄} {b̄cd, b̄cdē, b̄cdf̄ ,

PI2={} b̄cdf̄ , b̄cdēf̄ , b̄cdf̄ ,

P I3={b̄d, dē, df̄} b̄cdf̄ , cdēf̄ , cdf̄}

TABLE II
EXAMPLE OF BASE CLASSIFIER EXPLANATIONS AND BR JOINT

EXPLANATIONS

x, namely PI1(x)={b̄cd, b̄cf̄ , cdf̄} and f3 has also three PI

explanations for x that are PI3(x)={b̄d, dē, df̄}. Joining PI

explanations of both classifiers f1 and f3 gives nine joint

explanations JE(x)={b̄cd, b̄cdē, b̄cdf̄ , b̄cdf̄ , b̄cdēf̄ , b̄cdf̄ ,

b̄cdf̄ , cdēf̄ , cdf̄}.

Clearly, if PIi(x) is the set of PI explanations provided

for the classifier fi for data instance x for each classifier

fi predicting positively, then the number of distinct joint

explanations is at most
∏

i|fi(x)=1 |PIi(x)|. This can be very

large in multi-label problems with large feature sets.

Now, there remains two main questions: i) Are JE explana-

tions BR PI ones and ii) how to compute them? Proposition

1 answers the first question:

Proposition 1: Let f(X) be the BR multi-label classifier.

A prediction y for an instance x is provided by k binary

base classifier f1(X),..,fk(X) (each label li is positively

predicted or not by the corresponding binary classifier fi(X)).
Let PIi(x) be the set of PI explanations of fi(x)=1. Let

JE(x) be the set of explanations obtained using Definition

4, then explanations from JE(x) are not guaranteed to satisfy

condition (c) of Definition 2.

Proposition 1 states that combining base classifier PI ex-

planations following Definition 4 does not guarantee to give

BR PI explanations. Especially, the subset of features is not

minimal (condition (c) of Definition 2). Following is a counter-

example showing Proposition 1.

Example 3: Let us reuse joint explanations of Example 2. In

this example both b̄cd and b̄cdē are JE obtained by combining

PI explanations of f1(”101100”) and f3(”101100”). Clearly,

b̄cdē is not minimal since b̄cd is a JE with a smaller size.

This counter-example leads to the question of deriving only

JE that are BR PI explanations. We provide in the following

an efficient method for computing only BR PI explanations.

C. Computing BR PI explanations

The following proposition allows to derive only multi-label

BR PI explanations from base classifiers PI explanations. The

key idea is to take advantage of the nice properties of ODDs

that can be manipulated efficiently through some (logical) op-

erations such as conjunction, disjunction and negation. Then,

in order to enumerate PI explanations of a set of classifiers

predicting positively for an instance x, it is enough to first

conjoin the ODDs of these base classifiers then apply the same

PI explanation algorithm (PIAlgo) on the resulting ODD to

output the BR PI explanations. Formally,



Proposition 2: Let ODDi denote the ODD

encoding the decision function of classifier fi. Let

ODDf=∧i=1..k|fi(x)=1ODDi where ∧ denotes the ODD

conjunction operation. Then prime implicants of ODDf

obtained applying PIAlgo are BR PI explanations.

Note that the ODDs that will be conjoined are only those

corresponding to labels predicted positively (this number is

in practice very low compared to the size of the label space)

and that all the ODDs share the same variables (since all base

classifiers share the same feature space). Hence conjoining a

series of ODDs with n variables will result in an ODD with

exactly n variables.

Proof 1 (Proof sketch): The idea of the proof is that the

result of conjoining two ODDs is an ODD. This operation

is associative and conjoining a series of ODDs will output

an ODD. Thanks to the PI encoding of algorithm PIAlgo

proposed in [13], this algorithm applied on the obtained

ODDf will output only prime implicants of ODDf . It is

obvious that any prime implicant of ODDf is also satisfying

every used ODDi (since ODDf is the conjunction of a set

of ODDi). It can be easily shown that every prime implicant

of ODDf satisfies conditions (a)-(d) of BR PI explanations.

V. EXPERIMENTAL RESULTS

We report in this section some experimental results high-

lighting the main behavior of the BR explanation approach

proposed in this paper. The experiments are carried out on a

set of synthetic datasets such that we can easily vary some

parameters and see the effects in terms of explanations, size

of target representations, etc. The issues we want to highlight

in particular are:

• Number of explanations: In particular, we want to com-

pare the number of PI explanations of base classifiers

with the number of BR explanations (joint explanations

JE and common explanations CE).

• Size of target ODD representations: The aim here is

to compare the size of ODDs (the size of an ODD is

the number of its nodes) of base classifiers predicting

positively and the size of their conjunction encoding the

BR classifier.

A. Experimentation setup

• Datasets: The datasets used in this study are generated

with different characteristics such as the number of fea-

tures, number of labels, etc. In all the used datasets, all the

features are binary. The cardinality3 of the datasets is set

to 25% of label set size (this is not a very common rate in

multi-label learning datasets but our aim is to let the BR

classifier to predict in average many labels per instance).

Each experiment involves 5000 (resp. 10000) samples

in datasets with 10 and 20 (resp. 30) features. For the

explanations, 1000 data instances are randomly generated

3Cardinality and density are among most relevant features in multi-label
datasets. Cardinality (Card) refers to the average number of labels per data
instance while the density denotes the cardinality divided by the size of the

label set (namely Density=Card

|Y |
).

and their explanations enumerated. Larger test sets does

not lead to significant variations in the results. Experi-

ments with datasets with different cardinalities/densities

may reveal some interesting behaviors but due to page

limit such experiments are not covered in this paper.

• Base classifiers: The base classifiers used in our experi-

mental study are naive Bayes classifiers [8] as algorithms

compiling such classifiers to ODDs exist and they are

very efficient [2], [13]. Of course, non naive Bayes

classifiers such as latent-tree classifiers could also be

used [13] but due to page limit, we focus only on the

comparison between base classifiers explanations and the

BR ones. Future works will deal with other types of base

classifiers.

B. Results

Fig. 1 shows main results of experiments done on multi-

label datasets with 20 features. The number of labels is fixed

to 5, 10, 15 and 20. The main findings are summarized in the

following:

• Average number of positive predictions: The average

number of positive predictions Avg #labels (upper left

graph in Fig. 1) is low and this is in line with multi-

label learning where datasets have low cardinality and

density which is the case of most multi-label datasets.

This parameter does not improve significantly as the

number of labels is increased. Such rate is also observed

almost over all the experiments conducted in this study.

This result is important to understand the other results

our approach.

• Size of target ODD representations: The aim here is to

compare the size of ODDs of base classifiers predicting

positively and the size of these ODDs conjunction encod-

ing the BR classifier. The curves of upper right graph in

Fig. 1 clearly shows two main findings:

– First, the size of ODDs is very tractable for our

20 features datasets and does not explode as the

number of labels is increased. Indeed, the ODDs

size does not exceed 1400 nodes. This is mainly

due to the fact that the number of base classifiers

predicting positively does not grow significantly with

the number of labels.

– Second, the size of ODD encoding the BR classifier

is always smaller than the sum of base classifier

ODDs sizes. Indeed, conjoining ODDs can lead to

smaller ODDs as size optimization operations on

ODDs allow to take advantage of some redundancies

in input ODDs to output an ODD with optimized

size. This is particularly important when dealing with

multi-label problems with very large labels set. This

finding is also observed over all the experiments

reported in this paper.

• Number of explanations: Here we comment and compare

the number of explanations obtained form base classifiers,

number of common explanations (CE) and finally the

number of joint explanations (JE).
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Fig. 1. Experiments on datasets with 20 features and different label set size
(5, 10, 15, 20)

– The average number of all explanations provided by

base classifiers (each base classifier predicting posi-

tively will provide its explanations for the instance in

hand) is very tractables and does not seem to depend

on the size of the label set. Indeed, this is more

dependent on the number of features of the dataset.

– The number of common explanations CE is low as

expected since it is the intersection of explanation

sets provided by base classifiers. More importantly,

this result is mainly due to the fact that the majority

of test instances x are associated to only one label.

Consequently, the number of common explanations

is exactly all the set of PI explanations provided by

the only base classifier having predicted positively

the instance x in hand. This number is almost zero

for all test instances where at least two labels are

predicted positively. This also can be interpreted as

due to labels that do not overlap.

– Regarding the number of BR explanations, the results

of lower graph in Fig. 1 clearly show that their

number is in average lower than the average number

of cumulated PI explanations of base classifiers. The

results are due to the fact that the majority of test

data instances are associated with a small number of

labels and that due to the fact that combining base

classifiers PI explanations does not guarantee to give

a BR PI explanations as stated by Proposition 1.

In addition to the three criteria highlighted above, one could

be interested in other behaviors such as the size of explana-

tions (number of features involved in explanations) and the

computation times. The Discussions and concluding remarks

section gives some insights into such issues.

Let us report other results carried out on datasets with larger

feature and label sets.

The main findings of experiments of Fig. 2 are in accordance

with those reported in Fig. 1 except for the size of target

representations where the BR ODD is slightly bigger than the

cumulated size of base classifier ODDs. Note that the graph

denoting the number of explanations (lower graph in Fig. 2)

shows that the curves of cumulated explanations number of

base classifiers almost coincides with the BR explanations

(more precisely, the former is slightly bigger than the latter).

In the following, we report results where we fix the number

of labels and vary the feature space size.

The main finding in the results of Fig. 3 is the significant

increase in the size of target representations (both base

classifier ODDs and BR ones) while the curves almost

coı̈ncide over all the tested datasets. The second main finding

concerns the number of explanations where the average

number of explanations of BR classifier tends to coı̈ncide

with the cumulated number of PI explanations of base

classifiers.

To summarize the results, it can be said that the approach

proposed for BR provides the expected results both regarding

the size of the representations and in terms of the number

of explanations. This approach which is sound and complete

does not induce experimentally significant extra computational

costs compared with the used explanation approach for the

base classifiers. As long as this latter provides explanations,

our BR approach will provide explanations. Finally, the

obtained results suggest that CE explanations are probably

very exceptional when the number of predicted labels per

instance is greater than 1, but this remains to be confirmed

on benchmarks with different properties.

VI. DISCUSSIONS AND CONCLUDING REMARKS

This paper is the first attempt to extend a symbolic classifier

explanation approach from the case of multi-class classifica-

tion to the multi-label case. First, we propose a framework
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Fig. 2. Experiments on datasets with 30 features and different label set size
(5, 10, 20, 30)

for reasoning with explanations of base classifiers’ predic-

tions to derive explanations for multi-label predictions. Some

interesting properties to be satisfied in this context are also

proposed. We then extend an efficient symbolic approach

(based on knowledge compilation to tractable representations)

for explaining multi-class classifier predictions to the Binary

Relevance (BR) approach, one of the most widely used

approaches for multi-label tasks. Indeed, the main baseline

method for multi-label learning is BR. This latter is often

criticized for its label independence assumption but a lot of

works have shown its very interesting properties [10]. Our

contribution provides a new interesting property which is the

possibility of explaining BR predictions.
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Fig. 3. Experiments on datasets with 10 labels and different features set size
(10, 20, 30)

In order to present our approach, we start with extending the

definition of explanations called PI (Prime Implicants) to the

multi-label case, then we define two types of explanations:

common explanations (CE) and joint ones (JE). We propose

an efficient procedure to derive the BR explanations while

guaranteeing interesting performances especially in terms of

size of the target representations and number of explanations

compared to base classifiers ones. Clearly, CE explanations

are a special case of JE explanations. Among the properties

defined in Section III-C, JE explanations obviously satisfy the

properties of Minimality, Decomposability and Unanimity.

As stated earlier in this paper, the proposed approach for BR

explanation is an extension of a symbolic approach for Bayes

network classifiers [13]. Our approach for BR is though not

limited to using Bayes network classifiers as base classifiers.

Indeed, as long as the decision function of a classifier can

be compiled into a tractable representation such as OBDD,

ODD or SDD [5], our approach can be applied. Indeed, such

representations can be conjoined efficiently and PI explanation

encoding for these representations exists [13]. Recently, in [3]

the authors propose an approach for compiling neural networks

into a tractable representation that can be used in our BR

approach. Note also that our approach can be applied for any

discrete feature set thanks to the use of ODDs.

The paper focused only on explaining predicted labels for a

given data instance. This is called positive explanations in



[13] where it is shown also how to obtain very explanations

for non predicted labels (called negative explanations) just by

negating the ODDs of classifiers predicting negatively and

outputting the prime implicants of the negated ODDs. This

remains also valid for our approach where the ODD encoding

the BR classifier could be negated and explanations generated

after this operation.

Our approach for BR explanations can be adapted and applied

to explaining some other multi-label approaches and ensemble

methods. For instance, Classifier Chains [11] which are one of

the well-known multi-label techniques can be explained using

our approach as chain classifiers model label (in)dependences

as a Bayes network which can also be compiled into an ODD.

Regarding ensemble methods used in multi-class problems,

explanations provided by base classifiers can be used to help

aggregating such predictions and output one final prediction

by the ensemble approach.
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