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Abstract6

In this paper, we introduce a new data mining framework that is based on qualitative reasoning.7

We consider databases where the item domains are of different types, such as numerical values, time8

intervals and spatial regions. Then, for the considered tasks, we associate to each item a constraint9

network in a qualitative formalism representing the relations between all the pairs of objects of the10

database w.r.t. this item. In this context, the introduced data mining problems consist in discovering11

qualitative covariations between items. In a sense, our framework can be seen as a generalization of12

gradual itemset mining. In order to solve the introduced problem, we use a declarative approach13

based on the satisfiability problem in classical propositional logic (SAT). Indeed, we define SAT14

encodings where the models represent the desired patterns.15
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1 Introduction22

Data mining techniques are applied on different data types, such as transactions, sequences,23

graphs, texts, etc. In order to consider complex aspects of the real world, it is interesting to24

extend these techniques for knowledge discovery to new complex data, such as spatio-temporal25

pieces of information. However, it is important in this context to take into account the26

simplicity of the pattern structure. Thus, the challenge in this work is to propose a framework27

that allows us to deal with different complex data types and discovering patterns having a28

simple structure.29

Qualitative reasoning is concerned with facilitating reasoning about complex entities and30

pieces of information through symbolic representation formalisms. In particular, this kind of31

reasoning is strongly related to human one and, for instance, it can be used for dealing with32

pieces of information that come from natural language. In the literature, the qualitative33

formalisms are widely used for reasoning about two physical entities of the world that are time34

and space (e.g. see [21]). Indeed, qualitative spatial and temporal reasoning is an important35

research field in Artificial Intelligence in general, and knowledge representation in particular.36

The spatial and temporal representation formalisms allow reasoning about configurations37

by abstracting numerical quantities of space and time thanks to qualitative relations, such38

as inside, before, after, etc. One of the best known qualitative representation formalisms is39

the Point Algebra [31], which allows representing and reasoning about the possible relative40

positions between two points on the timeline. The Interval Algebra [2, 3], for its part, is used41

for reasoning about the possible positions between two intervals. Furthermore, regarding42

qualitative spatial reasoning, the Region Connection Calculus RCC8 [25] is one of the most43

studied formalisms in qualitative reasoning, which concerns topological relations between44

two spatial regions.45

46
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XX:2 Qualitative Reasoning and Data Mining

In this work, we propose a framework for data mining using qualitative reasoning, which47

allows considering different data types, such as numerical values, time intervals and spatial48

regions. To this end, we first introduce the notion of qualitative database, which is defined49

by associating to each item a constraint network in a qualitative formalism representing the50

relations between the pairs of objects of the database w.r.t. this item. Then, we describe51

data mining tasks for discovering qualitative covariations, called qualitative itemsets, in52

the previous kind of databases. For instance, the desired patterns can capture pieces of53

information of the form "a variation of an item a w.r.t. the qualitative relation r1 is associated54

with a variation of b w.r.t. the qualitative relation r2". In a sense, the proposed tasks can be55

seen as a generalization of those related to gradual itemsets where the qualitative relations that56

are considered in the extracted patterns are only ≤ and ≥ on numerical values [7, 10, 11, 20].57

We express the interestingness predicate on the qualitative itemsets in a database through58

two different definitions of support. The first definition takes into consideration a local view59

by reasoning about the pairs of objects that satisfy the partial order induced by the itemset,60

while the second is obtained by reasoning about the sequences respecting the previous partial61

order. These two definitions allow extracting interesting recurrent pieces of information.62

Finally, we use a declarative and flexible solution for solving the introduced data mining63

tasks based on the use of the satisfiability problem in classical propositional logic (SAT).64

Indeed, we define for each task a SAT encoding whose models allow us to obtain all the65

desired patterns. Thus, we follow in our solution the constraint programming based approach66

for data mining initiated in [24, 13], which offers a declarative and flexible representation67

model.68

The rest of the paper is organized as follows. After describing related works in Section 2,69

we introduce in Section 3 the notion of qualitative database. In Section 4, we present the70

data mining tasks proposed in this work. In Section 5, we describe our SAT-based encodings71

for solving these tasks, while Section 6 concludes the paper.72

2 Related Works73

The most related data mining tasks to our framework are those concerned with extracting74

gradual itemsets [7, 10, 11, 20]. A gradual itemset is a pattern expressing covariations of75

items having as domains sets of numerical values. For instance, the gradual itemset containg76

three gradual items {sport≥, weight≥, diseases≤} can be used to express the fact "the higher77

the time of physical activity, the higher the weight loss, and the fewer the number of diseases".78

The gradual itemset structure allows analyzing numerical data in a simple and intuitive way,79

since it avoids the quantitative aspects of the considered data.80

The data mining framework introduced in this work can be seen as a generalization of81

that of mining gradual itemsets in the case of numerical data. Indeed, instead of using only82

the inequality relations ≤ and ≥, many binary qualitative relations on different data types83

can be used in our framework, in particular qualitative relations on time intervals and spatial84

regions.85

It is worth noting that we use in our framework measures for determining the quality of86

a qualitative itemset similar to those proposed in the case of gradual itemsets. In fact, in87

the same way as in gradual itemset mining, we consider two distinct definitions of support:88

the first definition considers the pairs of objects that respect the itemset, while the second89

definition is obtained by reasoning about the length of the sequences that respect the pattern.90

More precisely, the first definition of support corresponds to the numbers of pairs of objects91

that satisfy the partial order associated to the pattern, and the second definition corresponds92



Y. Salhi XX:3

the length of the longest sequences of objects that are ordered using the partial order induced93

by the pattern.94

The use of a declarative approach for data mining was originally proposed in [24] for95

performing different tasks. Specifically, the authors have demonstrated that constraint96

programming is an appropriate tool in many respects in itemset mining. One of the main97

motivations lies in the fact that this framework offers a flexible and generic representation98

model. Indeed, new constraints often require new implementations for specialized data mining99

approaches, which can often be integrated in a fairly simple way into declarative frameworks,100

since it is not needed to change the solving tools. In addition, the continual evolution in the101

efficiency of tools dedicated to problems that can be used for data mining modeling, like ASP102

(Answer Set Programming), CSP (Constraint Satisfaction Problem) and SAT, is a strong103

argument in favor of using approaches based on these problems. Thus, from this first work,104

a new line of research has emerged within the data mining community. Indeed, in recent105

years, many works using CSP and SAT for different data mining tasks have been proposed in106

the literature (e.g. [13, 16, 12, 30, 19, 9]). In particular, in [8], the authors show that their107

SAT-based approach achieves better performance than state-of-the-art specialized techniques.108

In this work, we use a SAT-based approach for solving all the considered data mining tasks.109

Let us note that a SAT-based approach was recently used for extracting gradual patterns110

in [22].111

3 Qualitative Database112

In this section, we introduce the notion of qualitative database. The main idea consists in113

associating to each item a constraint network in a qualitative formalism representing the114

relations between the pairs of objects of the database w.r.t. this item. To illustrate our115

proposal, we consider three distinct qualitative formalisms for reasoning about time and116

space, namely Point Algebra [31], Interval Algebra [2, 3] and Region Connection Calculus117

RCC8 [25].118

Given a finite set S, we use P(S) and |S| to denote respectively the powerset and the119

cardinality of S. Given a finite set of items I, Va is used to denote the domain of the120

item a ∈ I. The domain of an item can be a numerical value, a temporal interval, a121

spatial region, etc. Further, we associate to each item a a finite set of qualitative base122

relations Ba, which consists of jointly exhaustive and pairwise disjoint relations, i.e., for123

each (v, v′) ∈ Va × Va, there exists exactly one b ∈ Ba such that (v, v′) ∈ b. Further, we124

only consider the set of qualitative base relations Ba that contains the identity relation125

id = {(v, v′) ∈ Va × Va | v = v′}, and is closed under the inverse operation (·)−1, namely126

whenever b is in Ba, the inverse (b)−1 is also in Ba. A qualitative relation is said to be127

universal if it contains all the base relations.128

The weak composition of two base relations b and b′ in Ba, denoted b � b′, is defined as129

the set of base relations {b′′ ∈ Ba | ∃(v, v′) ∈ b & (v′, v′′) ∈ b′ & (v, v′′) ∈ b′′}. The weak130

composition operation is extended to the relations in P(Ba) as follows: r�r′ =
⋃
b∈r,b′∈r′ b�b′.131

In this context, it is worth mentioning that the composition ◦ of two relations is defined as132

follows: r ◦ r′ = {(v, v′) | ∃v′′, (v, v′′) ∈ r & (v′′, v′) ∈ r′}. In other words, r � r′ is the largest133

set of base relations where each one shares at least one value with r ◦ r′.134

For example, consider the point algebra (PA) qualitative formalism described in Figure 1,135

which has been mainly used for temporal reasoning. Indeed, PA can be used to encode136

temporal relations between two points in the timeline. We also describe in Figure 2 the base137

relations of two other qualitative formalisms: interval algebra (IA) and region connection138
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(a) The base relations of Point Algebra.
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(c) The composition table of Point Algebra.

Figure 1 Point Algebra
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DC(x, y) EC(x, y)

PO(x, y) EQ(x, y)

TPP (x, y) NTPP (x, y)

TPPi(x, y) NTPPi(x, y)

(a) The base relations of RCC8.
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y overlappedBy x (oi)
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x

y satrtedBy x (si) y contains x (di) y finishedBy x (fi)

x y x y xy

y

x precedes y (p)

y precededBy x (pi)

x
y y

(b) The base relations of Interval Algebra.

Figure 2 The qualitative formalisms RCC8 and Interval Algebra.

calculus RCC8. The formalism IA allows encoding relative relations between intervals, while139

RCC8 allows encoding topological relations between two regions. For instance, the expression140

DC(Region1, Region2) represents the fact that the two spatial regions Region1 and Region2141

are disconnected.142

I Definition 1 (Qualitative Column). A q-column is a structure of the form c = (a,O, R),143

where a is an item, denoted item(c), O is a finite non empty set of objects, denoted obj(c),144

and R is a mapping form O ×O to Ba, denoted rel(c).145

Let us now introduce the notion of qualitative database, which is defined by associating to146

each item a constraint network in a qualitative formalism representing the relations between147

the pairs of objects of the database w.r.t. this item.148

I Definition 2 (Qualitative Database). A qualitative database is a structure of the form149

(O, I, C), where O is a finite non empty set of objects, I is a finite non empty set of items150

and C is a set of q-columns s.t. (i) |C| = |I|, (ii) ∀c ∈ C, obj(c) = O, and (iii) ∀a ∈ I, there151

exists exactly one c ∈ C s.t. item(c) = a.152

In the sequel, we sometimes use Ra to denote rel(c) where c is the qualitative column153

associated to the item a.154
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objects a b c
o1 2 [1,4] R1

o2 1 [2,3] R2

o3 4 [3,6] R3

o4 1 [2,4] R4

(a) A database using values in item domains.

R1

R2R3R4

(b) A representation of the real situation the regions
R1, R2, R3 and R4.

o1o2

o3o4
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di

s fim
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o3o4

EC

PO

NTTPi

DC DCDC

(c) The qualitative database corresponding to the database in (a).

Figure 3 A Qualitative Database

For example, we describe in Figure 3 a qualitative database: we provide in (a) a database155

using values in item domains, in (b) the concret situation of the considered spatial regions,156

and in (c) the qualitative database. For instance, the edge between o1 and o2 in the left-hand157

graph represents the qualitative base relation in PA > (o1, o2), usually denoted o1 > o2.158

4 Mining Qualitative Itemsets159

In this section, we introduce data mining tasks for discovering qualitative covariations in160

qualitative databases. For instance, the patterns in this context can be used to capture pieces161

of information of the form "a variation of a w.r.t. the qualitative relation r1 is associated162

with a variation of b w.r.t. the qualitative relation r2".163

I Definition 3 (Qualitative Itemset). A qualitative itemset is a finite non empty set of164

qualitative items I, where a qualitative item is a structure of the form ar where a is an item165

and r ⊆ Ba.166

Let us now describe the partial order on the objects of a database that is induced by a167

qualitative itemset, and also the notion of ordered sequence that is used for defining the168

support of a qualitative itemset.169

I Definition 4 (Induced Partial Order). Let D = (O, I, C) be a qualitative database, o, o′ ∈ O170

and I = {ar1
1 , . . . , a

rk

k } a qualitative itemset. Then, we say that o precedes o′ w.r.t. I, written171

o �I o′, if for all i ∈ 1..k, Ra(o, o′) ∈ ri holds.172

I Definition 5 (Ordered sequence of objects). Let D be a qualitative database, L = 〈o1, . . . , ok〉173

a sequence of distinct objects in D and I a qualitative itemset. We say that L respects I if it174

is ordered with respect to �I , i.e., oi �I oi+1 for every i ∈ 1..k − 1.175

We here use L(D, I) to denote all the sequences of objects occurring in D that respect176

the qualitative itemset I.177

In the same way as in gradual itemset mining, we express the quality of an itemset in a178

database through two different definitions of support. The first definition captures a local179

view by taking into consideration the number of pairs that satisfy the partial order induced180

by the qualitative itemset (D = (O, I, C)):181



XX:6 Qualitative Reasoning and Data Mining

supp1(I,D) = |{{o, o
′} ⊆ O | o 6= o′, o �I o′}|
|O| · (|O| − 1)/2 .

The second definition is obtained by reasoning about the sequences that respect the qualitative
itemset. Indeed, it corresponds to the length of the longest sequences that respect the
considered itemset:

supp2(I,D) = max{|L| | L ∈ L(D, I)}
|O|

.

Furthermore, we consider that it is more appropriate to allow the user to select the182

relations that can be associated to every item in a pattern. For example, it is not interesting183

to consider the universal or empty relations because they do not describe any variation.184

Thus, we define two problems of enumerating qualitative itemsets as follows: given a185

function f that maps each item a to a subset of relations f(a) ⊆ P(Ba) which is closed186

under the inverse operation and the inclusion, and a minimum support threshold v, the187

problems QIE1 and QIE2 consist in computing respectively the sets of qualitative itemsets188

QIE1(D, f, v) = {I | supp1(I,D) ≥ v & ∀ar ∈ I, r ∈ f(a)} and QIE2(D, f, v) = {I |189

supp2(I,D) ≥ v & ∀ar ∈ I, r ∈ f(a)}.190

Let us consider now two condensed representations, which are similar to those that are191

widely considered in itemset mining. Before that, we need the following partial order relation.192

Given two qualitative itemsets I and J , we have I v J if, ∀ar ∈ I, ∃ar′ ∈ J s.t. r′ ⊆ r.193

Moreover, we have I @ J if I v J and I 6= J .194

I Definition 6 (Closedness). Let D be a database and I a qualitative itemset. Then, I is195

said to be a closed qualitative itemset in D w.r.t. supp1 (resp. supp2) if, for all qualitative196

itemset J with I @ J , supp1(I,D) > supp1(J,D) (resp. supp2(I,D) > supp2(J,D)) holds.197

In other words, a qualitative itemset is closed if there is no more informative qualitative198

itemset that has the same support.199

I Definition 7 (Maximality). Let D be a database, v a minimum support threshold and I a200

qualitative itemset. Then, I is said to be a maximal qualitative itemset w.r.t. supp1 (resp.201

supp2) and the threshold v if, for all qualitative itemset J with I @ J , supp1(J,D) < v (resp.202

supp2(J,D) < v) holds.203

A qualitative itemset is maximal if there is no more informative qualitative itemset that204

has a support greater than or equal to the minimum support threshold.205

In the context of the condensed representations, one can easily see that we have the206

following property.207

I Proposition 8 (Anti-Monotonicity). Let D be a qualitative database and I and J two208

qualitative itemsets in D. If I v J then supp1(I,D) ≥ supp1(I,D) and supp2(I,D) ≥209

supp2(I,D).210

Therefore, using the anti-monotonicity property, computing either the closed itemsets or the211

maximal itemsets in QIE1(D, f, v) and QIE2(D, f, v) allows getting all the elements of these212

two sets. Furthermore, the anti-monotonicity property can be used for defining Apriori-like213

algorithms for solving the problems QIE1 and QIE2 in a fairly simple way. Let us recall that214

Apriori algorithm was originally proposed in [1] for mining frequent itemsets.215

It is worth mentioning that the qualitative relations are not necessarily transitive. For216

example, we have 1{<,>}2{<,>}1 in PA (x{<,>}y means that x is different from y) without217

having 1{<,>}1. This has as a consequence the fact that a sequence respects a qualitative218
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itemset does not implies that its sub-sequences (by avoiding intermediate objects) respect219

also this pattern. Thus, in order to have transitivity, a solution can consist in restricting220

our mining task to the relations that satisfy �-idempotence: a qualitative relation r is said221

to be �-idempotent if r � r = r. For example, in PA the �-idempotent relations are {=},222

{<}, {<,=}, {>}, {>,=} and {<,=, >}, i.e., all the relations except {} and {<,>}. That223

being said, we provide in this work general methods for solving QIE1 and QIE2 without224

considering transitivity.225

In order to illustrate the mining tasks described previously, we provide now a simple226

example. Consider the database described in Figure 4. It represents pieces of information227

related to a set of workers about time at work, productivity and satisfaction degree. For the228

corresponding qualitative database, we consider interval algebra for time at work, and point229

algebra for both productivity and satisfaction degree. Moreover, we only consider QIE2 with230

a support threshold equal to 3 without any restriction on the considered qualitative relations231

in the patterns on time, but we only consider {<,≤, >,≥} on both productivity and232

satisfaction. A first interesting qualitative pattern is I = {time{p,o,m}, productivity≤},233

which has a support equal to 4 since it is satisfied by the sequence 〈w1, w2, w3, w4〉. In a234

sense, it expresses that starting work earlier increase productivity. The pattern I is not235

closed since it has the same supports as J = {time{p,o,m}, productivity<}. Moreover, J236

is closed since J ∪ {satisfaction≤} and J ∪ {satisfaction≥} are respectively 2 and 3.237

Moreover, J ∪{satisfaction>} is a maximal patterns since its support is equal to the fixed238

threshold and it is not included in any other pattern.239

worker time productivity satisfaction
w1 5am to 9am 100 1
w2 8am to 12am 80 4
w3 12am to 4pm 60 5
w4 5pm to 9pm 50 3

Figure 4 A description of a database.

5 SAT-based Approach for Enumerating Qualitative Itemsets240

In this section, we introduce a SAT-based approach for solving the problems QIE1 and241

QIE2. We first describe the satisfiability problem in classical propositional logic. We then242

introduce our SAT encodings for QIE1 and QIE2: the computation of the models of each243

encoding corresponds to the computation of the desired qualitative itemsets. We here follow244

the constraint programming based approach for data mining initiated in [24, 13].245

5.1 Classical Propositional Logic246

We here describe the syntax and the semantics of classical propositional logic. We use Prop to
denote the set of propositional variables. The propositional formulas of classical propositional
logic (CPL) are built using Prop, the constants >, denoting true, and ⊥, denoting false, the
unary logical connective ¬ and the usual binary connectives ∧, ∨, → and ↔. The grammar
is defined as follows:

φ ::= p | > | ⊥ | φ ∧ φ | φ ∨ φ | φ→ φ | φ↔ φ | ¬φ

with p ∈ Prop. The set of propositional formulas is denoted Form. We use the letters247

p, q, r, s to denote the propositional variables, and the Greek letters φ, ψ and χ to denote248



XX:8 Qualitative Reasoning and Data Mining

the propositional formulas. Moreover, given a syntactic object o, we use V ar(o) to denote249

the set of propositional variables occurring in o.250

A Boolean interpretation B of a formula φ is defined as a function from the set of251

variables V ar(φ) to {0, 1} (0 stands for false and 1 for true). It is inductively extended to252

propositional formulas as usual:253

B(>) = 1 B(⊥) = 0
B(¬φ) = 1− B(φ) B(φ→ ψ) = max(1− B(φ),B(ψ))
B(φ ∧ ψ) = min(B(φ),B(ψ)) B(φ ∧ ψ) = min(B(φ),B(ψ))

254

B(φ↔ ψ) = 0 if B(φ) 6= B(ψ), B(φ↔ ψ) = 1 otherwise255

A formula φ is satisfiable if there exists a Boolean interpretation B of φ such that B(φ) = 1,256

and B is called a model of φ in this case. We use Mod(φ) to denote the set of all the models257

of φ.258

Consider for instance the formula (p ∧ q)↔ p, which has exactly three models: B1 with259

B1(p) = B1(q) = 0; B2 with B1(p) = B1(q) = 1; and B3 with B3(p) = 0 and B1(q) = 1.260

261

A propositional formula in Conjunctive Normal Form (CNF) is a conjunction of clauses,262

where a clause is a disjunction of literals. It is well-known that every propositional formula263

can be translated to CNF w.r.t. the satisfiability problem using Tseitin’s linear encoding [29].264

The problem of determining whether there exists a model that satisfies a given CNF formula,265

abbreviated as SAT, is one of the most studied NP-complete problems.266

267

A cardinality constraint is an inequality of the form
∑n
i=1 pi ≥ m. Several polynomial268

encodings of this kind of constraints into propositional formulas have been proposed in269

the literature (e.g. [4, 26, 5]). An AtMostOne constraint is a particular case of the form270 ∑n
i=1 pi ≤ 1, which can be linearly encoded in SAT. For instance, the encoding using271

sequential counter [26, 23] is defined as follows:272

(¬p1 ∨ q1) ∧ (¬pn ∨ qn−1)∧
1<i<n

((¬pi ∨ qi) ∧ (¬qi−1 ∨ qi) ∧ (¬pi ∨ ¬qi−1))273

where qi is a fresh propositional variable for i = 1, . . . , n− 1.274

5.2 A SAT Encoding for QIE1275

In this section, we propose a SAT encoding for the problem of enumerating qualitative276

itemsets QIE1. More precisely, we associate to every instance of QIE1 a propositional277

formula so that its models allow us to obtain all the corresponding qualitative itemsets.278

279

Let D = (O, I, C) be a qualitative database, f a function that maps each a ∈ I to a280

subset of P(Ba) closed under the inverse operation and the inclusion, and v a minimum281

support threshold. We here use the integer α defined as the value v · (|D| · (|D| − 1)/2).282

In order to define our encoding, we associate to each pair of an item a and a relation283

r ∈ f(a) a distinct propositional variable denoted par . The variable par is used to express284

the qualitative itemset in the sense that it is true if and only if ar belongs to the current285

qualitative itemset. Furthermore, we associate to each ordered pair of different objects286

(o, o′) in D a distinct propositional variable denoted q(o,o′). In the proposed encoding, a287

variable q(o,o′) is true if and only if o precedes o′ with respect to the current qualitative288
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itemset. In order not to take into account both symmetric couples of objects in support com-289

putation, we also associate a variable denote s{o,o′} to each pair of distinct objects {o, o′} in D.290

291

The first propositional formula of our encoding for QIE1 allows avoiding the empty292

itemset by requiring at least one item:293 ∨
a∈I

∨
r∈f(a)

par . (1)294

Indeed, this formula corresponds to a single clause that expresses that there is at least one295

variable of the form par assigned to true.296

The following conjunction of AtMostOne constraints allows avoiding the association of297

multiple variations to an item in the same pattern:298 ∧
a∈I

∑
r∈f(a)

par ≤ 1. (2)299

More precisely, each AtMostOne constraint is associated to a distinct item and means that300

there is at most one qualitative relation associated to this item in the pattern.301

The following formula allows establishing that each variable q(o,o′) is true if and only o302

precedes o′ w.r.t. the qualitative itemset:303 ∧
o,o′∈O,o6=o′

¬q(o,o′) ↔
∨

({par | a ∈ I, r ∈ (f(a) \ {r′ ∈ f(a) | Ra(o, o′) ∈ r′})}. (3)304

We exactly express in the previous formula that q(o,o′) is false if and only if there is a305

qualitative item ar such that r(o, o′) does not hold.306

We now introduce the formula that is used for symmetry breaking by considering in the307

support computation at most one of the couples (o, o′) and (o′, o):308 ∧
o,o′∈O,o6=o′

s{o,o′} ↔ (q(o,o′) ∨ q(o′,o)). (4)309

Finally, the following cardinality constraint expresses that support of every qualitative310

itemset in D has to be greater than or equal to v:311 ∑
o,o′∈O,o6=o′

s{o,o′} ≥ α. (5)312

Let us note that the use of α in the previous constraint is clearly equivalent to the use of v313

as a minimum support threshold.314

315

We use ENC(D, f, v) to denote the conjunction of the previous formulas: (1)∧ (2)∧ (3)∧316

(4) ∧ (5).317

There are three important properties related to our encoding ENC(D, f, v). First, the318

soundness property means that every model encodes a frequent qualitative itemset. Second,319

the completeness property expresses that every frequent qualitative itemset is encoded in320

a model of the encoding. Third, the non-redundancy property is used to capture the fact321

that there is a bijective mapping between the set of the models and the set of the frequent322

qualitative itemsets.323

I Proposition 9 (Soundness). Given an instance (D, f, v) of QIE1, if B is a model of324

ENC(D, f, v) then IB = {ar | B(par ) = 1} ∈ QIE1(D, f, v).325
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Proof. First, using the formula (1), we clearly have |IB| ≥ 1. Then, using (2), we know that326

an item occurs at most once in every pattern. Moreover, using (3) ∧ (4), we obtain {s{o,o′} |327

B(s{o,o′}) = 1} = {{o, o′} ⊆ O | o 6= o′, o �IB o′}. Thus, using the cardinality constraint (5),328

we obtain |{s{o,o′} | B(s{o,o′}) = 1}| ≥ α and we have thereby supp1(IB,D) ≥ v. Therefore,329

IB belongs to QIE1(D, f, v). J330

I Proposition 10 (Completeness). Given an instance (D, f, v) of QIE1, if I ∈ QIE1(D, f, v)331

then there exists a Boolean interpretation BI that satisfies the encoding ENC(D, f, v), where332

I = {ar | BI(par ) = 1}.333

Proof. Let us define BI as follows:334

1. for every pair of an item a and a relation r ∈ f(a), BI(par ) = 1 iff ar ∈ I;335

2. for every ordered pair of distinct objects (o, o′), BI(q(o,o′)) = 1 iff o �I o′;336

3. for every pair of distinct objects {o, o′}, BI(s{o,o′}) = 1 iff o �I o′ or o′ �I o.337

Using the fact that |I| ≥ 1, BI satisfies (1). Then, using the fact that an item cannot occur338

more than once in I, BI satisfies (2). Further, using the properties 1 and 2 in the definition339

of BI , we obtain that BI satisfies (3). Using the fact that BI satisfies (3) and the property 3340

in the definition of BI , we also obtain that (4) is also satisfied by BI . Moreover, the formula341

(5) is satisfied since supp1(I,D) ≥ v. J342

I Proposition 11 (Non-Redundancy). Given an instance (D, f, v) of QIE1, for all two distinct343

models B and B′ of ENC(D, f, v), {ar | B(par ) = 1} 6= {ar | B′(par ) = 1} holds.344

Proof. This property is a direct consequence of the fact that we use the equivalence logical345

connective in the formulas (3) and (4). Indeed, the support is encoded using the variables of346

the form q(o,o′) and s{o,o′}, and a qualitative itemset cannot have two distinct values for the347

support. J348

It is worth noting that having a bijective mapping between the set of the models and the349

set of the frequent qualitative itemsets allows us to adapt in a fairly simple way our encoding350

for many variants of QIE1, such as counting the number of patterns.351

352

Let us now introduce the notion of complementary qualitative itemset, which is mainly353

used for reducing the search space.354

I Definition 12 (Complementary Qualitative Itemset). Let I = {ar1
1 , . . . , a

rk

k } be a qualitative355

itemset. The complementary of I, denoted Ic, is the qualitative itemset {a(r1)−1

1 , . . . , a
(rk)−1

k }.356

We clearly have the following proposition.357

I Proposition 13. The following two properties are satisfied, for all qualitative database D358

and for all qualitative itemset I:359

supp1(I,D) = supp1(Ic,D)360

supp2(I,D) = supp2(Ic,D).361

Proposition 13 can be used to avoid unnecessary computations. Indeed, at each found362

model, we can avoid in the next step both the corresponding qualitative itemset and its363

complementary itemset. It is worth noting that a similar property is used in the case of364

gradual patterns [7, 10, 11, 20].365

366
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Let us now consider the condensed representations corresponding to the closed and the367

maximal qualitative itemsets. In order to obtain the closed qualitative itemsets, we first need368

to conjunctively add to the encoding ENC(D, f, v) the following formula:369 ∧
a∈I

∧
r∈f(a)

((
∧

o,o′∈O,o 6=o′
(q(o,o′) → Ra(o, o′) ∈ r))→

∨
r′⊆r

par′ ). (6)370

Indeed, this propositional formula means that, for all qualitative item ar, if we have371

supp1(I,D) = supp1(I ∪ {ar},D), then there exists r′ ⊆ r such that ar′ belongs to I,372

where I is the qualitative itemset associated to the current model. In other words, it allows373

making the current qualitative itemset more informative without changing the support.374

Then, we add the following formula to express that it is not possible to reduce the size of375

any relation in the pattern without changing the support:376 ∧
a∈I

∧
r∈f(a),|r|>1

(par →
∧
r′⊂r

(
∨

o,o′∈O,o6=o′
q(o,o′) ∧Ra(o, o′) /∈ r′)). (7)377

We use ENC − C(D, f, v) to denote the SAT encoding for the problem of enumerating378

the closed qualitative itemsets: ENC(D, f, v) ∧ (6) ∧ (7).379

Similarly, to compute the maximal qualitative itemsets, we only need to conjunctively380

add to ENC(D, f, v) the following two formulas:381 ∧
a∈I

∧
r∈f(a)

(
∑

o,o′∈O,o 6=o′
(q(o,o′) ∧Ra(o, o′) ∈ r) ≥ α→

∨
r′⊆r

par′ ) (8)382

383 ∧
a∈I

∧
r∈f(a),|r|>1

(par →
∧
r⊂r

∑
o,o′∈O,o6=o′

(q(o,o′) ∧Ra(o, o′) /∈ r′) < α). (9)384

The formula (8) allows maximizing the size of the current qualitative itemset while keeping the385

support greater than or equal to v, (9) states that it is not possible to reduce the size of any386

relation without reducing the support to a value smaller than v. We use ENC −M(D, f, v)387

to denote the SAT encoding ENC(D, f, v) ∧ (8) ∧ (9).388

5.3 A SAT Encoding for QIE2389

We here propose a SAT encoding for the problem QIE2, which combines formulas defined for390

QIE1 and new ones that are described in this section.391

392

Let D = (O, I, C) be a database, f a function that maps each a ∈ I to a subset of P(Ba)393

closed under the inverse operation and the inclusion, and v a minimum support threshold.394

We here use the integer β defined as the value v · |D|. We now describe an encoding that395

allows one to obtain all the elements of QIE2(D, v).396

In the same way as the previous encoding, we also use in the same way the propositional397

variables of the forms par and q(o,o′): the variables of the form par are used to encode the398

qualitative itemset, and those of the form q(o,o′) to encode its support. Moreover, we associate399

to each integer i ∈ 1..β and object o in D a fresh propositional variable tio, which is used to400

express that the object o is used at the location i in a sequence in L(D, I), where I is the401

current qualitative itemset.402

403

The first formula in our encoding is the conjunction of (1) ∧ (2) ∧ (3) of the previous404

encoding ENC(D, f, v). Indeed, (1) is used to express that every qualitative itemset contains405
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at least one qualitative item, (2) is used to avoid multiple occurrences of an item in the same406

itemset, and (3) says that q(o,o′) is false if and only if there is a qualitative item ar such407

that Ra(o, o′) ∈ r does not hold. As a consequence, every model of the previous conjunction408

encodes a qualitative itemset, where the variables of the form q(o,o′) encode the pairs of409

objects that satisfy the partial order induced by this itemset.410

Using the fact that the propositional variables of the form tio are used to build an ordered411

sequence of objects, the following formula means that an object cannot be used more than412

once in a sequence:413

∧
o∈O

β∑
i=1

tio ≤ 1. (10)414

The following formula says that there is exactly one object at each location:415

β∧
i=1

∑
o∈O

tio = 1. (11)416

Clearly, the previous formula allows us to only consider the qualitative itemsets that have417

supports greater than or equal to v w.r.t. supp2.418

In order to require the ordering induced by the qualitative itemset, the following formula419

is used to capture the fact that if two objects o and o′ occur in successive locations, then the420

couple (o, o′) respects the qualitative itemset, which is expressed by the truth of the variable421

q(o,o′):422

∧
o,o′∈O,o6=o′

β−1∧
i=1

((tio ∧ ti+1
o′ )→ q(o,o′)). (12)423

We use ENC2(D, f, v) to denote the encoding that corresponds to the following conjunc-424

tion: (1) ∧ (2) ∧ (3) ∧ (10) ∧ (11) ∧ (12).425

I Proposition 14 (Soundness). Given an instance (D, f, v) of QIE2, if B is a model of426

ENC2(D, f, v) then IB = {ar | B(par ) = 1} ∈ QIE2(D, f, v).427

Proof. The soundness can be shown in the same way as in the case of QIE1. Using (1),428

we know that IB contains at least one qualitative item. Then, using (2), each item occurs429

at most once in every qualitative itemset. Further, using (3), we obtain ar ∈ IB iff, for430

all o, o′ ∈ O, B(q(o,o′)) = 1 iff Ra(o, o′) ∈ r. Thus, using (10) ∧ (11) ∧ (12), we know that431

there exists a sequence 〈o1, . . . , oβ〉 which respects IB, where B(tioi
) = 1 for i ∈ 1..β. As a432

consequence, supp2(IB,D) ≥ v and IB belongs to QIE2(D, f, v) J433

I Proposition 15 (Completeness). Given an instance (D, f, v) of QIE2, if I ∈ QIE2(D, f, v)434

then there exists a Boolean interpretation BI that satisfies the encoding ENC2(D, f, v) where435

I = {ar | BI(par ) = 1}.436

Proof. First, given a sequence s = 〈o1, . . . , oβ〉 respecting I, we define BI as follows:437

for every pair of an item a and a relation r ∈ f(a), BI(par ) = 1 iff ar ∈ I;438

for every couple of distinct objects (o, o′), BI(q(o,o′)) = 1 iff o �I o′;439

for every object o and location i ∈ 1..β, BI(tio) = 1 iff o = oi.440

For the same reasons described in the proof of Proposition 10, BI satisfies (1) ∧ (2) ∧ (3).441

Then, using the fact that the length of s is β and the objects in this sequence are pairwise442

distinct, BI satisfies also (10) ∧ (11). Finally, using the fact that s respects the partial order443

induced by I, BI satisfies (12). J444
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Contrary to our previous encoding, ENC2(D, f, v) does not satisfy the non-redundancy445

property, since the same qualitative itemset may be associated to distinct sequences. How-446

ever, this is not a problem for enumerating the qualitative itemsets without redundancy,447

because we only need to conjunctively add the negation of the found qualitative itemset at448

each step instead of the negation of the found model. More precisely, if we found a model449

representing the qualitative itemset I = {ar1
1 , . . . , a

rk

k }, then we conjunctively add the clause450

¬pa1r1 ∨ · · · ∨ ¬pak
rk ∨

∨
ar /∈I p

r
a to avoid this itemset in the next steps.451

452

In ENC2(D, f, v), we use propositional variables that are associated to only β locations,453

since we aim at computing the qualitative itemsets having supports at least equal to v.454

However, for computing the closed qualitative itemsets, we need to have the exact value of455

the support, which means that we have to encode one of the longest sequences in each model456

of the SAT encoding. In order to avoid this problem, we propose an intermediate solution by457

restricting ENC2(D, f, v) to the closed qualitative itemsets w.r.t. QIE1. In this context, we458

clearly have the following property.459

I Proposition 16. Let D be a qualitative database and I a qualitative itemset. If I is closed460

in D w.r.t. supp2, then it is also closed in D w.r.t. supp1.461

Proof. This property is a direct consequence of the fact that if supp2(I,D) > supp2(J,D),462

then supp1(I,D) > supp1(J,D) holds for every qualitative itemsets I and J with I @ J . J463

Thus, the set of closed qualitative itemsets w.r.t. QIE2 is included in that of the qualitative464

itemsets obtained from the encoding ENC2(D, f, v)∧(6)∧(7). As a consequence, the previous465

SAT encoding can be used for enumerating all the closed qualitative itemsets w.r.t. QIE2.466

Indeed, we only need in this context to select the largest patterns w.r.t. v for every value467

for the support.468

Let us now consider the problem of enumerating the maximal qualitative itemsets. In469

this context, consider the following formulas:470

∧
a∈I

∧
r∈f(a)

∧
o,o′∈O,o 6=o′

(
β−1∧
i=1

((tio ∧ ti+1
o′ ∧Ra(o, o′) ∈ r)→

∨
r′⊆r

par′ )), (13)471

472 ∧
a∈I

∧
r∈f(a),|r|>1

(par →
∧
r⊂r

(
∨

o,o′∈O,o6=o′

β−1∧
i=1

(tio ∧ ti+1
o′ ∧Ra(o, o′) /∈ r′)). (14)473

These two formulas express that, for a sequence of length equal to β, the associated qualitative474

itemset has to be the largest w.r.t. v. Therefore, in the same way as our encoding for475

enumerating the closed qualitative itemsets, the encoding ENC2(D, f, v) ∧ (13) ∧ (14) allows476

one to compute a set of patterns that contains all the maximal qualitative itemsets.477

It is worth noting that the strategies proposed in [15, 18] for adapting Conflict-Driven478

Clause-Learning (CDCL) based SAT-solvers to the task of model enumeration can be directly479

used in the case of our encoding. Furthermore, it is also possible to directly use the480

decomposition method introduced in [17] for improving the SAT-based approach in solving481

data mining problems.482

6 Conclusion and Perspectives483

The first main contribution of this article is a definition of a framework for data mining484

using qualitative reasoning. This framework allows considering different data types, such485
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as numerical values, time intervals and spatial regions. Moreover, the data mining tasks486

introduced in this work can be seen as a natural generalization of those related to gradual487

itemsets. The second main contribution is our declarative and flexible solution for solving488

the proposed data mining tasks based on the satisfiability problem in classical propositional489

logic (SAT): each task is modeled as a propositional formula whose models correspond to490

the desired patterns.491

In our future work, we intend to further study qualitative reasoning in data mining492

following three main directions: (1) the use of disjunctions of base relations between objects,493

which allows, for instance, modeling vagueness; (2) considering qualitative formalisms that494

are not closed under the inverse operation, such as cardinal direction calculus [27, 28];495

(3) considering some qualitative relations with arities greater than two in the case of some496

particular data types (e.g. [14, 6]). Furthermore, we plan to implement the proposed497

SAT-based methods to provide an experimental study on the use of our framework.498
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