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Abstract

We propose a purely logical framework for plan-
ning in partially observable environments. Knowl-
edge states are expressed in a suitable fragment of
the epistemic logic S5. We show how to lift the ef-
fects of actions (both physical actions and sensing
actions) from the state level to the epistemic level.
We show how progression, regression and plan gen-
eration can be achieved in our framework.

1 Introduction
Planning under incomplete knowledge and partial observabil-
ity is a tricky issue in AI, because of its computational (tem-
poral and spatial) hardness. Partially observable Markov
decision processes (POMDP) are the mainstream approach to
partially observable planning. Nevertheless, the applicabil-
ity of the POMDP approach is limited from the practical side
as soon as the set of states has a strong combinatorial struc-
ture, rendering the number of states much too high for an ex-
plicit representation of actions, preferences, and policies. On
the other hand, logical approaches to planning under incom-
plete knowledge allow for much more compact encodings of
planning problems than POMDPs; most of them deal with an
incomplete initial state and/or nondeterministic actions, but
either they do not handle partial observability, or at least they
do it in a very simple way, by assuming for instance that the
set of variables is partitioned between (directly) observable
and unobservable variables.

To fill the gap between POMDPs and logical approaches,
an abstraction of the POMDP model (leaving aside probabili-
ties and expected utility) can be considered. It should account
at least for the following elements: a set

�
of states; a set �

of belief states built from
�

; a set � of actions, where each
action is associated with a transition model between states
and/or belief states; some preference structure (e.g., a sim-
ple goal or a utility function); and a set � of observations,
together with some correlation function between states and
observations.

While policies for a fully observable MDP map states to
actions, the output of such an abstract POMDP is a policy
mapping belief states to actions; indeed, a POMDP can be
viewed as a fully observable MDP over the set of belief states

(this is a classical way of understanding POMDPs – and even
to solve them).

In this paper, we present a rich logical framework that in-
stantiates the abstraction above, views a partially observable
process as a fully observable process over belief states, and
allows for expressing actions and policies in a compact way.
The framework has a fairly good level of generality (since it
avoids for instance to commit to a particular action language,
see Section 3.1) and is therefore modular enough to be easily
adapted or extended.

The simplest and best-known way of distinguishing be-
tween truths and beliefs in logic consists in expressing the
problem in an epistemic or doxastic logic. To make the ex-
position simpler, we assume that the agent has accurate be-
liefs, i.e., all she believes is true in the actual world. This
means that we identify belief and knowledge (since knowl-
edge is usually viewed as true belief); therefore our frame-
work is based on the logic S5 and instead of belief we use the
term knowledge throughout the paper.1 S5 is computation-
ally no more complex than classical logic: S5 satisfiability is
NP-complete [Ladner, 1977].

In Section 2 we define two notions of knowledge states:
simple knowledge states (for on-line plan execution) and
complex knowledge states (for off-line reasoning about the
effects of a plan). In Section 3 we show how a knowledge
state evolves when an action is performed. Then we show in
Section 4 how to perform goal regression, and we show in
Section 5 how it can be used so as to implement a sound and
complete plan generator. Section 6 discusses related work.

2 Knowledge states
The language ��� of propositional logic S5 is built up from
a finite set of propositional variables �	��
 , the usual con-
nectives, the logical constants � and  and the epistemic
modality K. S5 formulas are denoted by capital Greek let-
ters � , � etc. An S5 formula is objective (or modality-free)
iff it does not contain any occurrence of K (i.e., it is a clas-
sical propositional formula). Objective formulas are denoted

1Alternatively, we could have chosen to work with beliefs, using
the doxastic logic KD45, which is very similar to S5 except that
beliefs may be wrong, that is, K ����� is not an axiom. The techni-
cal issues developed in this paper would have been almost identical.
Now, choosing another logic than S5 or KD45 would induce a lot
of complications, including an important complexity gap.



by small Greek letters � , � etc. and the set of all objective
formulas from ��� is denoted by ������� .

A fundamental property of S5 is that nested modalities col-
lapse, i.e., KK � is equivalent to K � and K � K � to � K � ;
for this reason, we assume without loss of generality that the
scope of each occurrence of modality K in formula � is an
objective formula.

An epistemic atom is an S5 formula of the form K � , where� is objective. An epistemic formula is a formula built up
from epistemic atoms and usual connectives: K ���! #"%$� � K ��&(')�+*,$ is an epistemic formula, while ��' K " is not. An
epistemic formula is positive iff it does not contain any occur-
rence of K in the scope of a negation: K ���- ."%$, .� K ��&/'.�+*,$
is not positive, while K ���0 1"%$� K ��&2'3�+*,$ is.�

= 4 ����� is the set of all interpretations of ���5��� , also
called states. States are denoted by 6 , 687 etc. If � is an ob-
jective formula, we let 9;:<*=���>$@?BA<6DC �0E 6 is a model of�-F .

A structure2 for S5 is defined as a nonempty set of states9HG � . Rather than “structure”, we call 9 a knowledge
state (SKS). Intuitively, it represents all the states the agent
considers possible. The satisfaction of an S5 formula by an
SKS 9 for a state 6ICJ9 is defined inductively by:K for � objective, �L9NMO68$ E ?P� iff 6 E ?Q� ;K for � objective, �L9NMO68$ E ? K � iff R�6 7 CS9 we have�L9NMO6T7U$ E ?P� ;K �L9NMO68$ E ?N�V'!� iff �L9NMO68$ E ?N� and �L9NMO68$ E ?N� ;K �L9NMO68$ E ?N�V !� iff �L9NMO68$ E ?N� or �L9NMO68$ E ?N� ;K �L9NMO68$ E ?W�2� iff �L9NMO68$YXE ?N� .

Finally, an SKS 9 satisfies � , denoted by 9 E ?;� , iff for
all 6ZC[9 we have �L9NMO68$ E ?\� . An S5 formula is valid
(resp. satisfiable) iff it is satisfied by all SKSs (resp. by at
least one SKS). An S5 formula � is a consequence of an
S5 formula � , noted � E ?]� iff every SKS that satisfies �
also satisfies � . � and � are equivalent, noted �_^`� iff� E ?a� and � E ?a� holds. Note that K ���!'1��$ is equivalent
to K �b' K � but K ���c D��$ is implied by but generally not
equivalent to K �3 K � .

Importantly, an SKS 9 can be identified with the strongest
epistemic atom K � that is satisfied by 9 . Such a K � is
unique up to equivalence. Therefore, SKSs will be denoted
syntactically, and without ambiguity, by epistemic atoms K � .

A complex knowledge state (CKS) is a positive epistemic
formula,3 generated by epistemic atoms and the connectives

2This semantics is equivalent (and simpler for our purpose) to
the usual semantics by means of Kripke models d�e1fhg<ikj�fmlon wheree is a set of worlds, g<ikj a valuation function and l an equivalence
relation. See for instance [Fagin et al., 1995].

3We restrict the syntax of CKS to positive epistemic formulas
because for almost all problems, ignorance can already be expressed
by the fact that positive knowledge is not provable from the cur-
rent CKS. This way of generating explicit ignorance from implicit
is a kind of Epistemic Closed World Assumption, already at work in
[Reiter, 2001] and reminiscent of autoepistemic logic; its principle
can be roughly be stated as “if I cannot prove that I know � then I
don’t know � ”. However, for the purpose of this paper, we do not
need this completion because the set of valid plans from a CKS and
the set of valid plans from its completion coincide.

' and  . For instance, pK ���. D"%$+' K �+&Oq= K �L"srt&u$ is a
CKS but K ���0 1"%$2v K & is not, � K � neither.

Example 1 In a model-based diagnosis context, let wx?y{z}|k~5�(�{�
K �L�+��"<��&u$br�� z $ the formula representing the

behaviour of a set of components �I�I9;� . Suppose that the
agent is performing a test plan so as to identify the faulty com-
ponents. The formula characterizing the condition for stop-
ping performing tests and starting reparing the faulty com-
ponents is �[? y{z}|k~5�(�{� � K ��"<��&u$+ K �+��"<��&u$}$ . The latter
formula is a CKS. It is equivalent to an exponentially large
disjunction of SKS: ��^t�@A K �u� E�� G��I�I9;�{F where�u�Y?a� y{z}| � ��"<��&u$}$ y � y{z}|k~5�(�{�5� � �+��"<��&u$}$ .

A CKS � is said to be in epistemic disjunctive normal form
(EDNF) iff it has the form K �-�> V�u�u�8 K �+� , where each �>�
is an objective formula. Clearly, every CKS has an equivalent
EDNF.

3 Actions and progression
In general, actions have both physical (or ontic) and epistemic
effects, i.e., they are meant to change both the state of the
world and the agent’s knowledge state, but without loss of
generality we assume (as usually in AI) that any “mixed” ac-
tion can be decomposed into two actions, the first one having
only ontic effects and the second one only epistemic effects.
For instance, the action of tossing a coin is decomposed into
a blind-toss action followed by a see action telling the
agent whether the coin has landed on heads or on tails.

3.1 Ontic actions
Ontic actions are meant to have effects on the world outside
the agent, especially physical effects such as moving a block,
switching the light, moving etc. They are assumed to be de-
scribed in a propositional action language (allowing or not
for nondeterminism, for ramifications/causality). Any action
language ��� can be chosen, provided that it is propositional
and that it expresses the effects of an action � within a for-
mula w�� involving atoms labelled by � and atoms labelled by���P� (the former for the state before the action is performed,
the latter for the state after it is performed). Among candi-
date languages we find those of the � family [Gelfond and
Lifschitz, 1993], “propositionalized” situation calculus [Lin,
2000] and causality languages [McCain and Turner, 1998].4

The description wo� of an action � allows for comput-
ing the successor state of a state 6 (or the set of successor
states if � is nondeterministic). This set is represented by
any objective formula ���<:T���L6kM��+$ (whose models form the
set of successor states). This definition extends to sets of
initial states, or equivalently to propositional formulas, by���<:T������M��+$�? �{� |��s �¡u¢U£�¤ ���<:T���L6kM��+$ .

Now, given the description wo� of action � and a CKS � ,
the subsequent CKS, denoted by �0�<:T���h��M��+$ , is defined as
follows:

4The common core of these languages is the use of explicit or
implicit successor state axioms. These languages coincide for deter-
ministic, ramification-free actions and differ in the way they treat
nondeterminism (using for instance exogeneous variables or Re-
lease statements), ramifications, etc.



Definition 1 (progression for ontic actions) Let � be an
ontic action and let �¥? K �-�0 Q�u�u�� K �+� be a CKS in
EDNF.�0�<:T���h�YM��+$-? K���<:T�����2�<M��+$� D�u�u�T K���<:T�����+��M��+$¦�

The problem with the latter definition is that the CKS has
to be put in EDNF first. This does not induce any loss of ex-
pressivity but the transformation may be exponentially large
so that we may want to compute the successor CKS directly
from a CKS expressed in any form, such as in Example 1.

We now give a more elegant way of computing progression
via an extension of variable forgetting to S5 formulas. We
recall first from [Lin and Reiter, 1994] the inductive definition
of §/:8�T��¨T�%�ª©JM��>$ where � is objective and ©«GQ�	��
 :
(0) §/:8�T��¨T�%�L¬�M��>$2?Q� ;
(1) §/:8�T��¨T�%�AT®�F�M��>$2?Q�+¯8°	±! 1�+¯8°	² ;
(2) §/:8�T��¨T�%�AT©S³JAT®�F�M��>$2?P§/:8�T��¨T�%�AT®�F�MO§/:8�T��¨T�%�ª©JM��>$}$ . 5

Definition 2 (forgetting) Let � be an S5 formula and ©«G�	��
 . Forget �ª©JM¦��$ is the strongest S5 formula (a) entailed
by � and (b) not mentioning any variable of © .

Forget �m� Mu� $ is well-defined, because the set of formu-
las satisfying (a) and (b) is closed by conjunction. Thus
Forget �ª©JM¦��$ is unique up to equivalence in S5.

Proposition 1K If � is a CKS, then Forget �ª©JM¦��$ is a CKS.K Forget �ª©JM K �>$-^ K §/:8�T��¨T�%�ª©JM��>$ .K Forget �ª©JM¦�o�+ !��´T$2^ Forget �ª©JM¦�o�%$� Forget �ª©JM¦��´T$ .K If �o� and ��´ do not share any variable then
Forget �ª©JM¦�o�+'!��´T$2^ Forget �ª©JM¦�o�%$�' Forget �ª©JM¦��´T$ .

The interest of defining this forgetting operator is made
clear by the following result. From every symbol ®cCc�	��

we make two copies ®=µ , ®�µª¶(� , where � (resp. �,�V� ) represents
the time point before (resp. after) the action is performed;
then, for any formula �«CS������� , �(µ (resp. �(µª¶(� ) is the
formula from � obtained by replacing each variable ® by ®/µ
(resp. ®�µª¶(� ).
Proposition 2 Let � be an ontic action and let � be a CKS.
We have:�0�<:T���h��M��+$µª¶(��^ Forget �L�	��
�µ¦M¦�-µ/' K w���$
where �I��
�µ2?;AT®�µ E ®JC!�	��
.F .
3.2 Epistemic actions
An epistemic action · is described wlog by the finite set of
its possible outcomes A8:��8Mu�u�u�uM�:u¸,F#G\� , where each :¹� is
an objective formula describing a possible observation, and:k�8 o�u�u�  2:u¸ is a tautology.6 Accordingly, we have �a?Q���5���
in our framework. The effects of · are motivated by the fol-
lowing principles: non-intrusiveness (for any objective for-
mula � , if � holds before · is performed, then it still holds
after), no-forgetting (if the agent knows an objective formula

5In (1), �/º%»�¼ (resp. �/º%»�½ ) represents the formula obtained by
replacing in � each occurrence of variable ¾ by ¿ (resp. À ).

6Or, more generally, ÁZÂ ÃbÄ¹Å�ÆIÇOÇOÇmÆ�Ä¦È , where Á is the given set
of static domain rules.

� before performing · , then she still knows it after) and re-
liability (if the agent observes :TÉ after performing · , then :TÉ
holds, so that she knows :TÉ after observing it). These three
properties imply that the effects of an epistemic action asso-
ciated with the outcome set A8:��8Mu�u�u�uM�:u¸,F can be represented
by the following progression operator:

Definition 3 (progression for epistemic actions) Let · be
an epistemic action associated with the set of outcomesA8:k�8Mu�u�u�uM�:u¸,F , and let � be a CKS. We have:�0�<:T���h��M}·($-?N�D'V� K :k�> D�u�u�T K :u¸�$¦�

It follows that for any epistemic actions · , ·�� , ·=´ and a
CKS � , progression is indifferent to the order of epistemic ac-
tions: �0�<:T�����0�<:T���h�YM}·��%$¦M}·=´8$2^W�0�<:T�����0�<:T���h�YM}·=´T$¦M}·��%$ ; it
is idempotent: �0�<:T�����0�<:T���h�YM}·($¦M}·($	^S�0�<:T���h�YM}·($ ; and it
preserves positive knowledge: �0�<:T���h�YM}·($ E ?N� .

Epistemic actions can be assumed fully executable without
loss of generality (adding new symbols if necessary).7

A simple and well-known class of epistemic actions is the
class of binary tests, also called truth tests: if � is an ob-
jective formula, the action �m¨<6u�%���>$ is defined by the out-
come set A8��MO�+�-F . Therefore we have �0�<:T���h�YM}�m¨<6u�%���>$}$I?�V'V� K �3 K �+�>$ . In the rest of the paper, we focus on truth
tests, which will make things simpler to expose.8

Note that a straightforward (but important) consequence of
Definitions 1 and 3 is that the set of all CKS is closed under
progression, i.e., if � is a CKS and � is an (ontic or epistemic)
action, then �0�<:T���h��M��+$ is a CKS.

4 Regression
The problem is stated as follows: given a CKS � (represent-
ing a goal knowledge state) and an (ontic or epistemic) action� , characterize the weakest CKS denoted by 
0¨u���h��M��+$ , in
which performing � leads to a CKS satisfying � .

Definition 4 (regression) Let � be an (ontic or epistemic)
action and let � be a CKS. The regression of � by � ,
is the unique CKS (up to logical equivalence), denoted by
0¨u���h��M��+$ , such that (a) �0�<:T����
0¨u���h��M��+$¦M��+$ E ?Ê� and
(b) for any � 7 such that �0�<:T���h� 7 M��+$ E ?\� we have � 7 E ?
0¨u���h��M��+$ .

This definition is well-founded: indeed, if �0�<:T���h���<M��+$ E ?� then for any ��´ E ?Ë�o� we have �0�<:T���h��´¹M��+$ E ?Ì�
(this is easily verified both for ontic actions and for epis-
temic actions). Therefore the set A¹� E �0�<:T���h�.M��+$ E ?Í�oF
is closed w.r.t. disjunction, which entails that there exists
a weakest � such that �0�<:T���h�.M��+$ E ?Î� , equivalent to� A8Ï E �0�<:T����Ï�M��+$ E ?N��F .

7Note that actions that may fail to be informative can only be
expressed here by the occurrence of a tautology in their outcomes.
In this case, unfortunately, we get that Ð�ÑuÄ%ÒÔÓ�Õ2fÖ�×�Ø[Õ , because
K Ä¹Å�Æ@ÇOÇOÇuÆ K Ä¦È�ØZ¿ as soon as ÄTÙ/ØZ¿ for some Ú .

8This does not induce any loss of generality, because any epis-
temic action can be rewritten equivalently into a logarithmic se-
quence of binary tests, together with the addition of some domain
constraints.



4.1 Regression for ontic actions
For any objective formula � and any ontic action � , let�<¨u������M��+$ be the standard (non-epistemic) regression of � by� , i.e., any objective formula whose set of models consists of
all states 6DC � s.t. 9;:<*=� ���<:T���L6kM��+$}$)GÛ9;:<*=���>$ [Reiter,
1993].

Definition 5 (sufficient success conditions) A consistent
conjunction of literals Ü is a sufficient success condition for� and � if and only if for any pair of states �L6kMO687Ý$0C �NÞ3�
such that 6 is a model of Ü and 687 is a model of ���<:T���L6kM��+$ , 687
is a model of � . Ü is a minimal sufficient success condition
for � and � if and only if it is a sufficient success condition
for � and � and no proper subconjunction of Ü is. We denote
by ß-���-M��>$ the disjunction of all minimal sufficient success
conditions for � and � .

When actions are described using an action language satis-
fying the properties stated in Section 3.1, such conditions can
be computed abductively. Clearly, Ü is a sufficient success
condition for � and � if and only if Ü�µ,'{w�� is satisfiable, and
every model of Ü�µ�'!w�� is a model of �(µª¶(� .
Proposition 3 Let wo� be the description of � in a proposi-
tional action language ��� . �<¨u������M��+$ is equivalent toß-���-M��>$-?NàáAuÜ E Ü,µ-C3� � �5����âã=ä ���(µª¶(�u$OF��

In this proposition, � � �5����âã=ä �}���>$µª¶(�T$ denotes the set of
prime implicants of the formula wo�Vvå���>$µª¶(� that are con-
sistent with w�� and built up from variables of �I��
Yµ , only.

The latter abductive characterization of ontic actions is in-
dependent of the action language chosen – and it now allows
for characterizing the regression of complex epistemic states
by an ontic action.

Proposition 4 Let � be an ontic action, � a CKS and let
K �2�� s�u�u�m K �+� be an EDNF formula equivalent to � . Then
0¨u���h��M��+$-^ K �<¨u�����2�<M��+$� D�u�u�T K �<¨u�����+��M��+$¦�
4.2 Regression for epistemic actions
Proposition 5 Let · be an epistemic action whose outcome
set is A8:k�8Mu�u�u�uM�:u¸,F and let � be a CKS. Let K �-�5 1�u�u�¦ K �+�
be any EDNF formula equivalent to � . Then
0¨u���h��M}·($^ � A K �}��:k��v\�>æ ¢ � ¤ $�'D�u�u�T'V��:u¸.v\�>æ ¢ ¸ ¤ $}$ E §JCDA��k� � ç+F¹è �Oé é ¸8ê F��

In particular, if ·D?Q�m¨<6u�%�ª��$ is a binary test then
0¨u���h��M}·($-^WàëA K �}�ª�ìv¥�+�L$}'��L�(�Qv¥�+��É<$}$ E}í MhîsCb�k� � ç+F��
Sketch of proof. We give it in the latter case only (the proof
for the general case is similar). We abbreviate 
0¨u���h��M}·($
by ï . We first establish (the proof is omitted) that ï is
necessarily a CKS, i.e., ïá? K �<�+ D�u�u�T K �Tð . Now,E ?WïW'V� K �� K �(��$-vñ�
iff R�ò)CV�k� � ó�ô E ? K ���Tõo')��$-v K �2�> J�u�u�8 K �+�E ? K ���Tõo'1�(��$-v K �2�> D�u�u�T K �+� �hö¹$
At that stage, we make use of the following lemma: for any
objective formulas �	M�÷ and � , K �øvù� K ÷W K �I$ is valid
(in S5) iff �úvx÷ is valid or �úvû� is valid. (*) is then

equivalent to R�òüCa�k� � ó,MOý í MhîZCø�k� � ç s.t. �8õ0'J�Svå�+� and�TõY'D�(�[vt��É are classically valid, which is equivalent to:R�ò3Cü�k� � ó,MOý í Mhî�Cü�k� � ç s.t. �Tõ{vù�}�ª�Wv��+�h$5'b�L�(�WvÍ��É8$}$
is valid. The rest of the proof is easy. þ
Example 2 Consider the epistemic actions �Z?N�m¨<6u�%�ªÿs'���$
and ·P?á�m¨<6u�%�ªÿür���$ , and the ontic action Ü that switches
the value of ÿ , thus described by �ªÿ/µª¶(�.rt�(ÿ=µm$('Z���<µª¶(�{r�<µm$ . Let �_? K �s K ��� . Applying Proposition 5 we get
0¨u���h��M��+$ü^ K �3 K ���3 K ���Sv ÿ�$o K ���3'ì�(ÿ�$Z^
K �{ K ���ìvåÿ�$ ; 
0¨u���h��M}·($s^ K �s K ���s K ÿ1 K �(ÿ ;
0¨u����
0¨u���h�oM��+$¦M}·($�^ K �ªÿNv���$2 K ���ìv ÿ�$ . Applying
Proposition 3 we get 
0¨u���h��MmÜ�$�^ø� , 
0¨u����
0¨u���h�oM��+$¦MmÜ�$�^
K �b K ����v �(ÿ�$ ; 
0¨u����
0¨u���h��M}·($¦MmÜ�$Û^ 
0¨u���h��M}·($ ;
0¨u����
0¨u����
0¨u���h�oM��+$¦M}·($¦MmÜ�$-^ K �ªÿ{ ���$� K �L�(ÿs 3����$ .
5 Plan generation
Definition 6 (planning problems) A planning problem

�
w.r.t. a propositional action language �o� consists of an
SKS �ì? K �+� �¹� µ describing the initial knowledge state of the
agent, a finite set of actions �a?P� � (ontic) ³+�	� (epistemic)
and a CKS ß describing the goal. Effects of ontic actions are
described in ��� .

The reason why ß is a CKS is that it is not sufficient
to reach the goal, it must also be the case that the goal is
known to be reached. ß may be purely epistemic goal such as
K �. K �+� , i.e., an agent may have the ultimate goal to know
whether � holds or not.

Plans are defined inductively as follows:K the empty plan 
 is a plan;K any action (ontic or epistemic) is a plan;K if � and ��7 are plans then ����57 is a plan;K if � and ��7 are plans and � a CKS, then
if � then � else ��7 is a plan.

Therefore, a plan can be seen as a program without loops,
whose branching conditions are epistemic formulas: the agent
can decide whether she knows that a given objective formula
is true (whereas she is not always able to decide whether a
given objective formula is true in the actual world).

While CKS are relevant for off-line planning, i.e., for rea-
soning about the possible effects of a plan, they are no longer
relevant for representing knowledge during plan execution,
since at each time step the agent is in exactly one knowledge
state.

Definition 7 (progression of a CKS by a plan)
The progression of a CKS � in EDNF by a plan is defined
inductively by

1. �0�<:T���h�YM�
=$2?N� ;
2. �0�<:T���h�YMT������ 7 $}$2?P�0�<:T�����0�<:T���h�YM��5$¦M�� 7 $ ;
3. if �ì? K � , then�0�<:T���h�YM if � then � else ��7U$?ëô �0�<:T���h�YM��5$ if � E ?N��0�<:T���h�YM���7Ý$ if �;XE ?N���
4. if �ì? K �2�> D�u�u�T K �+� , then�0�<:T���h�YM if � then � else ��7U$? � � �(�Oé é é � �0�<:T��� K �+�}M if � then � else ��7Ý$ .



Definition 8 (valid plans) A plan � is a valid plan for the
planning problem

�
if and only if �0�<:T���h�YM��5$ E ?Pß .

Exemple 2 (cont’d) Initially, the agent does not know the
values of ÿ and � (her initial knowledge state is K � ), and
her goal is to reach a belief state where she knows the value
of � : ßD? K �0 K ��� .
Let �D?Q·�� ifK �ªÿ3r���$ then � else �ÝÜ����+$ be a plan. We
have:�0�<:T��� K �.M��5$?P�0�<:T�����0�<:T��� K �.M}·($¦M ifK �ªÿ3r���$ then � else �ÝÜ����+$�$?P�0�<:T��� K �ªÿ3r���$¦M��+$� 1�0�<:T��� K �ªÿ1r¥����$¦MT�ÝÜ����+$}$? K �ªÿ{'���$� K �L�(ÿ{'3����$
Therefore, � is valid.

A valid plan can be computed by the following backward
algorithm based on goal regression which is reminiscent of
dynamic programming. The current goal � ~ , expressed in
EDNF, is initialized as ß . Then we nondeterministically pick
an action � and compute 
0¨u���h� ~ M��+$ . The current goal is
then updated by � ~�� ? � ~  ü
0¨u���h� ~ M��+$ . The process
is iterated until K �>� �¹� µ E ?�� ~ or it is not possible to im-
prove � ~ anymore. Since there is a finite number of possible
belief states, the algorithms stop and returns a valid plan,
if such a plan exists. An ordered list � is constantly up-
dated, initialized by ��� K �{�8M�
��¦Mu�u�u�TM�� K ���{M�
���� where ßa^
K �.�� Z�u�u�k K ��� ; each time a new disjunct (i.e., not sub-
sumed by any previous disjunct of � ~ ) K � is added to � ~
after regressing by action � , the pair � K ��M���� is added to � .

There are two slightly different possible outputs: (1) either
the output is just � , i.e., an ordered knowledge-based pro-
gram (or decision list): at execution time, when observations
are made, the new knowledge state is computed, then we look
for the leftmost � K ��M���� in � such that K � is true in the cur-
rent knowledge state and � is performed; (2) or the output
is a ready-to-use conditional plan computed by “simulating”
possible executions from K �>� �¹� µ to ß using � .

Exemple 2 (cont’d) Regressing by � , Ü and then · , the
algorithm finds a valid knowledge-based program for ß :�ü?���� K �=M�
��¦M�� K ���=M�
��¦M�� K ���sv\ÿ�$¦M����¦M�� K ���sv¥�(ÿ�$¦MmÜ �¦M� K �.M}·���� . An associated conditional plan is�J?Q·�� ifK �ªÿ3r���$ then � else �ÝÜ����+$ .
6 Related work
Knowledge-based programs In the planning community,
the idea of using explicit knowledge preconditions for ac-
tions and plans comes back to [Moore, 1985; Morgenstern,
1987]. Developed in a different perspective (agent design),
knowledge-based programs [Fagin et al., 1995; Brafman et
al., 1998; Herzig et al., 2000; Reiter, 2001] are high-level pro-
tocols that describe the actions an agent should perform as a
function of her knowledge. Thus, in a knowledge-based pro-
gram, branching conditions are epistemically interpretable,
and plans explicitly involve deduction tasks during on-line
execution (just like in our framework). Actually, the output of
our plan generation process is a knowledge-based program.
Therefore, our work can be seen as an upstream task that
generates a valid knowledge-based program from a compact
specification of action effects and goals.

Action languages A number of works have extended action
languages so as to handle explicit knowledge and partial ob-
servability, especially [Lobo et al., 1997; de Giacomo and
Rosati, 1999; Baral and Son, 2001]. Knowledge is repre-
sented in all cases by an explicit or implicit epistemic modal-
ity (plus a “minimal knowledge” semantics in [de Giacomo
and Rosati, 1999]). The line of work most related to ours
is of [Baral and Son, 2001]; indeed, not only they represent
epistemic actions with an epistemic modality but they also
allow for conditional plans with epistemic branching condi-
tions. Our work can be seen as an extension of theirs:9 (i)
our formalism is general enough to accept any propositional
action language (including those handling causal rules) for
representing the effects of ontic actions); (ii) our syntax is
less restricted, since we allow for any and-or combination
of SKS (i.e., CKSs) while they consider SKS only; as ar-
gued in Section 3, this makes the representation more com-
pact, when reasoning at planning time about the future con-
sequences of actions; (iii) our progression and regression op-
erators have significant computational characterizations (e.g.,
ontic regression has an abductive characterization); lastly, we
have a sound and complete algorithm for plan generation.
Planning under partial observability There is a number of
recent approaches for logic-based plan generation under par-
tial observability.

[Bonet and Geffner, 1998] give a high-level language for
describing action effects on both the world and the agent’s
beliefs. Their language is a decidable fragment of first-order
logic. By describing ontic actions with successor state ax-
ioms, they allow for handling the frame problem and ram-
ification problems. After a problem has been represented
in their language, its description is automatically translated
into a POMDP model and solved by using POMDP algo-
rithms, so that there is no need to define progression and re-
gression directly in the logic, nor to have an explicit knowl-
edge modality: this is the main difference with our approach,
where the compact logical representation is kept and propa-
gated throughout the process.

The next three approaches solve the plan generation prob-
lem directly in a high-level language but, on the other hand,
they all make important restrictions that lead to a loss of ex-
pressivity. These restrictions imply that none of these ap-
proaches makes use of action languages, while ours can ben-
efit from the huge amount of work in this area and accord-
ingly, can handle the frame problem as well as ramification
and causality in the best possible way while maintaining com-
putational complexity at a reasonable level.

[Bacchus and Petrick, 1998; Petrick and Bacchus, 2002],
like us, use an epistemic modality. Apart from the repre-
sentation of ontic actions (less expressive than ours due to
the abovementioned point10), they restrict the syntax of epis-

9Actually, only of the first part of [Baral and Son, 2001], since
the second half of their paper gives a detailed study of sound and
efficient approximations of their formalism. We plan to integrate
similar approximations in our framework.

10On the other hand, they use a fragment of first-order logic which
allows for expressing some actions (such as value tests) elegantly,
and they motivate their expressivity restrictions by efficiency con-
siderations, so that their approach is a good trade-off between effi-



temic formulas (for instance, simple disjunctive beliefs such
as K ���� >"%$ cannot be expressed) and consequently, as they no-
tice, their algorithm sometimes fails to discover a valid plan.

The approaches [Bertoli et al., 2001; Rintanen, 2002] do
not make use of an epistemic modality, and therefore can-
not explicitly express disjunctions of belief states (i.e., CKSs)
or complex knowledge-based programs. The representation
of belief states in both approaches uses BDDs, which al-
low for a compact representation but not as space efficient as
DAG-based propositional formulas. While the algorithm in
[Bertoli et al., 2001] uses progression (based on model check-
ing), [Rintanen, 2002] has a regression operator, and, inter-
estingly enough, his combination operator ! between belief
states (which aims at computing, given two belief states ÷)�
and ÷{4 , the maximal belief states in which, after observing
the values of observable variables, leads to know that the true
state is in ÷)� or to know that the true state is in ÷{4 ) can be
reformulated using our epistemic regression (Section 4.2)11

and thus epistemic logic helps understanding how and why
this operator works.12

Situation calculus [Scherl and Levesque, 1993] represent
sensing actions in the situation calculus by means of an ex-
plicit accessibility relation between situations (which means
that knowledge is treated as an ordinary fluent) which cor-
responds exactly to the semantics of our epistemic modality
(once situations have been identified with states). Our ap-
proach expresses the problem at the formula level and en-
ables thus a more concise representation and can benefit from
existing complexity and automated deduction results for S5.
Levesque [Levesque, 1996] builts on the above framework
towards a general theory of planning with sensing, handling
complex plans involving, like ours, nondeterminism, obser-
vations and branching (and also loops).
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