
HAL Id: hal-03300967
https://univ-artois.hal.science/hal-03300967v1

Submitted on 3 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Use of Partially Ordered Decision Graphs for
Knowledge Compilation and Quantified Boolean

Formulae
Hélène Fargier, Pierre Marquis

To cite this version:
Hélène Fargier, Pierre Marquis. On the Use of Partially Ordered Decision Graphs for Knowledge
Compilation and Quantified Boolean Formulae. 21st National Conference on Artificial Intelligence
(AAAI 2006), AAAI: Association for the Advancement of Artificial Intelligence, Jul 2006, Boston,
Massachusetts, United States. pp.42-47. �hal-03300967�

https://univ-artois.hal.science/hal-03300967v1
https://hal.archives-ouvertes.fr

On the Use of Partially Ordered Decision Graphs
for Knowledge Compilation and Quantified Boolean Formulae∗

Hélène Fargier
IRIT-CNRS, Toulouse
email: fargier@irit.fr

Pierre Marquis
CRIL-CNRS, Universit́e d’Artois, Lens

email: marquis@cril.univ-artois.fr

Abstract

Decomposable Negation Normal Form formulae
(DNNFs) form an interesting propositional fragment,
both for efficiency and succinctness reasons. A
famous subclass of theDNNF fragment is theOBDD
fragment which offers many polytime queries and
transformations, including quantifier eliminations
(under some ordering restrictions). Nevertheless, the
decomposable AND nodes at work in OBDDs enable
only sequential decisions: clusters of variables are
never assigned “in parallel” like in full DNNFs. This
is an serious drawback since succinctness for the
full DNNF fragment relies on such a “parallelization
property”. This is why we suggest to go a step further,
from (sequentially) ordered decision diagrams to
(partially) ordered, decomposable decision graphs,
in which any decomposable AND node is allowed,
and not only assignment ones. We show that, like
the OBDD fragment, such a new class offers many
tractable queries and transformations, including quan-
tifier eliminations under some ordering restrictions.
Furthermore, we show that this class is strictly more
succinct thanOBDD.

Introduction
Knowledge compilation is considered in many AI applica-
tions where short on-line response times are expected. It
consists in turning (during an off-line phase) the initial data
into a form that ensures the tractability of the requested
queries and transformations. This principle is for instance
used in many state-of-the-art approaches to product config-
uration where the set of possible products is compiled (Falt-
ings & Weigel 1999)(Pargamin 2002)(Amilhastre, Fargier,
& Marquis 2002).

The class of decomposable negation normal form formu-
lae (DNNFs, (Darwiche 2001)) is a propositional fragment
which is considered as an interesting target for knowledge
compilation since it offers many tractable queries while be-
ing very succinct. A famous subclass ofDNNF is theOBDD
∗We would like to thank the anonymous reviewers for many

helpful comments. Pierre Marquis has been partly supported by the
IUT de Lens, the Ŕegion Nord/Pas-de-Calais through the IRCICA
Consortium, and the European Community FEDER program.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

fragment, which offers more tractable queries and transfor-
mations, especially quantifier eliminations (under some or-
dering restrictions) (Coste-Marquiset al. 2005). The price
to be paid concerns the succinctness issue: theOBDD frag-
ment is strictly less succinct than theDNNF one, which
means that some propositional formulae haveOBDD rep-
resentations exponentially larger than theirDNNF represen-
tations.

OBDDs are Boolean decision diagrams in which decision
nodes are sequentially ordered. This is the very property
that allows the class to be polynomially closed for quan-
tifier eliminations under some ordering restrictions. Other
structures exist that are able to take advantage of the de-
composability property, like DNNFs do, and that share with
OBDDs a property of ordering. Let us mention cluster trees
(Pargamin 2002), BDD trees (McMillan 1994) tree-driven
automata (Fargier & Vilarem 2004), synthesis trees (Falt-
ings & Weigel 1999) and AND/OR search graphs (Dechter
2004). Notice that the first two fragments are propositional
ones while the last ones allow non Boolean domains. Note
also that, in these five languages, decision variables are not
linearly ordered.

The present paper aims at defining and investigating (par-
tially) ordered, decomposable graphs in the NNF frame-
work. The basic motivation behind this work was to define
a proper superset ofOBDD , in which decomposability is
exploited in a less restricted way. In the following, we show
that like OBDD, the class of such (partially) ordered, de-
composable graphs enable many polytime queries and trans-
formations, including quantifier eliminations under some re-
strictions, while being strictly more compact thanOBDD.
For space reasons, only some of the proofs are sketched.

DNNFs and OBDDs
Let X be a finite set of propositional variables. We denote
by φ[xi←ψ] the formula obtained by replacing in the propo-
sitional formulaφ all the occurrences of the propositional
variablexi by the propositional formulaψ and call it the
conditioning ofφ by xi ← ψ. In the following, condition-
ing is used under the formφ[xi←true] andφ[xi←false] (this
corresponds to the instantiation ofxi to a truth value).

NNFs A formula in NNF is a rooted, finite directed
acyclic graph (DAG) where each leaf node is labelled by

true, false, ¬x, or x with x ∈ X. Each internal node is
labelled by∧ (AND node) or ∨ (OR node) and can have
many children.

In NNFs, a leaf is thus either a constant or a literal – in
the latter case, it represents the assignment of a variable.

Assignment An assignment nodeN is an AND node of
the formx ∧ α (resp. of the form¬x ∧ α).

One can assume without loss of generality thatα is not of
the formy or ¬y with y ∈ X (if α is a literal, it can always
be replaced by the assignment nodeα ∧ true). With this
proviso, the notationsvar(N) = x andtail(N) = α are not
ambiguous.

The term decision node is dedicated to OR nodes which
give an alternative between possible assignments of the same
variable (case analysis):

Decision node A decision nodeN is an OR node of the
form (¬x ∧ α) ∨ (x ∧ β).1 var(N) denotes the variablex.

A binary decision diagram (BDD) is an NNF formula in
which all the AND nodes are assignment nodes and all the
OR nodes are decision nodes. The success of BDDs is due
to two successive subclasses, free BDDs and ordered BDDs,
which are BDDs respectively satisfying the read-once prop-
erty and the ordering property w.r.t. a total order — the latter
implying the former:

Read-once property An NNF formulaφ is read-once iff
for any assignment nodeN in φ, var(N) does not occur in
tail(N).

Ordering Let< be a strict order onX. An NNF formula
φ is ordered w.r.t.< iff for every pair of decision nodes
M and N in φ, if M is an ancestor ofN in φ, then
var(M) < var(N).2

Let us introduce some notations. LetBDD be the subset
of NNF of formulae that are BDDs,FBDD the subset of
BDD formulae that are read-once,OBDD< the subset of
FBDD of formulae being ordered w.r.t. atotal order< and
OBDD the union of allOBDD< (for every<).

The success of theOBDD class is due to the fact it offers
many tractable queries, especially consistency (CO), validity
(VA), clausal entailment (CE), implicant check (IM), model
counting (CT), model enumeration (ME). Moreover, equiv-
alence (EQ) and entailment (SE) are tractable forOBDD<:
deciding whether two formulae fromOBDD< are logically
equivalent is inP, as well as deciding whether an element of
OBDD< entails another one. This latter class is also poly-
nomially closed for (SFO) (single variable forgetting), (∧
BC) (bounded conjunction) and (∨ BC) (bounded disjunc-
tion) transformations and linearly closed for the condition-
ing transformation. This just means that computing a for-
mula from the class which is equivalent to the result of the

1Such a node is sometimes noted byite(x, α, β).
2Note that such ordering property is more general than the one

considered in (Darwiche & Marquis 2001) since any NNF formula
and any strict order (not necessarily total ones) are considered.

transformation given some formula(e) from the class can be
achieved in polynomial (resp. linear) time.

The tractability of (EQ) forOBDD< is due to the fact
that, once a total order< is fixed, two formulae from
OBDD< are equivalent whenever their reduced forms are
identical, and the reduction transformation can be achieved
in polynomial time.

(Darwiche & Marquis 2001) have shown that the
tractability of OBDD (and more generally ofFBDD) for
many queries is due to two general properties anyFBDD
satisfies: decomposability and determinism.

Decomposability An NNF formulaφ is decomposable iff
for each AND nodeN in φ, the conjuncts ofN do not share
any variable.

Determinism An NNF formulaφ is deterministic iff for
each OR nodeN in φ, the disjuncts ofN are pairwise
logically inconsistent.

DNNF (resp.d −NNF) denotes the subset ofNNF of
formulae satisfying decomposability (resp. determinism).
d −DNNF denotes the subset ofNNF where both prop-
erties are satisfied.

(CO), (CE) and (ME) (resp. (VA), (IM), (CT)) have been
proved to be tractable forDNNF (resp.d −DNNF), and
OBDD is obviously a subclass ofd − DNNF . Decision
diagrams in their more general definition (i.e. BDDs) are
not decomposable, since nothing forbids in the expression
of (x∧α)∨ (¬x∧β) thatx occurs inα orβ. Once the read-
once property has been added, i.e. when one moves from
BDD to FBDD or OBDD , decomposability is recovered.

Observe that the decomposability property is extremely
simple in OBDD and FBDD : for formulae from those
classes, an AND node has necessarily two children, a lit-
eral, and a decision node; so, decomposability implies
that Boolean variables are necessarily assigned sequentially.
Clusters of variables are never assigned “in parallel” (i.e. in-
dependently from each other), like in full DNNFs. This is an
serious drawback, since the succinctness ofDNNF relies on
such a “parallelization property”.

Decision Graphs
In order to avoid this restriction, we need to relax one part of
the basic requirement on decision diagrams, i.e. the fact that
the tail of an assignment node is either a decision node or a
constant. In the followingdecomposable decision graphs,
the OR nodes will still be required to be decision nodes,
but AND nodes can be of any form, provided that they are
decomposable. For instance, a decomposable AND node
N ∧M , whereN andM are decision nodes, can be the tail
of an assignment node. Technically, this amounts to using a
less demanding property than the one considered for BDDs.

Definition 1 (Simple decision) An NNF formulaφ satisfies
thesimple decisionproperty iff for every nodeN in φ, if N
is an OR node, then it is a decision node.

Definition 2 (DGs and DDGs)
DG is the subset ofNNF formulae satisfying the simple

decision property.

¬x true
�� @@
∧

x

¬y false

,, @@
∧

y true
�� TT
∧

"
"

HHH
∨

¬z false

,, ee
∧

z true
�� TT
∧

"
"

HHH
∨

�����
XXXXX
∧

(((((((((TT
∧

((((((((((
HHH
∨

Figure 1: A DDG representingx⇒ (y ∧ z).

DDG is the subset ofDG formulae satisfying decompos-
ability.

DDGs combine the advantages of FBDDs and the “paral-
lelization property” of DNNFs. Non decomposable decision
graphs exist but do not have a great interest. An example of
a DDG representing the formulax ⇒ (y ∧ z) is given in
Figure 1.

Clearly enough, BDDs are decisions graphs and FBDDs
are decomposable decision graphs. To be more precise, we
have:

Proposition 1
BDD ⊂ DG.
OBDD ⊂ FBDD ⊂ DDG ⊂ d−DNNF .

From (Darwiche & Marquis 2001), we immediately get:

Corollary 1 (CO), (CE), (ME), (VA), (IM) and (CT) are
tractable forDDG .

Now, the previous definition of ordering applies to deci-
sion graphs:

Definition 3 (Ordered DDGs) Let < be a strict order on
X (not necessarily a total one).O −DDG< is the set of all
theDDG formulae ordered w.r.t.<. O −DDG is the union
of all O −DDG< (for every<).

Unlike theOBDD< case, the definition does no longer
imply that if y < z, then a given decision path either does
not make any decision ony or makes a decision onz after the
decision ony. Variablesy andz can be assigned in parallel
branches. This is because of the possible presence of some
decomposable AND nodes.

Enabling partial orders< in O −DDG< is a way to
achieve more compact representations thanks to conditional
independence (e.g. in the formulax ⇒ (y ∧ z), y is inde-
pendent fromz given x and this is exploited in the repre-
sentation depicted in Figure 1). The price to be paid is that
no fragmentO −DDG< is complete (i.e. enables the rep-
resentation of every propositional formula), whenever< is
not total (just consider the formulax ⇔ (y ⇔ z) in which
no variable is independent from another one given the re-
maining variable: such a formula cannot be represented in
O −DDG< when< is not total).

Observe thatO −DDG andFBDD cannot be compared
w.r.t. set inclusion. For instance,x ∧ y is anO −DDG<

¬x true

,, @@
∧

x

¬z false

�� @@
∧

z true

,, SS
∧

���
aaa
∨ y
��

XXXXX
∧

¬y false

�� @@
∧

!!!
``````
∨

((((((((( SS
∧

((((((((((
HHH
∨

Figure 2: A second DDG (actually, anOBDD< formula)
ordered w.r.t.x < y < z and representingx⇒ (y ∧ z).

formula whatever<, but not anFBDD formula. On the
other hand, theFBDD formula

ite(x, ite(y, ite(z, 0, 1), 1), ite(z, 0, ite(y, 0, 1)))

is not anO −DDG formula.
Observe also that, unlikeOBDD<, the canonicity of an

O −DDG< formula is not guaranteed any longer since the
way in which AND nodes partition the next variables is not
constrained. For instance, the orderx < y < z allows sev-
eral representations of the formulax ⇒ (y ∧ z) (see Fig-
ures 1 and 2). As a consequence, the definition is not strong
enough to ensure the tractability of (EQ).

In order to deal with this problem, we introduce a more
restricted fragment. We first need to constrain further the
admissible orders:

Definition 4 (Tree orders) A strict order< onX is a tree
orderiff (X,<min) is a tree where<min is the smallest bi-
nary relation onX w.r.t. ⊆ such that the transitive closure
of<min is<.

Obviously enough, every total order onX is a tree order.
We also need a stronger notion of ordering:

Definition 5 (Strong ordering) Let < be a tree order. A
NNF formulaφ is strongly orderedw.r.t. < iff it is ordered
w.r.t. < and for every pair of variablesy andz fromX, if
z < y, then for every decision nodeN in φ s.t.var(N) = y,
there exists a decision nodeM in φ s.t.var(M) = z andM
is an ancestor ofN .

Definition 6 (Strongly ordered DDGs) Let< be a tree or-
der. SO −DDG< is the set of all strongly ordered DDGs
w.r.t. <. SO −DDG is the union of allSO −DDG< (for
every tree order<).

Let us step back to the previous example as a matter of
illustration. The DDG of Figure 1 is not strongly ordered
w.r.t. x < y < z but it is strongly ordered w.r.t. the tree
orderx < y andx < z.

Ordered fragments can be compared as follows:

Proposition 2
OBDD ⊂ SO −DDG ⊂ O −DDG.
For each total order< onX,OBDD< = SO−DDG<.



The strong ordering requirement being sufficient to fully
specify both the sequencing of decision nodes and the way
AND nodes separate the variables, it guarantees the exis-
tence of a unique reduced form. The reduction algorithm is
roughly the same as the one applying to OBDDs (see e.g.
(Sieling & Wegener 1993)). We have:

Proposition 3 (EQ) is tractable forSO −DDG<.

It can also be shown thatSO −DDG< is polynomially
closed for variable forgetting (but it is not known to be poly-
nomially closed for negation). So, going fromOBDD< to
SO −DDG<, one does not lose much in efficiency. Inter-
estingly, one can gain a lot in succinctness, as shown by the
following theorem.

Theorem 1 SO −DDG (and thusO −DDG) is strictly
more compact thanOBDD .

Sketch of proof: It can be shown that anyOBDD< formula
can be represented by a polyspace CSP automaton in the sense of
(Vempaty 1992) and reciprocally. The two classes are equivalent
in terms of spatial compactness. In (Fargier & Vilarem 2004) a
tree-structured CSP is presented that cannot be represented by any
polyspace CSP automaton. On the other hand, any tree-structured
CSP can be represented by a polyspaceSO −DDG< formula
(with a log representation of its domains). So, there exists a for-
mula whose representation is of polynomial size inSO −DDG
but not inOBDD . �

Quantifier Elimination
We now focus on two further transformations (quantifier
eliminations) which prove useful for solving the valid-
ity problem for quantified boolean formulae, and can be
achieved efficiently when quantifiedO −DDG< formulae
are considered.

Quantified Boolean Formulae
A quantified Boolean formula (QBF)Φ is of the form
q1x1q2x2 . . . qnxnφ whereφ is a usual propositional for-
mula built up fromX and called the matrix ofΦ.3 The prefix
q1x1q2x2 . . . qnxn consists of universal∀ and existential∃
quantifiers and propositional variablesxi of X. In the fol-
lowing, we consider only polite and closed formulae, i.e. we
assume that two distinct quantifiers do not bear on the same
variable and that all the variables inφ are quantified. The
strict order induced by the prefixq1x1q2x2 . . . qnxn of such
a formula isx1 < . . . < xn.

The semantics of a closed QBF formulaΦ is a truth value,
recursively defined as follows:

• if Φ does not contain variables (i.e. consists of connec-
tives and the constantstrue andfalse), its truth is defined
by the truth table for the connectives.

• A formula Φ = ∃xΨ is true iff Ψ[x←true] is true or
Ψ[x←false] is true.

• A formula Φ = ∀xΨ is true iff Ψ[x←true] is true and
Ψ[x←false] is true.

3In this paper, uppercase Greek lettersΦ,Ψ, . . . will denote
QBFs, and lowercase lettersφ, ψ, . . . propositional formulae.

The decision problemQBF ”Given a (prenex, closed, po-
lite) QBFΦ, isΦ true ?” is the canonicalPSPACE-complete
problem. As such, many decision problems considered in
AI (e.g. deciding inference relations – like circumscription
or some paraconsistent inference relations, see (Eglyet al.
2000) – or determining whether a plan exist for several kinds
of plans, see (Rintanen 1999)) can be reduced to it.

The restriction ofQBF to instances whose matrices are
from OBDD< where< is the total order induced by their
prefixes has been shown tractable (Coste-Marquiset al.
2005). In the following, we show that this still holds for
ordered DDGs.

Last Variable Elimination in QBFs
Complete algorithms forQBF are based on two different
paradigms: branching, that is the key point of backtrack
algorithms, and quantifier elimination. Roughly, branch-
ing methods act on outermost quantifiers first while vari-
able elimination bear on the innermost ones first: they aim
at transforming the formulaΦ involving a variablex into
another one that does not containx but is equivalent toΦ.

Polytime quantifier elimination actually offers more than
solving the decision problemQBF, but enables the polytime
computation of solution policies for QBFs (roughly, one can
compute in polynomial time the truth value that must be
given to every existentially quantified variabley in Φ from
the truth values given to all the universally quantified vari-
ables precedingy in the prefix, so as to makeΦ true). See
Proposition 3 in (Coste-Marquiset al. 2006).

When the variable to be eliminated is existentially quan-
tified, this amounts to an operation of forgetting (sometimes
also called ”existential abstraction”).

Definition 7 (Forgetting)
forget(φ, x) = φ[x←true] ∨ φ[x←false].

Proposition 4 Let Φ be a quantified Boolean formula of
the form q1x1 . . . qn−1xn−1∃xnφ. Φ is true iff q1x1 . . .
qn−1xn−1 forget(φ, xn) is true.

As such, the size of the formulaforget(φ, x) is not signifi-
cantly greater than the one ofφ (about twice as big) but it can
become huge after a repeated sequence of forgettings. More-
over, forget(φ, x) does not necessarily belong to the same
class asφ. For instance, ifφ is a CNF formula,forget(φ, x)
is not. It should then be transformed into a CNF formula,
replacing then1 clauses involving the literalx and then2

clauses involving the literal¬x by (at most)n1×n2 clauses
withoutx (obtained by resolution uponx). TheCNF class
is thus polynomially (but actually not linearly) closed for
the forgetting operation of a single variable. A direct conse-
quence is that forgetting all the variables one after the other
can lead to an exponentially sized data structure. On the con-
trary, theDNF class as well as the Blake class (prime im-
plicates formulae) and theDNNF class are linearly closed
for variable forgetting. So, one can say that these classes are
tractable for variable forgetting whileCNF is not (Darwiche
& Marquis 2001).

It must be noticed that quantifier elimination isnot
soundin general for variables other than the most internal
one: ∀x1∃x2∀x3 φ is equivalent to∀x1∃x2 φ[x3←true] ∧



φ[x3←false] but not to∃x2∀x3φ[x1←true] ∧ φ[x1←false]. The
restrictionsSAT andTAUT (the validity problem for proposi-
tional formulae) ofQBF are very particular cases where any
variable can be chosen for elimination (since all variables
are quantified in the same way).

Obviously, Proposition 4 cannot be used wouldxn be uni-
versally quantified. One cannot forget universally quantified
variables but they must be ”ensured” thanks to an operation
dual to forgetting (this operation is sometimes called ”uni-
versal abstraction”).

Definition 8 (Ensuring)
ensure(φ, x) = φ[x←true] ∧ φ[x←false].

Proposition 5 Let Φ be a quantified Boolean formula of
the form q1x1 . . . qn−1xn−1∀xnφ. Φ is true iff q1x1 . . .
qn−1xn−1 ensure(φ, xn) is true.

CNF is linearly closed for variable ensuring: ifφ is a
conjunction of clauses, computing a formula equivalent to
ensure(φ, xi) just requires to shorten the (non valid) clauses
of φ bearing onxi. Most of the state-of-the-artQBF solvers
dealing withCNF matrices take advantage of this property
when eliminating the internal∀ quantifiers. Contrastingly,
neitherDNNF norDNF is polynomially closed for variable
ensuring unlessP = NP (see (Coste-Marquiset al. 2005)).

Last Variable Elimination in DDGs
Single variable forgetting or ensuring is generally not a lin-
ear transformation for OBDDs or for O-DDGs. However,
such transformations can be achieved in linear time when
the last variable of the structure is considered.

Definition 9 (Final assignment node)An assignment node
is final iff its tail is a constant.

Definition 10 (Final variable) A variablex is final in φ iff
any assignment node inφ that bears onx is final.

An important property is:

Proposition 6 DDG , OBDD<, O −DDG< and
SO −DDG< are linearly closed for forgetting a final
variable and ensuring a final variable.

Sketch of proof: The key is that the forgetting/ensuring opera-
tions distribute over the binary connectives in DDGs, until reaching
the decision nodes that bear on the variable under concern:

• If N = α ∧ β is a decomposable AND node, then
forget(α ∧ β, x) ≡ forget(α, x) ∧ forget(β, x) and
is also a decomposable AND node. Indeed, ifα
bears onx, β does not (decomposability assumption), so
forget(α ∧ β, x) ≡ (α[x←true] ∧ β) ∨ (α[x←false] ∧ β)

≡ β ∧ (α[x←true] ∨ α[x←false])
≡ β ∧ forget(α, x).

Similarly, when β bears onx we get forget(α ∧ β, x) ≡
α∧ forget(β, x). When neitherα norβ bears onx, forget(α∧
β, x) ≡ α ∧ β. The three cases are then summarized by
forget(α ∧ β, x) ≡ forget(α, x) ∧ forget(β, x).

• If N = (y ∧ α) ∨ (¬y ∧ β) is a decision node, andx 6= y, then
forget((y ∧ α) ∨ (¬y ∧ β), x) ≡ (y ∧ forget(α, x)) ∨ (¬y ∧
forget(β, x)).

• If N = α ∧ β is a decomposable AND node, thenensure(α ∧
β, x) ≡ ensure(α, x)∧ensure(β, x). It is still a decomposable
AND node.

• If N = (y ∧ α) ∨ (¬y ∧ β) is a decision node, andx 6= y, then
ensure((y ∧ α) ∨ (¬y ∧ β), x)

≡ ((y ∧ α) ∨ (¬y ∧ β))[x←true]

∧((y ∧ α) ∨ (¬y ∧ β))[x←false]

≡ ((y ∧ α)[x←true] ∨ (¬y ∧ β)[x←true])
∧((y ∧ α)[x←false] ∨ (¬y ∧ β)[x←false])

≡ (y ∧ α[x←true] ∧ y ∧ α[x←false])
∨(y ∧ α[x←true] ∧ ¬y ∧ β[x←false])
∨(¬y ∧ β[x←true] ∧ ¬y ∧ β[x←false])
∨(¬y ∧ β[x←true] ∧ y ∧ α[x←false]))

≡ (y ∧ α[x←true] ∧ α[x←false])
∨(¬y ∧ β[x←true] ∧ β[x←false])

≡ (y ∧ ensure(α, x)) ∨ (¬y ∧ ensure(β, x)).

So, the forget (resp. ensure) operation for variablex
distributes over the connectives until either reaching a leaf
that does not bear onx (leaving it unchanged) or a deci-
sion nodeN on x – sayN = (x ∧ α) ∨ (¬x ∧ β)). But
x is a final variable by hypothesis. Thusα and β are con-
stants. Thenforget((x ∧ α) ∨ (¬x ∧ β), x) ≡ α ∨ β and
ensure((x∧α)∨(¬x∧β), x) ≡ α∧β. In other words, forgetting
(resp. ensuring)x amounts to replacing the decision nodes onx by
constants. These constants can then be propagated up in the graph
so as to simplify it. The bottom up propagation is done in linear
time with respect to the size of the graph, it does not increase its
size (but may rather decrease it) and does not change its properties:
the decision ordering is not changed, and the remaining nodes are
either decomposable AND nodes or decision nodes. �

The importance of theO −DDG fragment compared to
the full DDG one as toQBF comes from the following
lemma and theorem, based on Propositions 4, 5, and 6.

Lemma 1 If x does not have any successors w.r.t.<, then
it is a final variable for any formula fromO −DDG<.

Theorem 2 Let < be any total, strict order onX. QBF.
The restriction of QBF to formulae with matrices from
O −DDG< and with prefixes inducing< is in P.

A Glimpse at Extended DDGs
In the previous sections, we have shown howOBDD can
be generalized, defining more compact but still efficient
classes of propositional formulae, namelyO −DDG and
SO −DDG .

Other characteristics of decision diagrams can be en-
larged, without losing the tractability of the class for last
variable eliminations – for instance, one can introduce non-
decision OR nodes, provided that, like AND nodes, they are
decomposable. In the sequel, we focus on such extended de-
cision graphs and show how the tractability results for (CO),
(ME), (CE), (VA), (CD) and last variable eliminations can
be extended to them.

First, a new class of OR nodes can be straightforwardly
considered without questioning the distributivity of ensuring
over binary connectives offered by DDGs: decomposable
OR nodes.

Definition 11 (Decomposable OR node)An OR node is
decomposableiff its disjuncts do not share any variable.

Proposition 7 If α ∨ β is a decomposable OR node then
forget(α ∨ β, x) ≡ forget(α, x) ∨ forget(β, x) and
ensure(α ∨ β, x) ≡ ensure(α, x) ∨ ensure(β, x).



Hence the fragment of NNFs that are both OR and AND
decomposable gives rise immediately to a tractable restric-
tion of QBF. However, this fragment is not very interesting
since it contains only monotone formulae. A more interest-
ing fragment is obtained by enabling both decomposable OR
nodes and decision nodes:

Definition 12 (Extended DDGs) An extended, decompos-
able decision graphis an NNF formula in which every node
is either a constant, a decision node, a decomposable AND
node or a decomposable OR node.

Proposition 8 The class of extended DDGs is linearly
closed for final variable ensuring and for final variable for-
getting.

Sketch of proof: Propositions 6 and 7 show that both the
ensuring operation and the forgetting operation forx distribute
over binary connectives until a decision node onx is reached.
Such a node does not have any successor sincex is final. The
decision node is then replaced by a constant. The simplification
by backward propagation of the constants is then performed. It
is linear in the size of the graph. Since this does not question
the properties of decomposability or decision, we get a (possibly
smaller) extended DDG. �

Now, a notion of ordered extended decision graph is ob-
tained in a straightforward way by adding the ordering re-
quirement. As a direct corollary of the previous proposition,
we get:

Corollary 2 Let< be any total, strict order onX. The re-
striction of QBF to formulae with matrices from the class of
extended DDGs that are ordered w.r.t.< and with prefixes
inducing< is in P.

Clearly enough, the class of extended DDGs is tractable
for (CO), (ME), (CE) and linearly closed for conditioning
since it is a subset ofDNNF . It is also tractable for (VA)
since it is linearly closed for final variable ensuring.

Other Related Work and Conclusion
If we make abstraction of the domains arities and of the rep-
resentation of counter-models, it appears thatSO −DDGs
are not completely unknown structures (butO −DDGs
are): they are equivalent to tree-driven automata (Fargier
& Vilarem 2004) and to AND/OR search graphs (Dechter
2004). Although also based on a tree structure, cluster trees
(Pargamin 2002) are slightly different: they use a hierar-
chy of arrays rather than a hierarchy of graphs. But it can
be shown that, compiling each array into a small OBDD,
each cluster tree can be turned into an equivalent polynomi-
ally sizedSO −DDG formula. The converse transforma-
tion is more expensive in the worst case (since anOBDD
formula can account for exponentially many models). Fi-
nally, it seems that tree BDDs (McMillan 1994) form a dif-
ferent kind of data structure, in which the tree of variables is
used from the leaves to the root. This allows for a polytime
transformation for negation that is unlikely forO −DDG or
SO −DDG . On the other hand, tree BDDs are not known
as leading to a tractable restriction ofQBF.

The contribution of the present paper is twofold. First,
we have formally defined several classes of decision graphs,

focusing on ordered and decomposable ones. We have
proved that they enable several polytime queries and trans-
formations, which shows them as interesting target classes
for knowledge compilation. Second, we have shown that
OBDD is not the most general propositional fragment
which is polynomially closed for final variable elimination:
decomposable AND nodes are not required to be limited to
assignment nodes and decomposable OR nodes can be al-
lowed while preserving this property. All these results con-
tribute to complete the knowledge compilation map from
(Darwiche & Marquis 2001), which is probably far from be-
ing exhausted.

References
Amilhastre, J.; Fargier, H.; and Marquis, P. 2002. Consis-
tency restoration and explanations in dynamic CSP - ap-
plication to configuration. Artificial Intelligence 135(1-
2):199–234.
Coste-Marquis, S.; Le Berre, D.; Letombe, F.; and Mar-
quis, P. 2005. Propositional fragments for knowledge com-
pilation and quantified boolean formulae. InProceedings
of AAAI-05, 288–293.
Coste-Marquis, S.; Fargier, H.; Lang, J.; Le Berre, D.; ;
and Marquis, P. 2006. Representing policies for quantified
boolean formulae. InProceedings of KR-06, to appear.
Darwiche, A., and Marquis, P. 2001. A perspective on
knowledge compilation. InProceedings of IJCAI-01, 175–
182.
Darwiche, A. 2001. Decomposable negation normal form.
Journal of the ACM48(4):608–647.
Dechter, R. 2004. And/or search spaces for graphical mod-
els. Technical report, ICS Technical Report.
Egly, U.; Eiter, T.; Tompits, H.; and Woltran, S. 2000.
Solving advanced reasoning tasks using quantified boolean
formulas. InProceedings of AAAI-00, 417–422.
Faltings, B., and Weigel, R. 1999. Compiling constraint
satisfaction problems.Artificial Intelligence115(2):257–
287.
Fargier, H., and Vilarem, M.-C. 2004. Compiling CSPs
into tree-driven automata for interactive solving.Con-
straints9:263–287.
McMillan, K. 1994. Hierarchical representation of discrete
functions with application to model checking. InProceed-
ings of CAV-94, 41–54.
Pargamin, B. 2002. Vehicle sales configuration: the cluster
tree approach. InProceedings of ECAI’02 Workshop on
Configuration, 35–40.
Rintanen, J. 1999. Constructing conditional plans by a
theorem-prover.Journal of Artificial Intelligence Research
10:323–352.
Sieling, D., and Wegener, I. 1993. Reduction of OBDDs
in linear time. Information Processing Letters48(3):139–
144.
Vempaty, N. 1992. Solving constraint satisfaction prob-
lems using finite state automata. InProceedings of AAAI-
92, 453–458.


