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Abstract. How to form effective coalitions is an important issue in multi-agent
systems. Coalition Structure Generation (CSG) involves partitioning a set of agents
into coalitions so that the social surplus (i.e. the sum of the rewards obtained by
each coalition) is maximized. In many cases, one is interested in computing a par-
tition of the set of agents which maximizes the social surplus, but is robust as well,
which means that it is not required to recompute new coalitions if some agents
break down. In this paper, the focus is laid on the Robust Coalition Structure
Generation (RCSG) problem. A formal framework is defined and some decision
and optimization problems for RCSG are pointed out. The computational com-
plexity of RCSG is then identified. An algorithm for RCSG (called AmorCSG) is
presented and evaluated on a number of benchmarks.
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1 Introduction

Coalition Structure Generation (CSG) [14, 20] is a key issue for a number of appli-
cations related to multi-agent cooperation, e.g., waste-water treatment system [5], dis-
tributed vehicle routing [20] and multi-sensor networks [3]. CSG involves partitioning a
set of agents into coalitions so that the sum of the values of all coalitions is maximized.
In CSG, it is well-known that finding an optimal coalition structure which maximizes
the social surplus is NP-hard. Indeed, the decision problem associated with CSG is
equivalent to the complete set partition problem [23] which is NP-complete.

Robustness (i.e., it is not required to recompute new coalitions of CSG even if some
agents break down) is an expected property of CSG. In this paper, the focus is laid on the
Robust Coalition Structure Generation (RCSG) problem. A formal framework for the
RCSG problem is presented and some decision and optimization problems for RCSG
are pointed out. A coalition structure is viewed as k-robust (for a given non-negative
integer k) if removing any subset of k agents from it leads the remaining coalitions to
still be beneficial. The RCSG decision problem consists in determining whether there
exists a u-beneficial and k-robust coalition structure, for a given reward threshold u and
robustness threshold k. We identify the computational complexity of the RCSG decision
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problem. While the standard CSG problem is NP-complete, we show that the RCSG
decision problem is inherently harder unless the polynomial hierarchy collapses (RCSG
is Σp

2 -complete). One of the optimization counterparts of this problem consists in fixing
the robustness threshold k and finding one of the most beneficial coalition structures
meeting the robustness requirement. Dually, one can also fix the reward threshold u and
optimize the robustness of a u-beneficial coalition structure. Lastly, one can consider
the bi-objective optimization problem where the aim is to optimize both the reward and
the robustness of a coalition structure.

As an application domain, we believe that the vehicle routing problem [18] is promis-
ing area, which can be formalized as CSG, where geographically dispersed dispatch
centers of several companies cooperate. When we consider both the effectiveness and
robustness of the drivers’ groups, this problem amounts to a robust CSG problem. An-
other application area is about the multi-sensor networks [3], which can be also formal-
ized as CSG. Consider several sensors in an airport or in a shopping center where some
sensors collaborate and observe a certain area for the security reason. Then, forming
effective and robust groups of sensors, amounts to solving a RCSG problem.

Related to our work is the team formation problem (TF) [11, 22]. Compared to the
TF problem, CSG is similar to the complete set partition problem [23], while TF is
equivalent to the set cover problem [7]. The robustness issue has recently been consid-
ered in TF [13]. Our approach of robustness in CSG is similar to the one developed
in this work. However, this paper focuses on the robustness issue for CSG. Also, the
significant difference between RCSG and robust TF lies in the complexity of each of
the corresponding decision problems: RCSG is shown here to be Σp

2 -complete, whereas
robust TF is “only” NP-complete. To the best of our knowledge, the robustness issue
for CSG have been left unaddressed so far in the literature.

2 Coalition Structure Generation

Let us start with some preliminary definitions. Let A = {a1, a2, . . . , an} be a finite set
of agents. A coalition from A, denoted as C, is a non-empty subset of A. A coalition
structure on A, denoted as CS, is a partition on A, i.e., a jointly exhaustive set of
pairwise disjoint coalitions from A. Formally, a coalition structure CS (on A) is a set
of coalitions {C1, . . . , Cm} such that for each i, j ∈ {1, 2, . . . ,m} such that i ̸= j, we
have that Ci ∩ Cj = ∅ and

∪
Ci∈CS Ci = A.

Definition 1 (CSG problem description). A coalition structure generation problem de-
scription is defined by a pair CSG = ⟨A, v⟩ where A = {a1, a2, . . . , an} is a set of
agents and v : 2A → N is a function called a characteristic function.

The value of a coalition C, denoted as v(C), is given by the characteristic function
v. The value of a coalition structure CS, denoted as V (CS), is the sum of the values
of each coalition, i.e., V (CS) =

∑
Ci∈CS v(Ci). A coalition structure is said to be

optimal, denoted as CS∗, if CS∗ satisfies the followings: ∀CS, V (CS) ≤ V (CS∗).

Example 1 (CSG). Let us consider the following scenario. The olympic games will
be held in Tokyo and it requires some interpreters in different stadiums, e.g., athlet-
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ics stadium, swimming stadium and basketball stadium etc. A service company dis-
patching interpreters with three employees (Ana, Becky and Carol) has received the
requests of the simultaneous interpretation and send them employees to different sta-
diums: request 1 requires Ana, and the company gets $20 for it; request 2 pays $30
and needs Becky’s language skill; request 3 needs Carol and pays $10; request 4 pays
$80 and needs Ana and Becky; request 5 pays $90 and needs Ana and Carol; request
6 needs Becky and Carol and pays $70; request 7 requires all employees and pays
$110. Assume that you are the manager of this service company and want to assign the
employees to job(s) so that the sum of the rewards is maximized. Then, this problem
can be represented as a CSG: let CSG = ⟨A, v⟩ be a CSG problem description with
A = {Ana,Becky, Carol}, and the function v is characterized as follows:

v({Ana}) = $20, v({Becky}) = $30, v({Carol}) = $10,

v({Ana,Becky}) = $80, v({Ana,Carol}) = $90, v({Becky, Carol}) = $70,

v({Ana,Becky, Carol}) = $110.

The optimal coalition structure is CS∗ = {{Becky}, {Ana,Carol}}, and the obtained
value by CS∗ is V (CS∗) = v({Becky}) + v({Ana,Carol}) = $30 + $90 = $120.

An expected property for coalition structures is to ensure a given level of efficiency.
Formally, this (quite standard) property can be stated as follows:

Definition 2 (Beneficialness). Let CSG = ⟨A, v⟩ be a CSG problem description.
Given a coalition structure CS and a non-negative integer u, CS is said to be u-
beneficial if the value of CS is larger than u: V (CS) ≥ u.

Let us stress an important remark as to the representation of the characteristic func-
tion v in a CSG. In our running example about the service company dispatching inter-
preters, v is defined “implicitly”, i.e., it is viewed as an oracle. One possible generaliza-
tion of our example above to an arbitrary number n of agents would be to associate with
every coalition C a number depending on the size of C only; in such a case, the corre-
sponding characteristic function v can be represented with a size in O(n). A number of
representation settings for characteristic functions have been pointed out in the litera-
ture, and some of them have been adapted to CSG and studied from the computational
complexity viewpoint [12]. Among the representation frameworks which have been
developed are marginal contribution nets (MC-nets) [6] and synergy coalition groups
(SCGs) [2]. Contrastingly, some early work [19, 20] assume that v is provided “fully
extensionally” as an input of a CSG problem description, i.e., v is given as a table with
2n−1 entries, associating with every coalition a number. Providing such an extensional
representation of v makes the size of an input CSG to be exponential in the number of
agents and may be an unrealistic assumption for relatively large problems. Yet there
exist many real world applications involving only a dozen of agents (e.g. because of
the limited resources), for which an extensional representation of v is feasible [3, 9,
18]. Thus, cooperative games can be used to analyze cost allocation problems, where
the players are willing to form coalitions in order to get extra monetary savings as an
effect of cooperation. For instance, in [5] the authors address the problem where nearby
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municipalities must take the decision on whether to cooperate in order to implement
a Waste-water Treatment System (WTS). These types of problem can be represented
formally as a CSG and it involves a few agents in essence, so that (i) considering a few
number of agents for experimentations, and (ii) assuming an extensional representation
of the characteristic function, can sometimes be considered as reasonable.

So both choices of representation for v (i.e., “implicit” vs. “extensional”) have been
considered in the literature. It turns out that for a number of implicit representations
of v (including MC-nets and SCG, see [12]), the complexity of computing a beneficial
coalition structure (cf. Definition 2) is NP-hard:

Definition 3 (DP-CSG).

– Input: A coalition structure generation problem description CSG = ⟨A, v⟩, and a
non-negative integer u,

– Question: Does there exist a coalition structure CS such that CS is u-beneficial?

As mentioned above, the complexity of DP-CSG is NP-complete in general:

Theorem 1 ([19]). If the characteristic function v is computable in polynomial time,
then DP-CSG is NP-complete.

In the next section, we will show that computing a “robust” coalition structure is an
intrinsically harder problem than the traditional CSG problem.

3 Robust Coalition Structure Generation

In this section, a formal framework for Robust Coalition Structure Generation (RCSG)
is defined. Furthermore, both the decision and optimization problems for RCSG are
considered. Also, the computational complexity of RCSG is identified.

Let A = {a1, . . . , an} be a set of agents and A′ ⊆ A. The restriction on A′ of a
coalition C from A is defined as the set C ∩ A′. We extend this notion of restriction
on coalition structures as follows. The restriction on A′ of a coalition structure CS =
{C1, . . . , Cm} on A is defined as the coalition structure CS′ = {C ′

1, . . . , C
′
m}\{∅} on

A′, where for each i ∈ {1, . . . ,m}, C ′
i is the restriction on A′ of Ci. Consider the same

coalition structure generation problem in our example of the service company dispatch-
ing interpreters. Let us consider the coalition structure CS = {{Ana,Becky}, {Carol}}
and A′ = {Ana,Carol}. Then, the restriction on A′ of CS is the coalition structure
{{Ana}, {Carol}}. Robustness can now be defined in formal terms as follows:

Definition 4 (Robust Coalition Structure). Let CSG = ⟨A, v⟩ be a CSG problem
description. For a given coalition structure CS on A and non-negative integers u and
k, CS is said to be (u, k)-robust if for every A′ ⊆ A, such that |A′| ≥ n − k, the
restriction on A′ of CS is u-beneficial.

That is to say, a coalition structure is (u, k)-robust if whenever k agents are removed
from it, the “remaining” coalition structure is u-beneficial. Obviously enough, robust-
ness generalizes the usual notion of beneficialness in CSG. Indeed, we trivially have that
for any non-negative integer u, a CSG is u-beneficial if and only if it is (u, 0)-robust.
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Example 1 (continued). Let us consider the service company dispatching interpreters
with three employees. The manager of this company planed to assign Becky to the
request 2 and Ana and Carol to the request 5 so that he/she gets the maximal rewards.
However, what’s happen if one of them cannot work on the day because of the illness
or other unexpected matters. For instance, let u = $70 and k = 1, that is, the manager
wants to have at least $70 even if such an event would occur. In this example, the optimal
coalition structure planed in advance is CS∗ = {{Becky}, {Ana,Carol}}. To check
whether CS∗ is (70, 1)-robust, we check for each removed agent from CS∗ whether
the remaining coalition structure is 70-beneficial. We have that: V (CS∗ \ {Ana}) =
v({Becky}) + v({Carol}) = $40, V (CS∗ \ {Becky}) = v({Ana,Carol}) = $90,
V (CS∗ \ {Carol}) = v({Ana}) + v({Becky}) = $50. When we remove Ana from
CS∗, the remaining coalition structure is not 70-beneficial. Intuitively, this comes from
the fact that it is not “safe” to form the coalition {Ana,Carol} to get a reward of $90,
since the absence of Ana from this coalition would leave Carol alone, getting a reward
of $10. Thus, CS∗ is not (70, 1)-robust. However, CS = {{Ana,Becky, Carol}} is
(70, 1)-robust, since all remaining coalition structures are 70-beneficial after we remove
each agent from CS, i.e., V (CS \ {Ana}) = $70, V (CS \ {Becky}) = $90, and
V (CS \ {Carol}) = $80.

In the following, we assume that the characteristic function v of CSG = ⟨A, v⟩
satisfies the property of monotonicity, i.e., for all coalitions C, C ′, if C ⊆ C ′ then
v(C) ≤ v(C ′). This property requires that adding an agent to a given coalition is harm-
less, or stated otherwise, removing an agent from a coalition does not result in an in-
crease of its value. This assumption is very natural when considering the robustness
issue, as we are interested in dealing with the “damages” caused to a coalition struc-
ture when removing a number of agents from it. 6 Nonetheless, this assumption does
not affect the following complexity results, that is, it does not make the RCSG problem
computationally easier.

Definition 5 (DP-RCSG).

– Input: A CSG problem description CSG = ⟨A, v⟩, with v computable in polyno-
mial time, and two non-negative integers u and k,

– Question: Does there exist a coalition structure CS such that CS is (u, k)-robust?

In the general case, computing a robust coalition structure is a harder problem than
computing a beneficial one (unless the polynomial hierarchy collapses):

Proposition 1. DP-RCSG is Σp
2 -complete. Σp

2 -hardness holds even if the characteris-
tic function satisfies monotonicity.

Proof. Let us first prove that RCSG is in Σp
2 . Let CSG = ⟨A, v⟩ be a CSG problem

description such that A = {a1, . . . , an}, and u and k be two non-negative integers.
Consider the following non-deterministic polynomial algorithm with NP oracle:

6 Note that the property of monotonicity differs from the super-additivity which requires that for
all coalitions C, C′, it holds v(C) + v(C′) ≤ v(C ∪ C′) and is stronger than monotonicity.
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1. Guess a set CS = {C1, . . . , Cm} of coalitions from A;
2. Check that CS is a coalition structure on A;
3. Check using an NP oracle that there does not exist a set of agents A′ ⊆ A such

that |A′| = n− k and such that the restriction of CS on A′ is not u-beneficial.

This algorithm decides RCSG, showing that RCSG is in Σp
2 .

We prove that Σp
2 -hardness holds for RCSG by consider a reduction in polynomial

time to the complementary problem of RCSG from the following Πp
2-hard problem,

that is, the validity problem for 3-CNF quantified boolean formulas (QBFs) of the form
∀X∃Y.α where X = {x1, . . . , xn} and Y = {y1, . . . , yn} are two disjoint sets of
propositional atoms and α is 3-CNF propositional formula such that V ar(α) = X ∪Y .
Consider such a QBF ∀X∃Y.α, and let us associate with it an RCSG problem descrip-
tion ⟨A, v⟩, where A is the set of agents A = {a1, ā1, b1, b̄1, . . . , an, ān, bn, b̄n}, and v
is a characteristic function v : 2A 7→ N given as follows. Let us first define:

– the mapping x associating any literal over X with a pair of agents from A, defined
for every (possibly negated) literal xi as x(xi) = {ai, āi} if xi is a positive literal,
otherwise x(xi) = {bi, b̄i};

– the mapping y associating any literal over Y with a pair of agents from A, defined
for every (possibly negated) literal yi as y(yi) = {ai, bi} if yi is a positive literal,
otherwise y(yi) = {āi, b̄i}.

Additionally, we assume that α is viewed as a set of clauses written as (li, lj , lk), where
li, lj , lk are literals from X ∪ Y , and such that the literals li, lj , lk are ordered in such
a way that if li ∈ Y (resp. lj ∈ Y ) then lj , lk ∈ Y (resp. lk ∈ Y ). Then a clause
(li, lj , lk) ∈ α can be of the form (xi, xj , yk), (xi, yj , yk) or (yi, yj , yk), since the
presence of clauses of the form (xi, xj , xk) make the QBF trivially not valid.

Then given the QBF ∀X∃Y.α, the characteristic function v is defined as follows.
Consider the function p associating any literal pq from X ∪ Y with a pair of agents
from A, defined as p(pq) = x(xl) if pq = xl, otherwise p(pq) = y(ym) when pq = ym.
For each coalition C ⊆ A, we set:

(i) v(C) = 2n+ 1 if there exists i ∈ {1, . . . , n} such that {ai, āi} ⊆ C or {bi, b̄i} ⊆
C;

(ii) v(C) = n+ 1 if there exists a clause (pi, pj , pk) from α such that p(pq) ∩ C ̸= ∅,
for any q ∈ {i, j, k};

(iii) v(C) = 1 in the remaining cases.

We often refer to these conditions as (i), (ii) and (iii) in the rest of the proof.
First, one can easily check that v satisfies (monotonicity). Indeed, one can see that

for any coalition C ⊆ A, if C satisfies condition (i) (resp., condition (ii), (iii), (iv)), then
any coalition C ′ such that C ⊆ C ′ also satisfies condition (i) (resp., condition (ii), (iii),
(iv)). Hence, for all coalitions C,C ′ ⊆ A, if C ⊆ C ′ then v(C) ≤ v(C ′). Therefore, v
satisfies (monotonicity).

We intend now to prove that the QBF ∀X∃Y.α is valid if and only if there does not
exist any coalition structure which is (2n + 1, 2n)-robust, i.e., if and only if for every
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coalition structure CS on A, there exists a set A′ ⊆ A, |A′| = 2n, such that the restric-
tion on A′ of CS is not (2n + 1)-beneficial. This would show that the complementary
problem of RCSG is Πp

2 -hard, thus that RCSG is Σp
2-hard.

(If part) We show the contraposite of the claim. Assume that the QBF ∀X∃Y.α is not
valid, i.e., ∃X∀Y.¬α is satisfiable, and let us prove that there exists a coalition structure
which is (2n + 1, 2n)-robust. So let ωX be an interpretation over X such that for any
interpretation ωY over Y , one the clauses of α is not satisfied by ωX ∪ ωY . Define the
coalition structure CSr as CSr = {Cr, C

1
r , . . . , C

n
r }, where:

– Cr = {ai, āi | i ∈ {1, . . . , n}, ωX(xi) = 0} ∪ {bi, b̄i | i ∈ {1, . . . , n}, ωX(xi) =
1};

– for each i ∈ {1, . . . , n}, Ci
r = {ai, āi, bi, b̄i} \ Cr.

Let us show that CS is (2n, 2n + 1)-robust, i.e., for any set A′ ⊆ A such that
|A′| = 2n, the restriction on A′ of CS is (2n + 1)-beneficial. From condition (i), we
know that for any coalition C, if there exists i ∈ {1, . . . , n} such that {ai, āi} ⊆ C or
{bi, b̄i} ⊆ C, then v(C) = 2n+1, so that for any coalition structure CS containing such
a coalition C we would get that v(CS) ≥ 2n+ 1. Yet by construction of our coalition
structure CSr = {Cr, C

1
r , . . . , C

n
r }, for every i ∈ {1, . . . , n} we have that {ai, āi} ⊆

C for some coalition C ∈ CSr and {bi, b̄i} ⊆ C for some coalition C ∈ CSr. And we
have 4n elements in A, thus for any set A′ ⊆ A such that |A′| = 2n, in the case where
{ai, āi} ⊆ A′ or {bi, b̄i} ⊆ A′ for some i ∈ {1, . . . , n}, we get that v(C∩A′) = 2n+1
for some coalition C ∈ CSr (cf. condition (i)), i.e., the restriction CS′

r on A′ of CSr

satisfies v(CS′
r) ≥ 2n + 1, and thus CS′

r is (2n + 1)-beneficial, which makes CSr

(2n, 2n+1)-robust, that was to be shown. So consider the remaining cases and assume
that A′ is formed of exactly one element among {ai, āi} and exactly one element among
{bi, b̄i}, for each i ∈ {1, . . . , n}. So now, for any coalition Ci

r ∈ CSr (i ∈ {1, . . . , n}),
it can be checked by definition of Ci

r that Ci
r ∩ A′ contains exactly one element from

A. This means that none of the conditions (i), (ii), (iii) are satisfied by C ∩ A′, and
thus v(C ∩ A′) = 1 (cf. condition (iv)). To sum up, we have that v(Ci

r ∩ A′) = 1 for
each coalition Ci

r ∈ CSr (i ∈ {1, . . . , n}), and we need to prove that the restriction
CS′

r of CSr on A′ satisfies v(CS′
r) ≥ 2n+ 1; yet v(CS′

r) =
∑

C∈CSr
v(C ∩A′), so

v(CS′
r) =

∑
Ci

r∈CSr,i∈{1,...,n} v(C
i
r ∩A′) + v(Cr ∩A′) = n+ v(Cr ∩A′). Then we

need to prove that v(Cr∩A′) ≥ (2n+1)−n, i.e., we must prove that v(Cr∩A′) ≥ n+1.
Let us show that v(Cr ∩ A′) = n + 1. This is enough to show that Cr ∩ A′ satisfies
condition (ii) or (iii). Let us associate with Cr and A′ the interpretation ωY over Y
defined as follows, for each i ∈ {1, . . . , n}:

– in the case where {ai, āi} ⊆ Cr, then: ωY (yi) = 0 if ai ∈ A′, otherwise ωY (yi) =
1 (i.e., if āi ∈ A′);

– in the remaining case (i.e., {bi, b̄i} ⊆ Cr) then: ωY (yi) = 0 if bi ∈ A′, otherwise
ωY (yi) = 1 (i.e., if b̄i ∈ A′);

We know that there is at least one clause c from α which is not satisfied by ωX ∪ ωY .
Such a clause c is of the form (xi, yj , yk) or (yi, yj , yk), but in any of the two cases we
have that none of the literals of the clause is satisfied by ωX ∪ ωY . It can be a literal
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from X (denoted xi below) or from Y (denoted yi below). Let us denote l this literal,
we fall into one of the two following cases:

– l is a literal xi. If xi is a positive literal, then ωX(xi) = 0. Yet we know by definition
of the coalition Cr ∈ CSr that {ai, āi} ⊆ Cr, and we already know that A′ con-
tains exactly one element from {ai, āi}, thus we get that {ai, āi} ∩ (Cr ∩A′) ̸= ∅.
If xi is a negative literal, then ωX(xi) = 1. By a similar reasoning, we get that
{bi, b̄i} ∩ (Cr ∩A′) ̸= ∅. Stated otherwise, we get that x(xi) ∩ (Cr ∩A′) ̸= ∅.

– l is a literal yi. If yi is a positive literal, then ωY (yi) = 0. Yet we know by definition
of ωY that we are in the case where ({ai, āi} ⊆ Cr and ai ∈ A′) or ({bi, b̄i} ⊆ Cr

and bi ∈ A′). Thus Cr∩A′ = {ai} or Cr∩A′ = {bi}. Hence, {ai, bi}∩(Cr∩A′) ̸=
∅. If xi is a negative literal, then ωY (yi) = 1. Yet similarly by definition of ωY we
are in the case where ({ai, āi} ⊆ Cr and āi ∈ A′) or ({bi, b̄i} ⊆ Cr and b̄i ∈ A′).
Thus Cr ∩A′ = {āi} or Cr ∩A′ = {b̄i}. Hence, {āi, b̄i} ∩ (Cr ∩A′) ̸= ∅. Stated
otherwise, we get that y(yi) ∩ (Cr ∩A′) ̸= ∅.

From these two points, we can claim for the clause c which is not satisfied by ωX ∪ωY

that: if c is of the form (xi, yj , yk), then x(xi)∩ (Cr ∩A′) ̸= ∅, y(yj)∩ (Cr ∩A′) ̸= ∅
and y(yk)∩(Cr∩A′) ̸= ∅; and if c is of the form (yi, yj , yk), then y(yi)∩(Cr∩A′) ̸= ∅,
y(yj) ∩ (Cr ∩ A′) ̸= ∅ and y(yk) ∩ (Cr ∩ A′) ̸= ∅. By definition of the characteristic
function v (cf. conditions (ii) and (iii)), we get that v(Cr ∩ A′) = n + 1, that was left
to be shown and concludes this part of the proof.

(Only if part) We show the contraposite of the claim. Assume that there exists a coalition
structure which is (2n + 1, 2n)-robust, and let us prove that the QBF ∀X∃Y.α is not
valid, i.e., ∃X∀Y.¬α is satisfiable.

Let us introduce a preliminary notion. For a given q ∈ {0, . . . , n}, we say that
a coalition structure CS is q-normal if CS = {A} when q = 0, and if CS =
{C,C1, . . . , Cq} when q ∈ {1, . . . , n} such that:

– for all i ∈ {1, . . . , q}, Ci = {ai, āi} or Ci = {bi, b̄i};
– C = A \

∪
{Ci | Ci ∈ CS, i ∈ {1, . . . , q}}.

For instance, when n = 4, the coalition structure CS = {C,C1, C2, C3} defined such
that C1 = {a1, ā1}, C2 = {b2, b̄2}, C3 = {b3, b̄3} and C = {b1, b̄1, a2, ā2, a3, ā3, a4,
ā4, b4, b̄4} is 3-normal.

What we first intend to prove is that there exists a coalition structure which is
n-normal and (2n + 1, 2n)-robust. Beforehand, we want to show that for each q ∈
{1, . . . , n}, there exists a coalition structure CS which is q-normal and such that for
any A′ ⊆ A, |A′| = 2n, there exists a coalition C ′ ∈ CS↓A′ which satisfies condition
(i), (ii) or (iii), where CS↓A′ denotes the restriction of CS on A′ (for short, we say
that CS is (i)-(ii)-(iii)-consistent in the following). So to recap, we want to show that
for each q ∈ {1, . . . , n}, there exists a coalition structure CS which is q-normal and
(i)-(ii)-(iii)-consistent. We prove it by recursion on q:

– Base case (q = 0): since the only 0-normal coalition structure is defined as CS0 =
{A}, it is enough to show that CS0 is (ii)-(iii)-consistent, i.e., that for every set
A′ ⊆ A such that |A′| = 2n, A∩A′ satisfies condition (ii) or (iii). Yet we know that
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there exists a coalition structure which is (2n + 1, 2n)-robust, so let CSr be such
a coalition structure. So for every set A′ ⊆ A such that |A′| = 2n, the restriction
of CSr on A′ is (2n + 1)-beneficial. Let A′ ⊆ A, |A′| = 2n, such that for each
i ∈ {1, . . . , n}, A′ contains exactly one element among {ai, āi} and exactly one
element among {bi, b̄i}. We can see then that no coalition from CSr↓A′ satisfies
condition (i). Let us prove there exists a coalition from CSr↓A′ satisfying condition
(ii) or (iii). Toward a contradiction, assume that there is no such coalition. Then
for every coalition C ∈ CSr↓A′ , v(C) = 1 (cf. condition (iv)). Yet there are 2n
elements in A′, which means that v(CSr↓A′) ≤ 2n (we get that v(CSr↓A′) = 2n in
the case where each coalition from CSr↓A′ is a singleton set). And yet CSr is (2n+
1, 2n)-robust, so CSr↓A′ is (2n + 1)-beneficial, which leads to a contradiction.
Hence, there exists a coalition from CSr↓A′ satisfying condition (ii) or (iii); let C ′

be such a coalition. We know that C ′ is a coalition from CSr↓A′ , so C ′ ⊆ A′. But
we also have C ′ ⊆ A, thus C ′ ⊆ A∩A′. Hence, since C ′ satisfies condition (ii) or
(iii), it is easy to see that A ∩ A′ satisfies condition (ii) or (iii) as well. Therefore,
CS0 is (i)-(ii)-(iii)-consistent.

– Recursion step: let CSq = {C,C1, . . . , Cq} be a q-normal coalition structure for
some q ∈ {0, . . . , n − 1} (CS0 = {A}), and assume that CSq is (i)-(ii)-(iii)-
consistent. Let us prove that there exists a coalition structure CSq+1 which is (q +
1)-normal and (i)-(ii)-(iii)-consistent. Let us associate with CSq = {C,C1, . . . ,
Cq} the coalition structure CSq+1

a = {Ca, C
1, . . . , Cq, Cq+1

a } where Ca = C \
{aq+1, ¯aq+1} and Cq+1

a = {aq+1, ¯aq+1}; similarly, we associate with CSq =

{C,C1, . . . , Cq} the coalition structure CSq+1
b = {Cb, C

1, . . . , Cq, Cq+1
b } where

Cb = C \ {bq+1, ¯bq+1} and Cq+1
b = {bq+1, ¯bq+1}. It is easy to verify that CSq+1

a

and CSq+1
b are well-defined coalitions structures, and that both of them are (q +

1)-normal. So this is enough to show that one of these coalitions is (i)-(ii)-(iii)-
consistent. Since CSq is either (i)-(ii)-(iii)-consistent, for any A′ ⊆ A, |A′| = 2n,
there exists a coalition C ′ ∈ CSq

↓A′ which satisfies condition (i), (ii) or (iii). So let
A′ ⊆ A, |A′| = 2n, and let C ′ ∈ CSq

↓A′ , we know that C ′ satisfies condition (i),
(ii) or (iii). Yet by construction of CSq+1

a and CSq+1
b it is easy to see that if C ′

satisfies condition (i) (resp. condition (ii)), then both CSq+1
a↓A′ and CSq+1

b↓A′ contain a
coalition which satisfies condition (i) (resp. condition (ii)). So assume that C ′ does
not satisfy condition (i) nor (ii), so that C ′ satisfies condition (iii). But then, it is
easy to verify that one of the two following cases holds: (1) for every A′′ ⊆ A,
|A′′| = 2n, CSq+1

a↓A′′ contains a coalition which satisfies condition (iii), or (2) for
every A′′ ⊆ A, |A′′| = 2n, CSq+1

b↓A′′ contains a coalition which satisfies condition
(iii). Overall, we have shown that either CSq+1

a or CSq+1
b is (i)-(ii)-(iii)-consistent.

We have now proved that there exists a coalition structure CS = {C,C1, . . . , Cn}
which is n-normal and such that for any A′ ⊆ A, |A′| = 2n, there exists a coalition
C ′ ∈ CS↓A′ which satisfies condition (i), (ii) or (iii). Let us show that such a coalition
structure CS is (2n, 2n+1)-robust. Let A′ ⊆ A, |A| = 2n and let us show that CS↓A′

is (2n+1)-beneficial. Let C ′ ∈ CS↓A′ . Assume first that C ′ satisfies condition (i), then
one can see that v(C ′) = 2n+1 and thus CS↓A′ is (2n+1)-beneficial. So assume that
C ′ does not satisfiy condition (i), i.e., C ′ satisfies condition (ii) or (iii). Note that in this
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case (because C ′ does not satisfy condition (i)), we know that A′ contains exactly one
element from {ai, āi} and exactly one element from {bi, b̄i}, for each i ∈ {1, . . . , n}.
Then for each coalition Ci ∈ CS, i ∈ {1, . . . , n}, we get that Ci ∩A′ is a singleton set
and Ci satisfies none of the conditions (ii) and (iii), and thus v(Ci∩A′) = 1 (condition
(iv)). We have have that v(CS↓A′) = v(C ∩A′) + v(C1 ∩A′) + · · ·+ v(Cn ∩A′) =
v(C∩A′)+n = v(C ′)+n = (n+1)+n = 2n+1. Hence, CS↓A′ is (2n+1)-beneficial.

We have proved that there exists a coalition structure which is n-normal and (2n, 2n+
1)-robust, denote it CSr = {Cr, C

1
r , . . . , C

n
r }. Now, it remains to show that the QBF

∃X∀Y.¬α is valid. Let us associate with CSr the interpretation ωX over X defined for
each i ∈ {1, . . . , n} as ωX(xi) = 0 if Ci

r = {bi, b̄i}, otherwise ωX(xi) = 1 (in the
remaining case where Ci = {ai, āi}). Now, let ωY be any interpretation over Y . It re-
mains to show that ωX∪ωY does not satisfy α, i.e., there exists a clause from α which is
not satisfied by ωX∪ωY . With ωY we associate the set A′ ⊆ A characterized as follows:
for each i ∈ {1, . . . , n}, {ai, bi} ⊆ A′ and {āi, b̄i} ∩ A′ = ∅ if ωY (yi) = 0, otherwise
{āi, b̄i} ⊆ A′ and {ai, bi} ∩A′ = ∅. Note that for each i ∈ {1, . . . , n}, A′ contains ex-
actly one element among {ai, āi} and exactly one element among {bi, b̄i}. This means
that for each i ∈ {1, . . . , n}, Ci

r ∩ A′ is a singleton set and thus v(Ci
r ∩ A′) = 1

(condition (iv)). So v(CSr↓A′) = v(Cr ∩ A′) + v(C1
r ∩ A′) + · · · + v(Cn

r ∩ A′) =
v(Cr ∩A′)+n. Yet CSr is (2n, 2n+1)-robust, so that v(CSr↓A′) ≥ 2n+1, and thus
v(Cr∩A′) ≥ n+1, which means that Cr∩A′ satisfies condition (i), (ii) or (iii). But by
construction of A′, one can see that Cr ∩A′ does not satisfy condition (i), so it satisfies
condition (ii). We will show that the clause that enables condition (ii) to be satisfied, is
not satisfied by ωX ∪ ωY . Let pq be a literal from a clause from condition (ii):

– Assume first that pq = xl for some l ∈ {1, . . . , n}.
• If xl is a positive literal, then we know that p(pq) = x(xl) = {al, āl}. Since

{al, āl} ∩ Cr ∩A′ ̸= ∅, it follows that Cl
r = {bl, b̄l}. But then ωX(xl) = 0.

• If xl is a negative literal, we analogously conclude that ωX(xl) = 1.
In both cases ωX does not satisfy the clause when pq = xl for some l ∈ {1, . . . , n}.

– So assume now the remaining case holds, i.e., that pq = ym for some m ∈
{1, . . . , n}.
• If ym is a positive literal, then p(pq) = y(ym) = {am, bm}. Since {am, bm} ∩

Cr ∩A′ ̸= ∅, we can conclude that {am, bm} ⊆ A′ and thus ωY (ym) = 0.
• If ym is a negative literal, we analogously conclude that ωY (ym) = 1.

In both cases ωY does not satisfy the clause when pq = ym for some m ∈
{1, . . . , n}.

We have just shown that the QBF ∃X∀Y.¬α is valid, which concludes this part of the
proof.

We have shown that the QBF ∀X∃Y.α is valid if and only if there does not exist a
coalition structure CS which is (2n+1, 2n)-robust, which means that the complemen-
tary problem RCSG is Πp

2 -hard. Therefore, RCSG is Σp
2 -hard. ⊓⊔

Beyond the decision problem of RCSG, the following optimization problem could
be considered: one sets a robustness threshold k and intend to optimize the beneficial-
ness of the coalition structure; or one sets a beneficialness threshold u and intend to
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optimize the robustness of the coalition structure. We can also view the RCSG problem
as a bi-objective constraint optimization problem, and be interested in computing Pareto
optimal (i.e., non-dominated) coalition structures.

4 The AmorCSG algorithm

We now describe AmorCSG, our complete algorithm to compute the coalition struc-
ture of maximum beneficialness. The algorithm is based on the integer-partitioning (IP)
approach [10, 17]. We briefly describe the IP-approach and refer to the original works
[10, 17] for more details. It starts by decomposing the search space into disjoint parts
(integer partitions) and applies branch-and-bound to each subspace. Every integer par-
tition of n (the number of agents) defines a subspace by associating the integers in the
partition to the number of agents in each coalition (e.g. 1 + 3 is a subspace with two
coalitions with one and three agents). Note that the integer partitions generated by n
are non-overlapping. The main advantage of the decomposition is that effective upper
bounds can be calculated for partial solutions from a particular partition, which is an
essential for pruning the search space in the branch-and-bound algorithm. Our algo-
rithm follows the same structure as the IP algorithm, with the addition of the following
important components: calculation of the robustness for coalitions and coalition struc-
tures, robust upper bounds, and our pruning technique for branch-and-bound. These are
described in detail below. The pseudo-code of AmorCSG is given in Algorithm 1 and 2.

Algorithm 1: Branch-And-Bound Subspace Search
input: CSG, I = [I0, .., Im−1], k
output: CS in subspace I with the highest r(CS, k)

1 begin
2 CSbest ←− ∅; LBbest ←− −∞; depth←− 0
3 CS ←− [C0, C1, .., Cm−1]
4 Ci ←− ∅,∀i
5 while depth ≥ 0 do
6 if depth = m then
7 depth←− depth− 1

8 if r(CS, k) > LBbest then
9 LBbest ←− r(CS, k)

10 CSbest ←− CS

11 else
12 Cdepth ←− select next coalition not explored

// if no new Cdepth possible, backtrack
13 if Cdepth = ∅ then
14 depth←− depth− 1
15 continue
16 if r(CS, k) +

∑
depth<j<m UB(Ij) > LBbest then

17 depth←− depth+ 1

18 return CSbest
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Algorithm 2: AmorCSG Algorithm Outline
input: CSG = ⟨A, v⟩, k
output: CS∗ = argmaxCS(r(CS, k))

1 begin
2 IP ←− generate integer partitions of |A|
3 UBrob ←− computeRobustUpperBounds(IP ) // Eq. 6
4 LBbest ←− −∞; CS∗ ←− ∅
5 do
6 foreach I ∈ IP do
7 if UBrob(I) ≤ LBbest then
8 IP ←− IP \ {I}
9 if IP = ∅ then

10 break
11 Inext ←− argmax{UBrob(I) : I ∈ IP}
12 (val, CS)←− searchSubspace(CSG, I, k) // Algorithm 1
13 if val ≥ LBbest then
14 LBbest ←− val
15 CS∗ ←− CS

16 while IP ̸= ∅
17 return CS∗

We considered extending other state-of-the-art CSG algorithms for RCSG namely
ODP [10], ODP-IP [10], and inclusion-exclusion DP [1]. However, these approaches are
not applicable to RCSG, as they are based on dynamic programming and the Bellman
property does not hold for RCSG. Our method uses dynamic programming during its
execution but the core part of the algorithm is branch-and-bound.

Definition 6 (Robustness of a Coalition (Structure)). Let CSG = ⟨A, v⟩ be a CSG
problem description. For a given coalition structure CS on A and non-negative integer
k, the k-robustness of CS, denoted r(CS, k), is the maximal value u such that CS
is (u, k)-robust. Similarly, the k-robustness of a coalition C, denoted r(C, k), is the
maximal value u if the coalition structure {{C}} is (u, k)-robust.

Robustness Values For Each Coalition For every coalition C we calculate r(C, k′)
for each k′ ∈ [1,min(k, |C|)] as a preprocessing step, which represents the lowest
beneficial value obtainable after removing k′ agents from C. We compute r(C, k′) using
a dynamic programming:

r(C, 0) = v(C), (1)
r(C, k′)= min

C′⊂C
|C′|=|C|−1

(r(C ′, k′ − 1)), ∀k′ ∈ [1,min(k, |C|)].

Robustness Values For a Particular Coalition Structure For a given coalition struc-
ture CS we compute its robust value as r(CS, k) = V (CS)−e(CS, k), where e(CS, k)
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is defined as the optimal value of the following multidimensional knapsack problem:

e(CS, k) = max
∑

C∈CS

∑
j∈[1,|C|]

r(C, j) ∗ x(C,j) (2)

∑
C∈CS

∑
j∈[1,|C|]

j ∗ x(C,j) ≤ k (3)

∑
j∈[1,|C|]

x(C,j) ≤ 1 ∀C ∈ CS (4)

x(C,j) ∈ {0, 1} ∀C ∈ CS, j ∈ [1, |C|] (5)

The value e(CS, k) denotes the maximum penalty that can be achieved by remov-
ing k agents. The variables x(C,j) indicates if j agents are selected for removal from
coalition C.

Robust Upper Bounds For a given subspace generated by the partition I = [I0, I1, . . . ,
Im−1] we compute the upper bound as:

UBrob(I) = max∑
j yj≤k

yj∈N0

(
∑

j∈[0,m)

(UB(max(0, Ij − yj)))) (6)

In other words, we calculate maximum upper bound of all subspaces that can be
generated by removing at most k agents from the subspace I . The upper bound of a
partition I, UB(I), is computed as in the integer-partition approach [10, 17].

Branch-And-Bound Pruning The partial solution CS can be pruned if it cannot be
extended to a solution with a higher beneficial value than the best solution found so
far (denoted LBbest). This is determined based on the upper bounds of the unassigned
coalitions and LBbest:

r(CS, k) +
∑

j∈[d+1,m)

(UB(Ii)) ≤ LBbest (7)

The solution CS can be pruned from the search if the above equation holds. Note
that the (partial) solution CS has its first d coalitions assigned at search tree depth d.

4.1 Incremental Computation of r(CS, k)

The robust value r(CS, k) is computed in each iteration incrementally using dynamic
programming. Let c be the coalition that is added to the partial solution CS, we then
have:

r(CS ∪ c, k) = min{r(CS, k − i) + r(c, i)|i ∈ [0, k]} (8)
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Fig. 1: Average runtime (five benchmarks for each n, the number of agents) on a variety of distri-
butions with different values for k. Number of timeouts with a limit of 1 hours shown in brackets.
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5 Experimental Evaluation

We implemented AmorCSG and the integer-partition approach for CSG [10, 17] in C++.
The experiments were run on an Intel i7-7700HQ CPU @ 2.80GHz with 32 GB of
RAM. We experimented with instances based on several probability distributions for
the characteristic function v used in the literature:

– Uniform: v(C) = Uniform(0, |C|) [8].
– Normal: v(C) = Normal(µ = 10 ∗ |C|, σ2 = 0.1) [16].
– NDCS: v(C) = Normal(µ = |C|, σ2 =

√
|C|) [17].

– Modified uniform: v(C) = Uniform(0, 10∗|C|)+a, where a = Uniform(0, 50)
with probability 0.2 and a = 0 otherwise [21].

– Modified normal: v(C) = Normal(10 ∗ |C|, 0.01) + a, where a is as above [15].
– Beta: v(C) = |C| ∗Beta(α = β = 0.5)[10].

The benchmarks were adjusted to ensure monotonicity. We compared the runtime
for different values of n (number of agents) and k ∈ [0, 3] (robustness parameter). Note
that RCSG with k = 0 degenerates to CSG. The results are summarized in Figure 1,
averaged over five instances for each n.

The distribution used plays an important role in the execution time, more so than for
standard CSG (k = 0). The main reason is that bounds on robustness cannot be approx-
imated as accurately in general and this is further amplified for certain distributions.
Furthermore, the strength of the robust bounds weakens with the increase in k. Hence,
the algorithm must explicitly explore a large part of the search space, leading to higher
run times when compared to CSG. In return, guarantees on robustness are provided.

6 Conclusion

In this paper, the robustness issue for CSG has been investigated. The contributions of
this paper are as follows: A notion of robustness in the CSG framework has been for-
malized and shown useful. Furthermore, the corresponding decision and (bi-objective)
optimization problems for RCSG have been studied and the computational complex-
ity has been identified. Finally. a complete algorithm has been presented for solving a
RCSG problem.

This work paves the way for a number of perspectives. Our complete algorithm
(AmorCSG) can solve RCSG problem instances such as waste-water treatment system.
For addressing large-scale RCSG instances, we plan to develop approximate algorithms.
Another perspective will consist in considering the robustness issue in a probabilistic
setting. In the framework presented in this paper, the robustness of a coalition structure
is evaluated from the “worst-case” viewpoint. Another approach would be to consider
each agent as “reliable” to a certain extent, e.g., by associating with each agent ai
a value α(ai) ∈ [0, 1] standing for the probability that the agent may remain in its
coalition at the next step. Obviously enough, this probabilistic setting departs from the
one we proposed here. Lastly, we plan to extend our framework to a dynamic setting
in which the set of agents A may change w.r.t. time, with the objective to apply it to a
distributed robot team reconfiguration problem [4].
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