
HAL Id: hal-03300801
https://univ-artois.hal.science/hal-03300801

Submitted on 26 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Incremental SAT-Based Method with Native Boolean
Cardinality Handling for the Hamiltonian Cycle Problem

Takehide Soh, Daniel Le Berre, Stéphanie Roussel, Mutsunori Banbara,
Naoyuki Tamura

To cite this version:
Takehide Soh, Daniel Le Berre, Stéphanie Roussel, Mutsunori Banbara, Naoyuki Tamura. Incremental
SAT-Based Method with Native Boolean Cardinality Handling for the Hamiltonian Cycle Problem.
14th European Conference on Logics in Artificial Intelligence (JELIA’14), 2014, Madeira, Portugal.
pp.684-693. �hal-03300801�

https://univ-artois.hal.science/hal-03300801
https://hal.archives-ouvertes.fr

1

Incremental SAT-based Method
with Native Boolean Cardinality Handling

for the Hamiltonian Cycle Problem

Takehide Soh1, Daniel Le Berre2, Stéphanie Roussel2,
Mutsunori Banbara1, and Naoyuki Tamura1

1 Kobe University 1-1, Rokko-dai, Nada, Kobe, Hyogo 657-8501 Japan
{soh@lion.,tamura@,banbara@}kobe-u.ac.jp

2 CNRS - Université d’Artois, Rue Jean Souvraz, SP-18, F-62307, Lens, France
{leberre,sroussel}@cril.univ-artois.fr

Abstract. The Hamiltonian cycle problem (HCP) is the problem of
finding a spanning cycle in a given graph. HCP is NP-complete and has
been known as an important problem due to its close relationship to the
travelling salesman problem (TSP), which can be seen as an optimiza-
tion variant of finding a minimum cost cycle. In a different viewpoint,
HCP is a special case of TSP. In this paper, we propose an incremental
SAT-based method for solving HCP. The number of clauses needed for
a CNF encoding of HCP often prevents SAT-based methods from being
scalable. Our method reduces that number of clauses by relaxing some
constraints and by handling specifically cardinality constraints. Our ap-
proach has been implemented on top of the SAT solver Sat4j using Scarab.
An experimental evaluation is carried out on several benchmark sets and
compares our incremental SAT-based method against an existing eager
SAT-based method and specialized methods for HCP.

1 Introduction

The Hamiltonian cycle problem (HCP) is the problem of finding a spanning
cycle, called Hamiltonian cycle, in a given graph. HCP is listed in Karp’s 21
NP-complete problems [24] and has been known as an important problem due
to its close relationship to the travelling salesman problem (TSP). On the one
hand, HCP is a special case of TSP. On the other hand, TSP can be seen as
an optimization variant of HCP and the development of an effective method for
TSP would have a significant impact in computer science.

HCP has been theoretically studied in graph theory [16,17]. Besides, HCP
is tackled in Operations Research (OR). For instance, Jäger and Zhang [21]
shows a method based on the Hungarian algorithm and Karp-Steele patching
for solving HCP on directed graphs. More recently, Eshragh et. al. shows a
hybrid algorithm and a Mixed Integer Programming (MIP) model for HCP on
undirected graphs [12].

HCP also has been studied in Artificial Intelligence using propositional sat-
isfiability (SAT). In SAT-based methods, the main issue for solving HCP is how

to encode connectivity constraints. Those constraints can also be seen as per-
mutation constraints which have been studied in Constraint Programming [18].
An encoding method was proposed in 90’s by [20,19] named later absolute en-
coding. Following that, in 2003, Prestwich proposed the relative encoding [28]
which requires fewer clauses than the absolute encoding. In 2009, Velev and
Gao further improve the relative encoding by merging encoding variables and
applying triangulation to a given graph [32] which achieved indeed 4 orders of
magnitude speedup on satisfiable structured graphs from the DIMACS graph
coloring instances compared to the one by Prestwich [28]. However, the number
of clauses in the encoding is increasing by O(n3) and it is still difficult to solve
graph instances which consist in over 1,000 nodes.

In this paper, we escape the current limitations of SAT-based methods using
an abstraction/refinement approach and by natively handling Boolean cardinal-
ity constraints. Note that we consider in our encoding for undirected graphs as
in [28,32].

– Incremental HCP Solving. The encoding of the connectivity constraints
often causes the generation of a huge amount of clauses which prevent SAT-
based methods from being scalable. Our method thus relaxes the connectivity
constraints to reduce the number of clauses and incrementally refines the
encoding by adding new clauses when sub-cycles are detected.

– Native Boolean Cardinality Handling. Another issue when translating
HCP to SAT is to express Boolean Cardinality (BC) constraints, for which
various encoding into CNF exists. In addition to using those existing BC
encodings, we propose to use a solver with native support for BC constraints,
called Native BC. The Native BC has the advantages to reduce encoding time
and memory usage. Native BC is provided as a specific constraint in the SAT
solver Sat4j [27].

– Implementation on a System Tightly Integrated with SAT Solvers.
Since SAT solvers are necessary to invoke many times in incremental HCP
solving, communication cost is not negligible. We thus implement the first
version of our method on Scarab [31] which is tightly integrated with Sat4j.

We carried out experiments on three benchmark sets. One is color04 which
is used in [32] and comes from DIMACS graph coloring instances [1]. The sec-
ond one is knight which is a set of knight’s tour instances used in [12]. The
third one is tsplib which is the whole set of HCP instances in TSPLIB [4].
On those benchmark sets, we compare the proposed incremental SAT-based
methods against the previous eager SAT-based method by Velev and Gao [32],
a HCP solving method by Eshragh et al. [12], and the state-of-the-art TSP
solver LKH. The latter provided the best answers for instances with unknown
optima from DIMACS TSP Challenge [2] and provides an interface for HCP.
In our experiments, we used the latest version 2.0.7 of LKH, whose perfor-
mance on HCP is improved from previous versions [3]. All benchmark, pro-
grams, experimental results explained in this paper are available in: http:

//kix.istc.kobe-u.ac.jp/~soh/scarab/jelia2014/

http://kix.istc.kobe-u.ac.jp/~soh/scarab/jelia2014/
http://kix.istc.kobe-u.ac.jp/~soh/scarab/jelia2014/

2 Hamiltonian Cycle Problems

The Hamiltonian cycle problem (HCP) is the problem of finding a spanning cycle
in a given graph. Let G = (V,E) be a graph where V is a set of n nodes and E
is a set of edges. A set of auxiliary arcs A = {(i, j), (j, i) | {i, j} ∈ E} is also
introduced for simple modeling. Let xij(i 6= j) be a Boolean variable for each
arc (i, j) ∈ A, which is equal to 1 when (i, j) is used in a solution cycle. Then,
a direct modeling of HCPs would be using the following constraints.∑

(i,j)∈A

xij = 1 for each node i = 1, . . . , n. (out-degree)

∑
(i,j)∈A

xij = 1 for each node j = 1, . . . , n. (in-degree)

∑
i,j∈S

xij ≤ |S| − 1, S ⊂ V, 2 ≤ |S| ≤ n− 2 (connectivity)

The out-degree and in-degree constraints force that, for each node, in-degree
and out-degree are respectively exactly one in a solution cycle. The connectivity
constraint prohibits the formation of sub-cycles, i.e., cycles on proper subsets
of n nodes. HCPs have been tackled by SAT-based methods. In [28], transitive
relations for all possible permutations of three nodes are used to represent the
connectivity constraint, which however results in O(n3) clauses. Velev and Gao
follow this encoding, i.e., it basically needs O(n3) clauses, but they practically
reduce the number of clauses by a triangulation for a given graph [32]. Besides,
they also improve encoding by merging ordering variables. As a result, their SAT-
based method achieves 4 orders of magnitude speedup on satisfiable structured
graphs from the DIMACS graph coloring instances. However, it struggles to find
a Hamiltonian cycle when the graph has over 1,000 nodes.

3 Proposal

3.1 Incremental HCP Solving

Previous SAT-based methods encode all constraints of HCP into SAT and com-
pute its solution using a single execution of the SAT solver: we call those methods
“eager”. The main drawback of those eager methods for HCP is the encoding of
connectivity constraints which results basically in O(n3) clauses.

To solve large HCPs, instead of encoding connectivity constraints into CNF
and run a SAT solver once, we relax those constraints and incrementally execute
the SAT solver on an abstraction of the problem. If the solution found con-
tains sub-cycles, we prevent them in the new abstraction by adding new clauses.
As such, we generate the clauses encoding the connectivity constraints “on de-
mand”, or “lazily”. Such approach correspond to a Counterexample-Guided Ab-
straction Refinement (CEGAR) loop for HCP which was originally proposed in
the context of model checking [9] and depicted in Fig. 1.

1: Ψ := initial abstraction of G ;
2: while (Ψ is satisfiable)
3: if (Solution contains only one cycle)

// we found a Hamiltonian cycle of G
4: return Solution
5: Ψblock := Construct blocking clauses;

// (two for each sub-cycle)
6: Ψ := Ψ ∧ Ψblock ;
7: return there is no Hamiltonian cycle;

Fig. 1: CEGAR Iteration for Solving HCP

5

6

1

48

2

7

3

C
1

C
2

Fig. 2: Counter Example

The initial abstraction is built by omitting the connectivity constraint. That
is, cardinality constraints corresponding to in/out-degree constraints are en-
coded. We also encode xij+xji ≤ 1 for each edge {i, j} ∈ E to prevent sub-cycles
between two nodes. Those encoding results in a CNF formula Ψ (Line 1), which
represents an abstract HCP constraint model. It ensures that every node must
belong to some cycle but it does not ensure that the cycle is a Hamiltonian cycle.
Fig. 2 shows such a case: every node belongs to a cycle but there is more than one
cycle. SAT solving is then executed and the CEGAR iteration starts (Line 2).
Whenever the formula is unsatisfiable, the iteration ends and it is decided that
there is no Hamiltonian cycle (Line 8). If the formula is satisfiable and its model
contains a single cycle then it must be a Hamiltonian cycle (Line 4). Otherwise,
the solution consists of multiple sub-cycles which represent counter examples.
To refine the constraints, some blocking clauses are added to Ψ to block each
sub-cycle clockwise and counterclockwise (Line 6 and 7). This procedure is it-
erated until a Hamiltonian cycle is found or Ψ becomes unsatisfiable. Blocking
clauses are generated to prevent the sub-cycles to appear again. In the case of
Fig. 2, the following four clauses are generated: ¬x12∨¬x23∨¬x37∨¬x78∨¬x81
to block C1 clockwise. ¬x87 ∨ ¬x73 ∨ ¬x32 ∨ ¬x21 ∨ ¬x18 to block C1 counter-
clockwise. ¬x46∨¬x65∨¬x54 to block C2 clockwise. ¬x45∨¬x56∨¬x64 to block
C2 counter-clockwise. Note that, even in the worst case, we do not always need
to block all sub-cycles in a given graph since in/out-degree constraints ensure
that every node belongs to some cycle. For instance, in Fig. 2, it is not neces-
sary to block a sub-cycle (1, 2, 3, 4, 8) since the remaining nodes {5, 6, 7} cannot
construct any sub-cycles.

3.2 Native Boolean Cardinality Handling

By the relaxation of connectivity constraints, we may reduce considerably the
number of clauses compared to eager SAT-based methods [19,28,32]. This sec-
tion discusses how to encode the remaining in/out-degree constraints, which
form Boolean cardinality (BC) constraints

∑m
i=1 xi # k where xi ∈ {0, 1} are

Boolean variables, m is an integer represents the number of variables, the re-
lational operator # is one of {≤,≥,=}, k is an integer represents the degree
(threshold) of the constraint.

Boolean cardinality encoding into CNF has been actively studied [30,6,29,13].
When we use binomial encoding,

(
m
k

)
clauses are needed. It is improved by using

Totalizer (O(m2)) [6], or Sequential Counter (O(m·k)) [30]. However, even when
using the Sequential Counter for encoding the BC constraints in HCP, O(n2)
clauses are needed for graph instances consisting of n nodes.

One way to avoid generating those clauses is to support natively a specific
representation of those cardinality constraints in the SAT solver. It is expected
that such specialized SAT-based systems could benefit from avoiding the time
of CNF encoding, and reducing the number of constraints in the solver, which
reduces the amount of memory used.

The Sat4j library [27] started in 2004 as an implementation in Java of the
original Minisat specification [11]. In contrast with recent versions of Minisat,
and most SAT solvers, the underlying SAT solver is still designed to work with
custom constraints, not just clauses. Sat4j has a native representation of BC
constraints, denoted Native BC in the rest of the paper. It currently emulates
a BC constraint

∑n
i=1 xi ≥ k. This specific constraints generates clauses of size

n − k + 1 when it detects a conflict with the current assignment. In addition,
whenever it detects that n− k variables are already assigned to 0, it forces the
remaining variables to be 1 using the n−k falsified literals as an explanation for
those propagation. One can consider that such constraint generates “on demand”
or lazily the clauses of the binomial encoding.

4 Experimental Results

This section provides experimental results to evaluate the effectiveness of the
incremental HCP solving, Native BC, and their implementation on Scarab. We
also have a comparison with other specialized methods. The following systems
are used:

– Eager SAT-based method (referred to as Velev) is our implementation of the
previous SAT-based method by Velev and Gao [32]. It runs with Minisat2.2.

– HCP/TSP Solver LKH is the state-of-the-art TSP solver which provided
the best answers for instances with unknown optima from DIMACS TSP
Challenge [2] and provides an interface for HCP. In our experiments, we used
the latest version 2.0.7 of LKH, whose performance on HCP is improved from
previous versions [3].

– Incremental HCP Solving (referred to as S4J-S, S4J-N) is the proposed meth-
ods implemented on Scarab. Two versions are prepared to measure the ef-
fectiveness of using Sequential Counter or Native BC, respectively. We have
also tested another encoding method Totalizer in all instances but omit their
results since they are similar (or slightly inferior) to Sequential Counter.
Readers can check the results of Totalizer in the supplemental web page.
Note that learned clauses are cleared after each iteration since keeping them

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100 120

Ti
m

e
(s

ec
)

#Solved

Velev
LKH

S4J-S-Loose
S4J-S
S4J-N

Fig. 3: Cactus Plot on color04, knight, and tsplib

across calls did not accelerate searches but other heuristic values are kept
through all iterations.

– We also prepared, S4J-S-Loose, a variant of S4J-S, which is implemented on
loosely integrated system to measure the implementation difference.

All experiments are carried out on Intel Xeon 2.93 GHz within the timelimit
of 500 seconds. 4GB heap memory is allowed in the Java virtual machine set-
tings (-Xms4g -Xmx4g). Sat4j with the prebuilt solver “Glucose21” is used for
incremental HCP solving, which gave the best overall results from the available
solvers of the library on the benchmarks used. Benchmark sets are selected from
the literature of the previous eager SAT-based method [32] and a HCP solving
method by Eshragh et al. [12]: color04 comes from DIMACS graph coloring in-
stances [1] used in the eager SAT-based method [32]. It consists of 119 instances
whose number of nodes ranges from 11 to 10,000. knight is a set of knight’s
tour instances used in [12]. In the literature, only 3 instances of sizes 8x8, 12x12,
20x20 are used. In the experiments, we additionally use 8 instances of sizes 30x30,
40x40, ..., and 100x100 for wider comparisons. tsplib is the whole set of HCP
instances of TSPLIB [4]. Similar to knight, two of them are used in [12] and we
additionally use the remaining 7 instances for wider comparisons.

Fig. 3 shows a cactus plot denoting all results of compared systems: Velev,
LKH, S4J-S, S4J-N, and S4J-S-Loose. In the result, the eager SAT-based method
Velev solved 60 instances but slows down in early stage. A reason is the number
of encoded clauses which explodes to over 100 million even when #nodes of
the input graph is 500. It is obviously closed to the limit of SAT solvers. For
instance, it generates 194,186,195 clauses for DSJC500.5 (#nodes is 500) and
could not encode latin square (#nodes is 900) within 500 seconds. LKH solved

Table 1: #Solved per Graph-Size

Graph Size #Ins.
Velev [32] S4J-N
#S (%) #S (%)

n ≤ 200 54 45 (83) 48 (89)
200 < n ≤ 2000 63 15 (23) 49 (78)

2000 < n 21 0 (0) 8 (38)

Table 2: Statistics

S4J-S S4J-N
#Ite. #Cyc. #Ite. #Cyc.

Median 10 48 7 20
Average 60.0 311.8 37.9 310.5

Maximum 3332 9188 761 7604

81 instances, which is more than Velev but less than the incremental HCP solving
methods: S4J-S-Loose, S4J-S, and S4J-N. Among them, the difference of S4J-
S-Loose and S4J-S is not small: S4J-S is faster especially until 100 seconds.
Consequently, incremental HCP solving with Native BC S4J-N solved the most
instance – it is always faster than other methods. A reason is that incremental
methods can start with much less clauses and practically do not need so many
iterations and blocking clauses as is explained in the latter part of this section.
We also have a literature-based comparison with results provided by Eshragh
et. al. [12]. They carried experiments on knight’s tour problems of 8x8, 12x12,
and 20x20, and TSPLIB problems of alb1000 and alb2000. Runtimes of S4J-N
range from 1 second to 8 seconds while runtimes of their method range from 2
seconds to 165,600 seconds.

Table 1 shows the distribution of the number of solved instances for the num-
ber n of nodes on Velev and S4J-N. In case of n ≤ 200, both Velev and S4J-N
solved more than 80% of instances. However, in case of 200 < n ≤ 2000, Velev
could solve only 23% of instances while S4J-N solves 78% of instances. Moreover,
even the case of 2000 < n, S4J-N still solves 38% of instances. With regard to
the number of nodes of graphs, the largest satisfiable instance solved by Velev
is 1-Insertions 6 (n = 607), one by S4J-N is alb5000 (n = 5, 000) 1. In the
literature [7,32], triangulation techniques are proposed to reduce the number of
transitivity constraints and they are supposed to be effective for sparse graphs. If
we select graph instances whose density are less than 0.03 and number of nodes
are less than 2000 (33 out of 138), the difference between Velev and S4J-N be-
comes smaller but S4J-N still solves 25 instances while Velev solves 16 instances.

Table 2 shows the median, average, and maximum numbers of iterations and
cycles for all satisfiable instances solved by each of S4J-S and S4J-N. We can
read the followings from this table. The maximum number of cycles found for
one instance is less than 10 thousands, that is, we need at most 20 thousands
clauses in addition to the base clauses for solving those instances. Also, the
median numbers of cycles show that we generally need much less additional
clauses. The median numbers of iterations and cycles are almost stable in two
encoding methods. In some cases, from the maximum numbers of iterations, we
need to launch the SAT solver over thousands times. Considering that the given
time limit is 500 seconds, the cost of the invocation of SAT solving procedure is
preferred to be low in incremental HCP solving.

1 S4J-N solved qg.order100 (n = 10, 000) with 512 seconds a bit longer than timelimit.

In addition to above experiments and analyses, readers can find further ex-
periments and comparisons (e.g. using other SAT solvers) in:
http://kix.istc.kobe-u.ac.jp/~soh/scarab/jelia2014/.

5 Related Work

In 2000, Clarke et al. proposed Counterexample-Guided Abstraction Refinement
(CEGAR) in the context of model checking [9], which receives a program text
and abstract functions are extracted from it. Following their work, there are
some applications of CEGAR to Presburger Arithmetic [25], deciding the theory
of Arrays [14], and the RNA-folding problem [15]. Recently, the use of CEGAR
was proposed to solve QBF [23], Circumscription [22] and argumentation infer-
ence [10]. We believe that such approach can be applied to even more cases in
Artificial Intelligence.

In the context of solving TSP, there is a traditional OR technique proposed
in 80’s which translates TSP into the assignment problem [8,26]. Jäger and
Zhang [21] apply this OR technique to HCP on directed graphs by using the
Hungarian algorithm and Karp-Steele patching. Though only for a small pro-
portion of instances, a SAT approach is used in their rare last step (14 out of
4266 instances) to guarantee completeness. It is described in the literature [21]
that their method is less effective to undirected graphs, in particular, in the case
that a given graph have no Hamiltonian cycle their method will enumerate all
sub-cycles in the main step which cause a long running time. In our method, the
SAT approach is central and part of a CEGAR loop, which practically performs
well on undirected graphs for both SAT/UNSAT problems. Comprehensive ex-
periments are carried by using several encoding/solvers. Our work provides some
hints on the importance of (not) encoding cardinality constraints into CNF.

6 Conclusion

In this paper, we proposed an incremental SAT-based method with Native BC
for solving HCP. It overcomes other methods by reducing the cost of full en-
coding of connectivity constraints and CNF encoding of BC constraints. Our
work gives analyses for encoded clauses and iterations, and also points out that
pre-processing affects the convergence of CEGAR iterations for solving HCP.
Recently, Ab́ıo et. al. presented an approach which balance the use of encoding
and the use of custom propagators within SMT [5]. In our work, a custom prop-
agator is used for BC while a lazy encoding of the combination constraints is
performed using CEGAR. It is another kind of balance between encoding and
propagation.

Acknowledgements

This work was partially funded by JSPS KAKENHI Grant Numbers 24300007
and 25730042.

http://kix.istc.kobe-u.ac.jp/~soh/scarab/jelia2014/

References

1. DIMACS Graph Coloring. http://mat.gsia.cmu.edu/COLOR/instances.html.

2. DIMACS TSP Challnege. http://dimacs.rutgers.edu/Challenges/TSP/.

3. LKH. http://www.akira.ruc.dk/ keld/research/LKH/.

4. TSPLIB. http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.

5. Ignasi Ab́ıo, Robert Nieuwenhuis, Albert Oliveras, Enric Rodŕıguez-Carbonell, and
Peter J. Stuckey. To encode or to propagate? the best choice for each constraint
in SAT. In CP, pages 97–106, 2013.

6. Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel. A translation of pseudo
boolean constraints to SAT. Journal on Satisfiability, Boolean Modeling and Com-
putation, 2(1-4):191–200, 2006.

7. Randal E. Bryant and Miroslav N. Velev. Boolean satisfiability with transitivity
constraints. ACM Trans. Comput. Log., 3(4):604–627, 2002.

8. Giorgio Carpeneto and Paolo Toth. Some new branching and bounding criteria
for the asymmetric travelling salesman problem. Management Science, 26(7):pp.
736–743, 1980.

9. Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In CAV, pages 154–169, 2000.

10. Wolfgang Dvorák, Matti Järvisalo, Johannes Peter Wallner, and Stefan Woltran.
Complexity-sensitive decision procedures for abstract argumentation. Artif. Intell.,
206:53–78, 2014.

11. Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Proceedings of the
6th International Conference on Theory and Applications of Satisfiability Testing
(SAT 2003), LNCS 2919, pages 502–518, 2003.

12. Ali Eshragh, Jerzy A. Filar, and Michael Haythorpe. A hybrid simulation-
optimization algorithm for the Hamiltonian cycle problem. Annals OR, 189(1):103–
125, 2011.

13. Alan M. Frisch and Paul A. Giannaros. SAT encodings of the at-most-k constraint:
Some old, some new, some fast, some slow. In Proceedings of the The 9th Inter-
national Workshop on Constraint Modelling and Reformulation (ModRef 2010),
2010.

14. Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and arrays.
In CAV, pages 519–531, 2007.

15. Vijay Ganesh, Charles W. O’Donnell, Mate Soos, Srinivas Devadas, Martin C.
Rinard, and Armando Solar-Lezama. Lynx: A programmatic SAT solver for the
rna-folding problem. In SAT, pages 143–156, 2012.

16. Ronald J. Gould. Advances on the Hamiltonian problem - a survey. Graphs and
Combinatorics, 19(1):7–52, 2003.

17. Ronald J. Gould. Recent advances on the Hamiltonian problem: Survey III. Graphs
and Combinatorics, 30(1):1–46, 2014.

18. Brahim Hnich, Toby Walsh, and Barbara M. Smith. Dual modelling of permutation
and injection problems. J. Artif. Intell. Res. (JAIR), 21:357–391, 2004.

19. Holger H. Hoos. SAT-encodings, search space structure, and local search perfor-
mance. In Proceedings of the 16th International Joint Conference on Artificial
Intelligence (IJCAI 1999), pages 296–303, 1999.

20. Kazuo Iwama and Shuichi Miyazaki. SAT-variable complexity of hard combinato-
rial problems. In Proceedings of the IFIP 13th World Computer Congress, pages
253–258, 1994.

21. Gerold Jäger and Weixiong Zhang. An effective algorithm for and phase transitions
of the directed Hamiltonian cycle problem. J. Artif. Intell. Res. (JAIR), 39:663–
687, 2010.

22. Mikolás Janota, Radu Grigore, and João Marques-Silva. Counterexample guided
abstraction refinement algorithm for propositional circumscription. In JELIA,
pages 195–207, 2010.

23. Mikolás Janota, William Klieber, João Marques-Silva, and Edmund M. Clarke.
Solving qbf with counterexample guided refinement. In SAT, pages 114–128, 2012.

24. Richard M. Karp. Reducibility among combinatorial problems. In Complexity of
Computer Computations, pages 85–103, 1972.

25. Daniel Kroening, Joël Ouaknine, Sanjit A. Seshia, and Ofer Strichman.
Abstraction-based satisfiability solving of presburger arithmetic. In CAV, pages
308–320, 2004.

26. Gilbert Laporte. The traveling salesman problem: An overview of exact and ap-
proximate algorithms. European Journal of Operational Research, 59(2):231–247,
June 1992.

27. Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2. Journal on Sat-
isfiability, Boolean Modeling and Computation, 7:59–64, 2010. system description.

28. Steven David Prestwich. SAT problems with chains of dependent variables. Dis-
crete Applied Mathematics, 130(2):329–350, 2003.

29. João P. Marques Silva and Inês Lynce. Towards robust CNF encodings of car-
dinality constraints. In Christian Bessiere, editor, Proceedings of the 13th Inter-
national Joint Conference on Principles and Practice of Constraint Programming
(CP 2007), volume 4741 of Lecture Notes in Computer Science, pages 483–497.
Springer, 2007.

30. Carsten Sinz. Towards an optimal CNF encoding of boolean cardinality constraints.
In Proceedings of the 11th International Joint Conference on Principles and Prac-
tice of Constraint Programming (CP 2005), LNCS 3709, pages 827–831, 2005.

31. Takehide Soh, Naoyuki Tamura, and Mutsunori Banbara. Scarab: A rapid proto-
typing tool for SAT-based constraint programming systems. In SAT, pages 429–
436, 2013.

32. Miroslav N. Velev and Ping Gao. Efficient SAT techniques for relative encoding
of permutations with constraints. In Australasian Conference on Artificial Intelli-
gence, pages 517–527, 2009.

