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Fundamenta Informaticae ./ 012223 14.5  IOS PressUsing possibilistic logic for modeling qualitative decision 4ATMS9based algorithms Didier Dubois) Daniel Le Berre) Henri Prade) R2egis SabbadinIRIT # Universit,e Paul Sabatier # 34567 Toulouse Cedex <France?e#mailA fdubois& leberre& prade& sabbading -irit/frAbstract' This paper describes a logical machinery for computing decisions4 where theavailable knowledge on the state of the world is described by a possibilistic propositionallogic base 8i9e94 a collection of logical statements associated with qualitative certainty levels;4and where the preferences of the user are also described by another possibilistic logic basewhose formula weights are interpreted in terms of priorities9Two attitudes are allowed for the decision maker< a pessimistic risk=averse one and anoptimistic one9 The computed decisions are in agreement with a qualitative counterpart tothe classical theory of expected utility4 recently developed by three of the authors9A link is established between this logical view of qualitative decision making and an ATMS=based computation procedure9 ECcient algorithms for computing pessimistic and optimisticoptimal decisions are Dnally given in this logical setting 8using some previous work of thefourth author;9Keywords8 qualitative decision- possibilistic logic- possibility theory- ATMS8;< IntroductionAn increasing interest for qualitative decision has recently appeared in the Arti:cial Intelligencecommunity = The term >qualitative decision theory? refers to more than one kind of repreAsentation8 Some approaches consider only allAorAnothing notions of utility and plausibility- forinstance BBonet and GeEner FGHIJ others use integerAvalued functions BTan and Pearl FLMHI- BPearlFLNHI8 Boutilier FLH exploits preference orderings and plausibility orderings by focusing on themost plausible states8 In BDubois and Prade FQRHI- a qualitative analog to von Neumann and This paper is an extended and revised version of a conference paper by the same authors 5 678



 Dubois& Le Berre& Prade and Sabbadin0Possibilistic logic for qualitative decisionMorgenstern postulates, intended for rational decision under ordinal uncertainty has been provedto be equivalent to the maximization of a qualitative utility function9 Steps to a Savage;likequalitative decision theory are taken by =Dubois, Prade and Sabbadin @AB, AACD9In classical decision theory under uncertainty, the preferences of the decision maker aredirectly expressed by means of a utility function, while a probability distribution on the possiblestates of the world represents the available, uncertain information about the situation underconsideration9 However, it seems reasonable to allow for a more granular and natural expressionof both the preferences and the available knowledge about the world, under the form, e9g9,of logical statements from which it would be possible to build the utility and the uncertaintyfunctions9 The knowledge about the world is supposed to be given in this paper under theform of a set of pieces of knowledge having diIerent levels of certainty, while the preferences areexpressed by a set of goals with diIerent levels of priority9In Section A we propose two syntactic approaches based on possibilistic logic, the Jrst onebeing more cautious than the second, for computing optimal decisions9 They are Jrst presentedin the case of binary uncertainty and preferences, before considering graded uncertainty andpreferences9 Here gradual uncertainty and preferences are expressed by means of two distinctpossibilistic propositional logic bases =which are stratiJed basesD9 Then, the semantics underly;ing the two syntactic approaches are shown to be in agreement with the two qualitative utilityfunctions advocated in =Dubois and Prade @BKCD9 This section is a revised version of a workshoppaper =Dubois et al9 @ALCD9In Section M, we recall some background on the ATMS framework, and it is shown how toencode a decision problem as one of label computation9 Then a procedure called MPL =Frenchacronym for Literal based Preferred ModelsD, is described for computing optimal decisions interms of labels9 It relies on a modiJed Davis and Putnam @QC semantic evaluation algorithm,described in =Castell et al9 @SCD9 Two algorithms based on the use of this procedure, are proposedto compute optimistic and pessimistic optimal decisions respectively9 An example is given inSection T, that illustrates the algorithms9 ! Qualitative decision in strati0ed propositional bases !"! NotationsIn this article, upper case letters =K!D! P!H! % % %D denote sets of propositional formulas thatcan possibly be literals9 For any set A of formulas, A denotes the logical conjunction of theformulas in A, A! denotes the logical disjunction of the formulas in A9 ! ! Binary caseA decision problem under uncertainty can be cast in a logical setting in the following way9 Avocabulary of propositional variables contains two kinds of variablesV decision variables andstate variables9 Let D be the set of decision variables9 Decision variables are controllable, that



Dubois& Le Berre& Prade and Sabbadin0Possibilistic logic for qualitative decision  is" their value can be .xed by the decision3maker6 Making a decision then amounts to .xing thetruth value of every decision variable :or possibly just a part of them=6 On the contrary statevariables are .xed by nature" and their value is a matter of knowledge by the decision maker6He has no control on them :although he may express preference about their values=6Let K be a knowledge base :here in propositional logic= describing what is known about theworld including constraints relating the decision variables6 Let P be another propositional basedescribing goals delimiting the preferred states of the world6 K" and P are assumed to be .nite"as is the logical propositional language L under consideration6 Assume K and P are classicallogic bases" and preferences are all3or3nothing6 The aim of the decision problem" described in thelogical setting" is to try to make all formulas in the goal set P true by acting on the truth3value ofdecision variables which control the models of K and P 6 A good decision d :from a pessimisticpoint of view= is a conjunction of decision literals that entails the satisfaction of every goal inP " when formulas in K are assumed to be true6 Therefore" d should satisfyK  d ! P $ :D=Moreover" K  d must be consistent" for if it is not the case" :D= is trivially satis.ed 6 Underan optimistic point of view" we may just look for a decision d which is consistent with theknowledge base and the goals" i6e6K  d  P "F #$ :G=This is optimistic in the sense that it assumes that goals will be attained as soon as their negationcannot be proved6The similarity is striking" between the two modes of decision under uncertainty and the twomodes of diagnosis reasoning" namely abductive and consistency3based diagnosis solutions :e6g6"Hamscher et al6 HGIJ=6 It is then tempting to encode a logical decision problem under uncertaintyby means of techniques coming from the theory of assumption3based truth maintenance systems:ATMS= initiated by De Kleer HDDJ6 In order to better .t the framework of ATMS :the toolwe will use to compute optimal decisions=" we have to change the encoding of decisions fromconjunctions of literals to sets of positive literals6 This notion will be explained in greater detailin Section P6 In the following we implicitly assume that the result of the decision d does not modify the contents of theknowledge base K7 which may include for instance pieces of generic conditional knowledge8 Clearly7 this is notalways the case8 Just consider a factual knowledge base describing that either the door or the window is open7 andthe decision; have the door shut =if it is not already the case>? obviously we are here facing an updating problemwhere we should not conclude that the result of the action makes sure that the window is open8 So7 in the moregeneral case7 K  d should be changed into K ! d 7 where ! denotes an updating operation7 and K ! d is theresult of the updating8 The study of such an issue is left for further research8 The consistency of K  d shouldbe restricted to the consistency of d and the factual part of K when K includes =consistent> generic knowledgealso8



 Dubois& Le Berre& Prade and Sabbadin0Possibilistic logic for qualitative decision !"! Strati(ed caseIn the logical form of decision problems2 the knowledge base may be pervaded with uncertainty2and the goals may not have equal priority9 In classical decision theory2 uncertainty is representedby means of a probability distribution over the possible states of the world2 and the goal statesare ranked according to a real:valued utility function9 The decision problem amounts to <ndinga decision that maximizes an expected utility function9Let us enrich our logical view of the decision problem2 by assigning levels of certainty toformulas in the knowledge base2 and levels of priority to the goals9 Thus we obtain two strati<edlogical bases that model gradual knowledge and preferences9 It has been shown @e9g92 Dubois etal9 BCDEF see also Section H9IJ that a possibility distribution ranking the possible worlds encodesthe semantics of a possibilistic logic base2 i9e92 a strati<ed base whose formulas are gathered intoseveral layers according to their levels of certainty or priority9 First we focus on how a decisionproblem can be stated2 expressing knowledge and preferences in terms of strati<ed bases9 Thenwe will show that the corresponding semantics of the decision process can be represented by thequalitative utility introduced in @Dubois and Prade BCMEJ9In the whole paper we will assume that certainty degrees and priority degrees are commen:surate2 and assessed on the same @<nite2 as is the language under considerationJ linearly orderedscale S9 This assumption will be discussed later on9 The top element of S will be denoted Cl 2 andthe bottom element2 OI 9 Knowledge and preferences are stored in two distinct possibilistic bases9The knowledge base is K P f@"i# $iJg where $i " S @$i % OI J denotes a degree of certainty2 andthe "iQs are formulas in L where decision literals may appear9 The base expressing preferencesor goals is P P f@(i# )iJg# where )i " S @)i % OI J is a degree of priority2 and the (i are formulasof L @where decision literals may also appearJ9A question may be raised as to the meaning of the diSerent levels of preference or certaintythat are assigned to each sentence9 It is clear that the preference ordering can be directly givenby the decision maker9 The uncertainty ordering may be assessed by a unique agent classifyingthe sentences into layers of diSerent levels of certainty9 In case the knowledge is given by multiplesources2 we can suppose that they have levels of reliability @which may be diSerentJ2 and thusrank the sentences according to the levels of reliability of the sources which provide them @allthe information given by a source having the same reliabilityJ9 On the contrary if the sourcesare equally reliable2 but each of them has its own ordering2 we have to suppose that there existsa common agreement on the meaning of the layers of each source2 so as to be able to merge thelayers of the diSerent sources9 Besides2 system Z @Pearl BHVEJ may also help to rank order piecesof generic conditional knowledge by allowing to take the speci<city of formulas into account@Benferhat et al9 BCEJ9Let K! @resp9 P"J denote the set of formulas with certainty at least equal to $ @resp9 theformulas with priority at least equal to )J9 Note that we only consider layers of K @or P J suchthat $ %OI and ) %OI since KOI P POI P L9 In the following we also use the notations K! andP" @with $ *Cl and ) *Cl J2 for denoting the set of formulas with certainty or priority strictlygreater than $ or ) respectively9 In particular KOI P K and POI P P  where K and P  



Dubois& Le Berre& Prade and Sabbadin0Possibilistic logic for qualitative decision  denote the sets of formulas in K and P respectively2 without their certainty levels4 We shallnotice that since the scale S is 7nite2 K 8 K  2 where " is the level of S just above " ;thesame property holds for P <4Making a decision amounts to choosing a subset d of the decision set D 8 flig where theli are distinguished variables of the language L4 The corresponding decision d! is the logicalconjunction of literals in the chosen subset4 The variables that are not in D are state variables4Our objective is to rankBorder decisions by means of a relation "2 which will be done by usinga utility function U C P;D<$ S such that d " d % U;d< & U;d <4 In the following2 we will usetwo diEerent functionsC U" which agrees with a pessimistic view2 and U" which agrees with anoptimistic one4In the 7rst case ;pessimistic view<2 we are interested in 7nding a decision d ;if it exists< suchthat K! ' d! ( P!" ;G<with " high and ) low2 i4e42 such that the decision d together with the most certain part of Kentails the satisfaction of the goals2 even those with low priority4 d is implicitly assumed to beincluded in the most certain part of K)d ;certainty level equal to Il <4 Moreover2K! 'd! shouldbe consistent for the "Js satisfying ;G<4 One way of guaranteeing this consistency requirement isto assume K!OI ' d! is consistent4 By convention2 utility OI is assigned to every decision d thatis not consistent with K"4 Besides2 observe that the ) satisfying ;G< are necessarily such that) * OI ;since P!OI 8 L is inconsistent<4Let n be the order reversing map of scale S4 Namely if S is OI 8 " , - - - , "i , - - - ,"n 8 Il then n;"i< 8 "n#i2 for i 8 N/ - - - / n4We are interested in 7nding " as high as possible2 and ) as low as possible such that CK! ' d! ( P!" 4 Ideally2 d2 along with the most certain part of K only ;i4e4 KIl<2 shouldentail every goal in P 2 even the least preferred ones ;POI <4 Such a decision should have amaximal utility ;Il<4 The worst case would be when a decision is unable2 even with the wholeknowledge;KOI <2 to entail at least the most preferred formulas of P ;i4e4 PIl<4 Such a decisionshould have a utility of OI 4Suppose now that d is such that K! ' d! ( P!" 2 with ) , n;"<4 Then we also haveK! ' d! ( P!n! " because Pn! " * P"2 and so P!" ( P!n! "4Reciprocally2 if ) * n;"< then n##;)< , "4 Since K * Kn! !""2 P" * P" and K! 'd! ( P!" 2it follows that K!n! !""'d! ( P!" 4 Letting ) 8 n;"<2 we get K! 'd! ( P!n! "4 So it is possible toassume that ) 8 n;"< in the maximization problem which amounts to maximizing " such thatK! ' d! ( P!n! "2 with " * OI 4Finally2 the pessimistic utility of decision d2 de7ned at the syntactic level2 takes the formCDe"nition '()( U";d< 8 max $K" !d"$P"n! "( K" !d" %$# "-and U";d< 8 OI if f" * OI / K! ' d! ( P!n! " and K! ' d! +8 ,g 8 -4



 Dubois& Le Berre& Prade and Sabbadin0Possibilistic logic for qualitative decisionIf now we take the optimistic/ we are interested in 2nding a decision d such that 5K   d  P ! !6 " 789with # and $ as low as as possible 7# % OI / $ % OI in 7899= That is5 the preferred states areamong the most plausible ones and are also consistent with the decision= The optimistic utilityof d is thus given byDe"nition '('( U!7d9 6 maxK   d  P  " #n7#9(and U!7d9 6 OI if f# ) Bl ( K   d  P  !6 "g 6 %=Observe that U!7d9 6 Bl iC K OI  d  P OI !6 "/ that is if the decision is consistent with everygoal and piece of knowledge= !"! Possibilistic semantics of decision in strati2ed basesLet us present the semantics underlying the logical expression of decision problems we haveadopted= Interpreting the #iEs 7which are attached to the layers of K9 as the degrees of necessityof the formulas in the corresponding layers of K & d/ we compute a possibility distribution *Kdover F 7the set of all the interpretations of the language L9/ expressing the semantics of K 7see/e=g=/ 7Dubois et al= HBIJ99 5', ( F( *Kd7,9 6 min!&i' i"$K()j &&i n7#i9 if , j6 d ( and*Kd7,9 6 Bl if f-i., j6 *-ig 6 % and *Kd7,9 6 OI if , !j6 d /The possibility distribution *Kd rankKorders the interpretations according to their level ofpossibilityLplausibility induced by the levels of certainty of the formulas in K= This semanticsagrees with the idea that an interpretation , is all the less possible as it violates formulas -iwith an higher level of certainty #i= Note that since K OI  d is supposed to be consistent/ *Kdis normalized/ i=e=/ there exists at least an interpretation , with degree *Kd7,9 6 Bl=From P / by interpreting the $i attached to the layers of P as degrees of priority of theformulas in P / we build a utility function 0 over F in a similar way 7, is all the more satisfactoryas it violates no goal with a high priority9507,9 6 min!*j '!j"$P')j &*j n7$j9/and 07,9 6Bl if f1j., j6 *1jg 6 %=The two syntactic utility functions de2ned in Section Q=R can be expressed in terms of thepossibility distribution *Kd and the utility function 0= We have the following results5



Dubois& Le Berre& Prade and Sabbadin0Possibilistic logic for qualitative decisionTheorem &'(' Semantical expression of /U  d!01Let us assume that K!OI  d! is consistent1U  d! " max !K  !d "P n  ! # " min%# max n %Kd &!!' ( &!!)Proof+  for a +nite scale!1 !&*& j" d!'  & j" K # d! $  ! +i' #i! % K'#i & # ' & j" +i!$  ! +i' #i! % K'& j" (+i ' #i , #!$  min!'i( i"#K!%j#%'i n #i! - n #!!$ %Kd &! - n #!21 In the same way we can prove that  & j" Pn! " $  ( &! & #!21 We use these results in the following <!#*# - OI >  K!  d! ) P!n! "!$  !&> & j" K # d ' & j" Pn! "!$  !&' %Kd &! - n #! ' ( &! & #!$  !&' n %Kd &!! , # ' ( &! & #!!$  !&'max n %Kd &!!' ( &!!& #!$  min%# max n %Kd &!!' ( &!!& #!21 Thus we proved <!# - OI '  K!  d! ) P!n! " ! $  min%# max n %Kd &!!' ( &!!& #!21 It is then obvious to show that <min%# max n %Kd &!!' ( &!! & max !K  !d "P n  ! #> as a limit case21 The other inequality may be proved by reductio ab absurdo> supposing thatmin%# max n %Kd &!!' ( &!! " / - max !K  !d "P n  ! #2Then> since min%# max n %Kd &!!' ( &!! & / ' K!*  d! ) P!n!*"> we have a contradictionwith the assumption we have just made2 So we get the result2  This result is closely related to an older one by  Prade FGHI! expressing the necessity of afuzzy event in terms of level1cuts of fuzzy sets for the in+nite scale FK>HI> noticing that TheoremH expresses the necessity of a fuzzy event2 A similar theorem is easy to prove for the optimisticutility function<Theorem &'&' Semantical expression of /U  d!01U  d! " max !K  !d !P  &#'n #! " max%# min %Kd &!' ( &!!)Proof+  for a +nite scale!1 !#*K!  d!  P! *" +' ,& *& j" K # d # P 1 & j" K # d$ ! +i' #i! % K'#i - # ' & j" +i$ ! +i' #i! % K'& j" (+i ' #i - #



 Dubois& Le Berre& Prade and Sabbadin0Possibilistic logic for qualitative decision mini!" j !#i n#!i$ ! n#!$ "Kd##"$ ! n#!$% in the same way we can prove 2 #" j3 P%  %##"$ ! n#!$4Thus7 we proved2 ##"&#" j3 K%$d$P%  min#"Kd##"$) %##"$$ ! n#!$7 that is2 %!&K#% &d#&P#% '3 (7 max"$!min#"Kd##$) %##$$ ! n#!$% as a limit case2 max%&K!"#d!#P!" % & n#!$ ) max"$!min#"Kd##$) %##$$% the converse inequality may be proved ab absurdo in the same way as in the proof ofTheorem >4?7 supposing thatmax%&K!"#d!#P!" % & n#!$ * max"$!min#"Kd##$) %##$$  The semantical expression of U"#d$ obtained in Theorem >4? is exactly the qualitative utilityfunction introduced in #Dubois and Prade C?DE$4 Among the postulates given in C?DE so as tojustify the pessimistic qualitative utility7 some are qualitative counterparts of von Neumannand Morgenstern axioms4 Others express the risk aversion of the decision maker4 Another oneexpresses the fact that a one%shot decision is concerned4 It emphasizes that the utility of theconsequence of the decision7 when we know that the state is in A7 is of the form %##$7 for some# * A #the worst one for the pessimistic utility$4 We do not consider #as with expected utilitytheory$7 average beneOts7 gained after repeated actions4Maximizing U"#d$ means Onding a decision d whose highly plausible consequences are amongthe most preferred ones4 The deOnition of Phighly plausibleQ is decision%dependent and reRectsthe compromise between high plausibility and low utility expressed by the order%reversing mapbetween the plausibility scale and the utility scaleS U"#d$ is small as soon as it exists a possibleconsequence which is both highly plausible and bad with respect to preferences4 This is clearlya risk%averse and thus a pessimistic attitude4 When "Kd is the characteristic function of a setA7 U"#d$ reduces to2 U"#d$ 3 min"$A %##$which is the Wald criterion7 that evaluates the worth of a decision as the worst%case utility4This criterion has been also recently justiOed in #Brafman and Tennenholtz CUE$ in a Savage%likesetting4 By changing the risk aversion postulate into a risk%prone postulate #Dubois and PradeC?WE$7 the other utility function U"#d$ can be justiOed4 It corresponds to an optimistic attitudesince U"#d$ is high as soon as it exists a possible consequence of d which is both highly plausibleand highly prized4 ! Computation of decisionsOur purpose is to propose an eXcient and uniOed way of computing both optimistic and pes%simistic qualitative decisions4 In this section7 we give some algorithms based on the use of theMPL procedure #which stands for Mod(eles Pr,ef,er,es par leurs Litt,eraux in French$ described in#Castell et al4 C\E$ to solve qualitative possibilistic decision problems4 The MPL procedure willbe brieRy described #for a complete description7 see #Castell et al4 C\E$$7 and it will be shown



Dubois& Le Berre& Prade and Sabbadin0Possibilistic logic for qualitative decision  how a single pass of MPL allows to compute the decisions consistent with the bases K andP 5 whereas with two passes of MPL we obtain the  label% of P 7which represents the set of8minimal9 pessimistic decisions:; Notions of ATMS and of a label are described in the followingparagraphs; !"! ATMS and decision theoryIn this section5 links between Assumption)based Truth Maintenance Systems 7ATMS: and pesBsimistic qualitative decision are formalized; But Grst of all we restate some basic deGnitionsabout ATMS; !"!"! Basic de*nitions of ATMSThe ATMS technique was introduced by 7De Kleer KLLM5 KLNM:; We consider a set of propositionalsymbols S divided in two parts5 the set of assumptions H5 and the other symbols NH; A set ofassumptions is called an environment; An environment E is inconsistent for a set of clauses KiP K #E $ %; An environment is consistent iP it is not inconsistent;De*nition  !"! A nogood is an inconsistent environment minimal for setBinclusion 7i;e;5 E is anogood iP K #E $ % and & 'E ! ( E#K #E ! $ %:;De*nition  !4! The label of a formula $5 denoted labelK7$:5 is the set of all consistent enviBronments Ei minimal for setBinclusion such that K #E i $ $ ;Example  !"! Let K Q fA b * c+ B * b+ c *g; S Q fA+B+ b+ cg; H Q fA+Bg; ffA+Bgg isthe set of KRs nogoods; labelK7b:QffBgg5 labelK7c:Qfg5 labelK7A:QffAgg5 labelK7B:QffBgg;ATMS assumptions are useful for computing decisionsS assumptions are distinguished positiveliterals5 therefore decisions will be modelled by sets of distinguished positive literals in D5 conBsistent with the constraints in K; When d contains several positive literals5 d should not beinterpreted as a sequence of decisions but as a single decision consisting in assigning simultaneBously a positive truth value to every literal in d; For any such decision denoted d5 d denotesthe logical conjunction of the positive literals in d; The set of all decisions which obey 7L: andsuch that none of their proper subsets 7when they are given in the form of subsets of D: obeys7L:5 can then be seen as an extension of De KleerRs notion of label of a literal KLLM5 to the notionof label of a conjunction of formulas 7of the form labelK7P ::;Example  !4! The available decisions are to buy zero5 one or two items; The decision setwill be D Q fZero+ One+ Twog5 and K should contain the following constraints expressing themutual exclusiveness of the available decisionsS fOne , Two , Zero+-One , -Two+-One ,-Zero+-Two , -Zerog . K; For this example5 the decisions that are consistent with theconstraints areS d Q fOneg5 d Q fTwog or d Q fZerog; These de&nitions are slightly di0erent from De Kleer5s de&nitions6 For instance9 the label notion was originallyde&ned for a literal6



 ! Dubois& Le Berre& Prade and Sabbadin0Possibilistic logic for qualitative decision !"!#! Using an ATMS in qualitative possibilistic decision theoryWe propose to translate our decision problem into a problem tractable by an ATMS5 Let usde7ne the set of assumptions symbols H : D5 Then; assume that K is the knowledge base ofthe decision problem in conjunctive normal form and consider the goal base P as a formula P 5Using the symbols in H; a decision d is a subset of H5 For any decision d such thatK !d " P and K ! d #: $ there is at least one element E of labelKCP D according to the assumption setH such that E % d5Proposition  !"!K ! d " P and K ! d #: $ if and only if &E ' labelKCP D s/t/ E % d/Proof> immediate from the de7nition of a label5A good CpessimisticD decision is then a superset of an element from labelKCP D5 In the followingwe will only look for decisions which are minimal for set inclusion5Let K : 1 ! 1! / / / ! 1n and P : 2 ! 2! ! / / / ! 2m5 Finding all decisions d maximizing3 such thatH K # ! d " P n"## and K # ! d #: $ is equivalent to 7nding labelK CPn"##D #: fgmaximizing 35 !"! The MPL procedureLet us present here the MPL procedure introduced in CCastell et al5 LMND5 This procedure doesthe followingH given a logical formula 1 in conjunctive normal form; involving two types ofliterals; it computes its projection by restricting to one type of literalsO and this projection isthe most informative such consequence of 1 expressed in disjunctive normal form5 It is shownthat nogoods in an ATMS are easily obtained by means of this procedure5 The de7nitions areslightly diPerent from the ones in CCastell et al5 LMND but the principle is still the same5 This newformalization improves the clarity of the proofs5 Further information; proofs and links betweenthe two formalisms can be found in CLe Berre LRSN and Castell et al5 LTN D5 !#!"! De@nitionsLet E be a set of literals5 * E denotes f+xjx ' Eg Cwhere ++x simpli7es into xO e5g5H E :f+c6 a6 bg; * E : fc6+a6+bgD $5De@nition  ! ! AimplicantsC implicatesD Let 1 be a propositional formula5 Let E; F beconsistent sets of literals5- The conjunction of literals Cor phraseD E is an implicant of 1 iP E " 15 E is a primeimplicant of 1 iP E " 1 and # &F an implicant of 1 such that F . E5 Interpretations and models are used in propositional calculus sense/ They are represented either by the setof their literals assigned to True or as a conjunction of literals/



Dubois& Le Berre& Prade and Sabbadin0Possibilistic logic for qualitative decision    The disjunction of literals 0or clause1 E is an implicate of ! i2 ! ! E 3 E is a primeimplicate of ! i2 ! ! E and " #F an implicate of ! such that F $ E3In the following9 H will denote a consistent subset of distinguished literals of the language L9that will be used to restrict the language to a subset of propositional variables3De"nition '()( *restriction. LetM be a subset of literals corresponding to an interpretation3We call restriction to H of M the set H %M 9 denoted RH0M13Clearly9 if M is viewed as a conjunction of literals9 RH0M1 is a phrase where only literals inH appear3 It can be viewed as a partial interpretation3 The following de@nition replaces thepreferred models de@nition of 0Castell et al3 ABC13 A preferred HEmodel was previously de@nedas a complete assignment of truth value to a subset H of the symbols9 containing a maximalnumber of Gpreferred symbolsH3De"nition '(/( *restricted models. Let ! be a formula3 Let I ' H 3 I is a HErestrictedmodel of ! i2 #M a model of ! such that I I RH0M13The following results are borrowed from Castell et al3 ABCAJC3Property 6( I is a HErestricted model of ! i2 the phrase 0I( ) 0H* I11! is consistent with !3Indeed since H is consistent9 if 0I( ) 0H* I11 were inconsistent9 it means that there wouldbe a literal both in I and in H * I 3 Now9 0I( ) 0H * I11! consistent with ! is equivalent tothe existence of a common model  3Theorem '(6( I is a H-restricted model of !+ #E! an implicant of ! such that H % E I I1To prove the , side9 just choose as an implicant the phrase built from a common model ofI! and !3 Conversely any implicant can be extended to a model3 A HErestricted model of !can thus be obtained by considering any of its implicants E! and masking the literals not in H 3Note that the obtained phrase is not an implicant of !3De"nition '(9( Let ! be a formula3 Let I ' H 3 I is aHEimplicant of ! i2 -M 9 an interpretationsuch that I 'M 9 M is a model of !3It means that a HEimplicant of ! is a HErestricted model which implies ! 3 One can proveindeed that the minimal 0for setEinclusion1 HEimplicants of ! are exactly the prime implicantsof ! included in H 3 In fact the minimal HErestricted models can be retrieved from a DNFQTheorem '(:( The set of minimal H-restricted models of a DNF ! I E!! . E!" . ( ( ( . E!n isthe set of inclusion-minimal elements of RH0E!1) RH0E"1) ( ( ( ) RH0En1 Let D be the set of symbols involved in H0 I! " 1H # I22 is exactly a preferred D8model of " in the sense of9:;0



 ! Dubois& Le Berre& Prade and Sabbadin0Possibilistic logic for qualitative decisionProof$ It is easy to show that the RH*Ei+ are H-restricted models of #3 Suppose now that itexists E9 a minimal H-restricted model of # that is not in the set of inclusion-minimal elementsof RH*E +$ RH*E!+$ % % % $ RH*En+3 So9 it exists M 9 model of #9 such that RH*M+ : E9 and i$ RH*E+ !: RH*Ei+3 Now9 as it is impossible that RH*Ei+ " E *minimality of E+9 thereexists a literal l # RH*Ei+ and l !# E9 and this for all i3 We have l !# M 9 because l # H 9 andE : RH*M+ : M $H 3 So9 M falsi?es the RH*Ei+9 and so falsi?es #9 which is contradictory3  So computing the H-restricted models is obvious if the formula # is in disjunctive normalform *DNF+3Example$ Let K : f&A'c$&A'B$&B'&c'Ag and H : f&A$&Bg3 The disjunctive normalform of K is *&B ) &A+ ' *&A ) &c+ ' *A ) B ) c+3 The H-restricted models are f&A$&Bg9f&Ag9 and fg3 The only H-implicant of K is f&A$&Bg3We can de?ne a function MPH *resp3 PIH+ that from any formula # of the language computesanother formula made of literals in H 9 in DNF form9 such that the prime implicants *elementsof the disjunction+ of MPH*#+ *resp3 PIH*#++ are exactly the minimal *for the inclusion of setsof literals+ H-restricted models *resp3 H-implicants+ of #3 In the example9 we ?nd respectivelyfg *which denotes the tautology *+ and f&A$&Bg3 In the example9 we have MPH*#+ : * andPIH*#+ : &A ) &B3 Clearly9 the following properties hold3Property ./  #$ PIH*#+ + # +MPH*#+3Proof$ If E is an element of the disjunction PIH*#+9 it is a prime implicant of #9 which provesthe ?rst +3 Now9 any model M of # de?nes a H-restricted model RH*M+3 So9 there exists E an element of the disjunction MPH*#+9 such that E , RH*M+9 so the second + is proved3  Theorem 2/2/ Let E , H#  #$ # + E! i% MPH*#+ + E!#Proof$ *-+ Let M be a model of #3 RH*M+ is a H-restricted model of #9 so it containsan element of MPH*#+3 A fortiori9 M contains an element of MPH*#+9 so M models MPH*#+3As MPH*#+ + E!9 we get that M models E!3*.+ We have # + E!3 Suppose it false that MPH*#+ + E!3 So9 there exists E i in MPH*#+9such that Ei $E : /3 By de?nition9 0M 9 model of #9 such that Ei : RH*M+9 so Ei , M 3 AsE , H 9 E $M , E $ P $M : E $Ei : /9 so M falsi?es E!9 which is a contradiction3  Theorem 2/3/ Let E , H#  #$E + # i% E + PIH*#+#Proof$ *-+ is obvious3*.+ As E + #9 it contains a prime implicant F of #3 As E , H 9 F is in PIH*#+9 and soE + PIH*#+3  Corollary 2/5/ If all the prime implicants of # are in H then MPH*#+ 1 PIH*#+This corollary is very important because that is the reason why we can easily compute labels andnogoods in an ATMS using theMPH function when H is a set of hypothese literals3 In a classicalimplicantJimplicate calculus9 this condition is not satis?ed3 However9 a similar9 but extended9approach is introduced in *Castell and Cayrol LMN+9 to compute prime implicatesJimplicants3



Dubois& Le Berre& Prade and Sabbadin0Possibilistic logic for qualitative decision  ! !"!"! Principle of the MPL algorithmThe famous problem in complexity theory3 called SAT3 for SATis7ability of a set of clauses3 isNP:complete; Some of the best complete algorithms which solve SAT3 ?i;e; C:SAT ABCD3 SATZAFGD3;;;H3 are based on an enumerative approach3 the Davis and Putnam algorithm AJD?also calledDavis:Putnam:Loveland procedure ABLDH;A Davis and Putnam algorithm enumerates the interpretations of a knowledge base K until it7nds a model ?consistent caseH if any ?the inconsistent case is when it 7nds no modelH; So doing3it is obvious that searching for models is closely related to 7nding a disjunctive normal form fora knowledge base3 since it is easy to exhibit models of a DNF; One of the diQerences with ouralgorithm MPL is that MPL does not stop after the 7rst model of K3 and rather looks for allthe minimal H:restricted models of K;Davis and PutnamSs algorithm builds a binary search tree such that at each node3 it brancheson the truth value of a literal; So3 using a linear ordering relation over the set of literals3 we canrank the interpretations I w;r;t; the subset ordering of their restriction to H 3 RH?IHT at eachnode3 we will 7rst branch to falsify a literal from H ; Then3 if M is the 7rst interpretation whichsatis7es the given set of clauses3 RH?MH denotes a minimal H:restricted model;Now3 the problem is  to eliminate the H*restricted models which are not minimal within ouralgorithm2; Because of the use of subset ordering3 the idea is to add a clause that non minimal H:restricted models will falsify; Then3 all the H:restricted models returned by our algorithm will beminimal ones; For this purpose3 after having found a modelM 3 we add a clause C V  l RH M!!l;Note that each interpretation I such that RH?MH " RH?IH falsi7es C;The following algorithm implements our modi7ed Davis and Putnam procedure; We divide theset of clauses in two partsT K is the original set of clauses and KA is the set of added clauses;This algorithm3 invoked with K(KA V fg and H as parameters3 computes exactly MPH?KH;Algorithm 56 MPL?K3KA3HHX this function returns the minimal H:restricted models of K YDataT K a set of clauses YKA a set of added clauses YH a consistent set of literals YResultT M a set of minimal H:restricted modelsbeginM % fg X M is a local variable YModel Pref Lit+K KA fg M  H,Yreturn M YendThis algorithm is a modi7ed version of the Davis and Putnam algorithm; It produces abinary search tree3 which is developed ?the variables in H are instanciated successivelyH untila model of K is found; The usual algorithm of Davis and Putnam stops at this point3 but aswe want to 7nd all the minimal H:restricted models of K3 we have to go on and search for the



 ! Dubois& Le Berre& Prade and Sabbadin0Possibilistic logic for qualitative decisionother models of K* But as we search for minimal models0 when a model M is found0 we add anew clause f! l M!H!"lg in the set of added clauses0 KA* This insures that when building theother models of K0 we will not 6nd one that contains M * In this way0 when the algorithm isran till its end0 it produces all the minimal H:restricted models of K0 and only them*In the function Simplify;< we use classical techniques of Davis and Putnam based algo:rithms such as unit propagation0 restricted resolution* We donBt take into account pure literals"0because if we do0 the resulting set of clauses is not logically equivalent to the initial one ;theconsistency is preserved0 but it is not suDcient for our purpose<*The function Choose Literal;< returns a literal from H which is not yet assigned if possible0else the word EnothingF* We can use the work made in the SAT community about heuristics tochoose this literal ;for instance0 C:SAT JKLM0 Unit Propagation heuristics JOPM0 etc<*Algorithm )* Model Pref lit;K0 var KA0 IP 0 var M 0H<DataQ K a set of clauses RKA a set of added clauses RIP a consistent set of literals RH a consistent set of literals RResultQ M a set of minimal H:restricted modelsbeginSimplify3K%IP4 RT $ is the empty clause Rif ;K<IP U fg and $ %& ;KA<IP thenT we have found an implicant of K RM 'M( fIP )Hg RKA' KA ( f!l IP!H!"lg Relseif $ %& ;K (KA<IP thenT we look for a literal of H in K Rl' Choose literal3K%IP %H4 Rif l %U 'nothing, thenT we begin with the negation of the literal RModel Pref Lit3K%KA%IP ( f"lg%M %H4RModel Pref Lit3K%KA%IP ( flg%M % H4RelseT we just make a consistence test Rif ;K (KA<IP consistent thenM ' M ( fIP )Hg RKA' KA ( f!l IP!H"lg Rend a literal is pure in a formula i. its complementary literal does not appear in this formula4



Dubois& Le Berre& Prade and Sabbadin0Possibilistic logic for qualitative decision  !Let us take an example, let K - fB ! c#"c ! A ! Bg. Let H - fA#Bg. The next 1gureshows the binary tree developped by our algorithm. It can be divided into two steps. First> weuse the modi1ed Davis and Putnam algorithm described before> to assign a truth value to allliterals from H involved in the formula. Then> we only need to know if the resulting formula isconsistent or not> thanks to Theorem B.C. The consistency test is performed by a usual Davisand Putnam algorithm. If the formula is consistent> we have a minimal HDrestricted model.The restriction to H of the 1rst model found is fBg. So> we add in the knowledge base theclause "B. In a same way> we add the clause "A. This clause prunes the last branch. So thetwo minimal HDrestricted models are fAg and fBg.       !!!!! SSSSS!!!!! ###SSSSSSSJJJJJ % BBM B is added to the base
K * fB " c" c"A "Bg

 A is added to the basefg fBg fAg fA"Bg Restriction to PUsual Davis and PutnamConsistence testInconsistent Consistent Consistent A A B B  B Bpruned by  Afcgfgfc" cg Modi2ed Davis and PutnamfB " c" c "B g fB " c" BgfB ! c""c!B""B gfB ! c""c !A !B""A""B gfB ! c""B"$g
 !"! ! Application to ATMSNow> we show how to use the algorithm MPLGH in the framework of ATMS KCCLKCML. Indeed>the basic elements of an ATMS> labels> nogoods> will be eNciently computed by the algorithm>without any minimization step contrary to De KleerQs original one.Proposition  !"! The set of nogoods of a knowledge base K with respect to a set of hypothesesH is exactly the set of prime implicants of MPHG"MP&HGK'HH6proof3 E is a nogood iS E % H is minimal such that K' &E' ' (> or K' ' G) EH!.K' ' G) EH! iS MP&HGK'H ' G) EH! GTheorem B.BH>MP&HGK'H ' G) EH! * E' ' "MP&HGK'HE' ' "MP&HGK'H iS E' ' PIHG"MP&HGK'HH GTheorem B.TH.Or equivalently> E' 'MPHG"MP&HGK'HH Gcorollary B.C since the literals of "MP&HGK'H arein HH. So> a nogood is exactly a prime implicant of MPHG"MP&HGK'HH.  



 ! Dubois& Le Berre& Prade and Sabbadin0Possibilistic logic for qualitative decisionProposition ()() Let K be a set of clauses and a set of hypotheses H 0 Let ! be a formula0The label of ! exactly contains the set of prime implicants of MPH !MP!H K""!!!! that arenot among the nogoods of K0The proof is similar to the preceding one since we are then interested in the nogoods of K #!!4We have to remove the nogoods from the label because every formula is logical consequence of aninconsistent one4 This can be done by initializing KA with the nogoods< in the MPL algorithm 4Proposition ()*) Let K be a set of clauses0 Let ! and % two formulas0 The label of ! " % isexactly the prime implicants of MPH !MP!H K "!!!"!MP!H K "!%!! 8except Nogoods ofK:0Example ()12 continued K @ f!A % !b % c(!B % b(!cgMP!H K! @ !A % !B  ff!Ag( f!Bgg!<!MP!H K! @ A " B  ffAg( fBgg!<MPH !MP!H K!! @ A "B  ffA(Bgg!4So the set of nogood is ffA<Bgg4Let us point out the fact that only the algorithm MPL,- is used to compute labels and noDgoods4 DiFcult operations like subsumption are not explicitly performed for these computations4 ! ! Computation of optimistic optimal decisions via MPLThe use of MPL to solve an optimistic decision problem is easy4 Assuming that K and P areCNF representations of knowledge and goal bases ! of the decision problem< for a decision dsuch that K" " d" " P" '@ ( there is at least one element E of MPL K # P( fg( D! such thatE ) d4Proposition ()6)K" " d" " P" '@ ( * +E ,MPL K # P( fg( D! s/t/ E ) d/Proof8 immediate from the deLnition of minimal DDrestricted models4  A good  optimistic! decision is then a consistent superset of an element fromMPL K#P( fg( D!4In the following we will only look for decisions which are minimal for set inclusion4Let K" @ !""!# / / /"!n and P" @ %""%#" / / /"%m4 Finding d maximizing U# d! @ n 3! suchthatN K"""d""P"" '@ (  indeed< deLnition O4O is equivalent to LndingMPL K"#P"( fg( D! '@ fg We have to compute nogoods before any label computation7 The set of added clauses KA contains exactly MPH:K ; after a call to MPL:K%KA < fg% H;7!A strati>ed possibilistic knowledge base can always be put in an equivalent base of weighted clauses B CDEsince necessity measures are minFdecomposable for conjunction7



Dubois& Le Berre& Prade and Sabbadin0Possibilistic logic for qualitative decision  !minimizing  %&This method has only one restriction3 K  P must be a CNF formula: so P must be a CNFformula: that is P must contain only clauses&The following algorithm computes the best decisions given K and P : according to the optimisticutility3Algorithm )* Optimistic> very simple algorithm to compute optimal optimistic decisions ?Data3 K a stratiBed knowledge base: P a gradual preference base: D the set of decisionsymbols&Result3 F  ! such that nG !% is the utility of the best optimistic decision:F D the set of the best optimistic decisions&begin " OI > we consider all the knowledge ?D "MPLGK # P & fg& D% ?while D J fg and  ( Kl doIncG % > Eliminate the least certain strate remaining in K and P ?D "MPLGK # P & fg& D% ?return ( nG %&D + #end !"! Computation of pessimistic optimal decisions via MPLIt was shown in the previous sections that nogoods and labels of an ATMS set can be obtainedafter one or two invocations of the MPL algorithm&The main advantage of the MPLFtechnique is its ability to compute the label of a unique literalwithout computing the labels of the other literals as with De KleerRs technique& Moreover: anMPLFbased ATMS can be applied on any set of clauses GCNF formula% and can compute in thesame way the label of a literal: a disjunction or a conjunction of literals&The label computation presupposes a computation of the nogoods: in order to remove fromthe label the inconsistent environments& Nogoods and labels are computed in the same way:from the knowledge base GK% for noFgoods: and from the knowledge base augmented with thenegation of the formula: GK  &,%: for the label of this formula&We are now able to describe an algorithm for the pessimistic case& We need to compute thenogoods: and then the required label& The restriction here is to have K  G' P % as a CNFformula: so P" being a DNF formula& Since P is a CNF: this procedure will accept only P asa single clause or a single phrase Gboth are CNF and DNF form%& Thus: we have to use a parFticularity of MPL to compute the label of a conjunction of formulas3 the label of a conjunction-  , can be performed from the two Brst steps needed to compute the label of both - and ,GProposition U&V%& This approach allows to stop label computation as soon as the intermediate



 ! Dubois& Le Berre& Prade and Sabbadin0Possibilistic logic for qualitative decisionlabel is empty*Algorithm )* Compute Pessimistic Decision+ the -nal algorithm2 based on the MPL algorithm 7+ Let P  ! 8 P  P * P  ! is the set of preferences with priority level !7+ " denotes the level =either of certainty or of priority>7+ of the next non@empty layer below " 7DataB K the knowledge base2P the preference base2D the set of decision symbols*ResultB "! the utility of the best pessimistic decisions2D the set of the best pessimistic decisions*begin"# Fl + we consider the most certain layer 7S # fg 7while S 8 fg and " & OI do+ we must -rst compute the nogoods of K! 7NG # MPL=K!+ fg+&D> + -rst call to MPL 7NG#& MPL='NG + fg+ D> + NG contains the nogoods of K! 7S #MPL=K!( & PFl+ fg+&D> + 7S #& MPL='S  +& NG+D> + S contains the label of PFl 7! # Fl 7while ! & n="> and S )8 fg doS  S  !MPL K " # P !!% fg%#D! "# S contains the label of P! "S  MPL &S  %# NG%D! "Dec +! "if S 1 fg then , max ,% n +!! "return 1 ,% S 2  endLet us brie5y illustrate the behavior of this algorithm on an example<Example/ K and P contain > layers  both scales are commensurate!? First of allA we consideronly the most certain layer of KA and we compute successively the labels of P"A P#A P$A andCnally the label of P% which is the Crst one to be found empty  see Figure D!? Now , takesthe value max ,% n +!! 1 max G% G! 1 G? ThenA we consider K# and compute the labels? OnceagainA the labels of P"A P#A P$A are found nonJempty  see Figure K!A then the value of + is DAwhich is not strictly greater than n ,! 1 D? ThereforeA , remains unchangedA and as S '1 fgAthe algorithm returns , and S?
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Figure .' Example /continued5 !"! Conclusions about the implementationIt must be pointed out that the algorithm does not make the assumption that K OI  d shall beconsistent< For each value of "? the nogoods of K are computed? and the decisions returnedby the algorithm with a utility " are guaranteed to be consistent with K ' Assuming /asis suggested earlier in this paper5? that K OI  d be consistent would simplify the algorithm?by making the nogoods computation useless' Furthermore? when a new layer of knowledge isconsidered in the algorithm? it is useless to reCcompute the labels of the P! that were previouslyfound nonCempty< the augmented knowledge base? as it is consistent? together with the previouscandidate decisions? keeps on allowing to deduce P!' Then we shall not reinitialize $ to &l in theloop' Anyway? the algorithm proposed here? by forgetting the consistency assumption? allows tocope with inconsistent knowledge bases'One of the major advantages of our approach is that we only need to implement the MPLalgorithm' An eJcient implementation of MPL entails an eJcient implementation of the decisionalgorithm' Thanks to the relation between the MPL algorithm and the Davis and Putnam



 ! Dubois& Le Berre& Prade and Sabbadin0Possibilistic logic for qualitative decisionalgorithm) some improvements on the latter can be used in the former 4heuristics for instance56Another advantage of this technique is the ability of an MPL=based ATMS to compute the labelof a phrase 4a conjunction of literals5 or a clause6 So we can compute the label of each preferenceclause in a simple way6The anytime aspect of the MPL algorithm can be pointed out here6 If you stop the algorithmbefore its normal end) you may obtain a subset of the set of optimal decisions6 This can be usedfor instance if we only needC a single optimal decision) or the utility of the optimal decision4s56 ! Example !"! The problemConsider 4Savage EFGH) pp6 IF=IJ5Ks omelette example6 The problem is about deciding whetheror not adding an egg to a J=egg omelette6The possible states of the world areC The egg is good 4denoted g5) and The egg is rottendenoted r6 The available acts areC Break the egg in the omelette 4BIO5) Break it apart in acup 4BAC5) and Throw it away 4TA56 The other literals used for expressing knowledge areC Ne4meaning that we obtain a N=egg omelette5) Je 4we obtain a J=egg omelette5) wo 4the omelette iswasted5) we 4an egg is wasted5) and c 4we have a cup to wash56 The possible consequences areCNe if g holds and we choose BIOO Ne ! c if g holds and we choose BAC) 4Nc5O Je if r holds andwe choose TA) 4J5O Je ! c if r holds and we choose BAC) 4Jc5O Je ! we if g holds and we chooseTA) 4Jw5O and wo if r holds and we choose BIO) 4w56The uncertain part of the knowledge base consists only in our opinion on the state offreshness of the egg6Concerning the preferencesC Rrst of all) we do not want to waste the omelette) then ifpossible) we prefer not to waste an egg6 Then) if possible) we prefer to avoid having a cupto wash if the egg is rotten 4that is) if it would have been better to throw it away directly56Finally) if all these preferences are satisRed) then we prefer to have a N=egg omelette) and thebest situation would be to have) in addition) no cup to wash6 !,! Knowledge and preferences basesFrom the expression of the problem given as above) we can construct two stratiRed bases offormulasC the knowledge base K) and the preferences base P 6Let us use the scale fT. I. G. F. U. Jg for assessing the certainty levels and preferences) whereIl VJ and OI VT6 Just notice that we could have used linguistic values instead of numbersConly comparison and order=reversing are meaningful operations here6 In terms of priority=valuedformulas) we get the following base P V f4$wo. J5. 4$we. U5. 4$c% $Je. F5. 4$Je. G5. 4$c. I5g6



Dubois& Le Berre& Prade and Sabbadin0Possibilistic logic for qualitative decision  !The preferences could alternately be expressed by the means of a semantical utility function 4 Namely6  can be computed from the priority7valued formulas form of the knowledge base <seeSection >4?6 and the Section @4@ that followsAB  <!A C minfn<#jAs%t%<'j( #jA ! P and ! jC #'jg%The utilities assigned to the consequences would be6 using this propertyB  <EeA C F6  <EcA C@6  <FeA C ?6  <FcA C >6  <FwA C G6  <wA C H4The two following stratiIed sets of clauses represent knowledge and preferences and can beused as input Iles for our program4  Knowledge base K  ,,,,, i represents the ith layer,,,,, 3  decisions BIO8 BAC and TA are mutually exclusive@A BIO BAC TA BBIO BAC @A BBIO TA @A BBAC TA @A B  we get a C@egg omelette if and only if the egg is good and we  break it in the omeletteBg BIO @A Ce Bg BAC @A Ce BCe @A g BCe TA @A B  if we break the egg apart and it is rotten or if we throw it  away we get a 3@egg omeletteTA @A 3e Br BAC @A 3e BBAC @A cw Bcw @A BAC B3e @A TA r B3e BIO @A B  An egg is wasted if and only if we throw away a good eggg TA @A we Bwe @A g Bwe @A TA B  the omelette is wasted if and only if we break a rotten egg in it



  Dubois& Le Berre& Prade and Sabbadin0Possibilistic logic for qualitative decisionr BIO $% w 'w $% BIO 'w $% r '(( an egg is either good or rotteng r $% '$% g r '33333 4(( in this example9 we are slightly convinced that the egg is good$% g '(( Preference base P33333 @w $% '33333 Awe $% '33333 B@e cw $% '33333 4@e $% '33333 Ccw $% 'Remarks' Notations' these two +les are used in the above form as input +les for our program6      i represents the beginning of the expression of the ith layer9 either of the knowledge base9or of the preference base6 The scale used for assessing preference and certainty levels isdetermined from the highest layer number6 If it is n9 then the scale is f>! " " " ! ng6 The text



Dubois& Le Berre& Prade and Sabbadin0Possibilistic logic for qualitative decision  !after   is a commentary, Pieces of knowledge and preference are expressed by the means ofclauses8 separated by !8 "# is the material implication8 the left part is in conjunctive form8the right part in disjunctive form ;e,g,< BIO BAC "#  !;BIO"BAC=  !BIO#!BAC8)e "# BIO BAC  !>e # BIO #BAC=,$ The two bases8 and especially the knowledge base in this example8 may express more thanwhat is really necessary for computing optimal decisions, Anyway8 usually the decisionmaker is not able to distinguish the knowledge that will be useful for the decision problem8from the one that will not be of any use, The decision maker is only concerned withgiving enough knowledge for the program to compute optimal ;pessimistic or optimistic=decisions, Furthermore8 the knowledge or the preference base may be redundant8 which isof no importance for the decision problem,In the following paragraph8 we will see how the algorithm works on this example, !"! Computation with MPLOptimistic caseFirst step < & C OIC E,The Computation MPL;KOI % POI8fg8D= gives us one solution fBIOg,The optimistic utility of this solution is n;&= C Jl,Pessimistic caseFirst step < & C JlC K,Computation of the nogoods < NG C ffBIO,BACg, fBIO, TAg, fBAC,TAgg,Computation of the label of !w " !we " ;!Ke # !cw=" !Ke " !cw ;n;&= C J=<LabelK ;!w= C ffBACg, fTAgg, 0 C K,LabelK ;!w " !we= C ffBACgg, 0 C L,LabelK ;!w " !we " ;!Ke # !cw= C fg, 0 C M,Stop, Try with & C n;0= C O ;the new value of & is max;&, n;0== C O8 since K !" and K #" areempty=,Second Step< & C O,Computation of the nogoods < NG C ffBIO,BACg, fBIO, TAg, fBAC,TAgg,Computation of the label of !w " !we ;n;&= C L=<LabelK;!w= C ffgg, 0 C K,LabelK;!w " !we= C ffBACg, fBIOgg, 0 C L,Stop, n;&= 4 M C 0,So8 the pessimistic optimal decisions for N;G=CO are BIO and BAC for a pessimistic utility& C O,



 ! Dubois& Le Berre& Prade and Sabbadin0Possibilistic logic for qualitative decision ! ! SemanticsIn this paragraph* we show how the preceding example can be dealt with in a semantical way5Of course* we will see that both approaches lead to the same result5First of all* we shall notice the correspondence between the representations of the preferencesin terms of prioritized formulas and in terms of utility functions over the consequences of actions5Indeed* a utility function  * such as the above one* can be always put under the form= >!? @ maxj min>"!>qj?$ %j?with  ! j@ qj $  >!? @ %j * and where "!>qj? @ Al if ! j@ qj * and OI if not5 This maxCmin formcan be turned into the equivalent minCmax form  P >!? @ mini maxf"!>pi?$ n>%i?g* where werecognize the standard semantics of a stratiDed possibilistic knowledge base P @ f>pi$ %i?g* usedin Section G5A part of the knowledge base K is certain >Al @ level I?* including constraints over thedecision set= fBIO $BAC $ TA$%BIO $ %BAC$ 0 0 0g* factual knowledge fg $ r$%g $ %rg* andknowledge about the system* e5g5 fg & BIO ' Je$ g & TA ' we$ 0 0 0g5 The only part of theknowledge base that may be uncertain is about the state of freshness of the egg >represented bya necessity valued literal = >g$N>g?? or >r$N>r??5In this example* the possibility distribution 6Kd restricting the more or less plausible conCsequences of a decision d* depends only on the possibility distribution on the two possible statesg and r* namely* on K>g? and K>r?5 Let N>g? @ n>K>r?? and N>r? @ n>K>g?? >the certainty ornecessity of an event is the impossibility of the opposite event?5 Note that min>N>g?$ N>r?? @ OI *where OI is here the bottom element of our scale >since the possibility distribution over fg$ rgshould be normalized whatever decision d?5The pessimistic utilities of the possible decisions* given by U are the following* accordingto the levels of certainty of g and r=C U >BIO? @ min>max>n>K>r??$  >w??$max>n>K>g??$  >J???*which simpliDes into U >BIO? @ N>g?5C U >BAC? @ min>max>n>K>r??$  >Ic??$max>n>K>g??$  >Jc???5Thus* U >BAC? @ min>max>N>g?$ G?$ N?5C U >TA? @ min>max>n>K>r??$  >I??$max>n>K>g??$  >Iw???5Thus* U >TA? @ A if N>g? : O and min>P$max>N>r?$ A?? if not5The best decisions are therefore=C Break the egg in the omelette if N>g? @ I >we are sure that the egg is good?5C Break it in the omelette or apart if N>g? ( fG$ P$ Ng >we are rather sure that the egg is good?5C Break it apart in a cup if N>g? ; G and N>r? ; G >we are rather ignorant on the quality ofthe egg?5C Throw it away or break it apart if N>r? @ G >we have a little doubt on its quality?5C Throw it away if N>r? : G >we do not think that the egg is good?5Notice the importance of the commensurability assumption in the computation of U whereboth degrees of certainty and preferences are involved5 Note also the qualitative nature of the



Dubois& Le Berre& Prade and Sabbadin0Possibilistic logic for qualitative decision  !approach& since the results depend only on the ordering between the levels in the scale4 !"! Calculation with symbolic levelsAnother solution for computing the pessimistic utility of a decision that combines the syntacticand the semantic approaches can be adopted4 We can translate K into another knowledge baseK using additional symbols: Ai which will express the fact that we need pieces of knowledge belonging to the ith layerof K to reach the goal& Pj which will express the fact that some goal in layer j cannot be reached4 pij which are non<assumption symbols& representing the individual preferences in layer j4Let K  be the non<strati>ed knowledge base obtained from K such that each clause C fromthe >rst layer is replaced by A ! C& while the second layer is replaced by the two clausesA! ! g( A" ! r4  Knowledge base K,  we get a ./egg omelette if and only if the egg is good and  we break it in the omelette7A9 g BIO /= .e 7A9 g BAC /= .e 7A9 .e /= g 7A9 .e TA /= 7@@@AA /= g 7AB /= r 7A preference layer j is considered as ?satis>ed@ if and only if every preference in this layer issatis>ed4 Therefore& we consrtuct P  the non<strati>ed preference base obtained from P in thefollowing way: a clause is added for expressing the condition under which a layer j is satis>ed:C jC!j * * * ! Pj & plus the clause P ***P# ! goal4 In this way& if an environment of the labelcontains the symbol Pj & it means that there is at least one preference in Pj that is not satis>ed4On the contrary& if it does not& we are sure that every preference in Pj is satis>ed4In our example& each layer contains only one clause& so P  becomes:  Preference base P,/= PE w7/= PF we7/= PB Ee7/= PB cw7



 ! Dubois& Le Berre& Prade and Sabbadin0Possibilistic logic for qualitative decision ! P# $e& ! P' cw&P' P# P* P+ P$  ! goal &LabelK  P  %goal( gives us the following result30 Environments Associated pessimistic DecisionLabel?goal@ utility concerned?from ATMS@ ?non automatic process@0P' P# P* P+ P$G H BACKBIOKTA0A' A# P' P# P+G min?N?g@K'@ BACKBIOKTA0A' A* P' P# P* P$G H BACKBIOKTA0A' P' P# P* BACG # BAC0A' A# P' BACG min?N?g@K+@ BAC0A' P# P+ TAG ' TA0A' A* P# TAG min?N?r@K*@ TA0A' P$ BIOG H BIO0A' A# BIOG N?g@ BIOG The pessimistic utility of a decision can be obtained from the :best way; it allows toreach the goal< where a :way; is an environment from the label of goal= If for example wechoose decision BIO< then the possible :ways; for reaching the goal are 3 fP@ PA PB PC PDg<fA@ AA P@ PA PCg< fA@ AB P@ PA PB PDg< fA@ PD BIOg< fA@ AA BIOg= The :utility ofa way; depends on the least certain assumption it involves< and on the goal with the highestpriority that has to be assumed true %thus< not provable(= For instance< fA@ AA P@ BACgdepends on assumption AA %which level of certainty is N%g((< and assumes that P@ %of priFority @( is true= Therefore< the utility of this :way; %assuming that BAC is performed( ismin%N%g(. n%@(( G min%N%g(. C(=Notice that the environment %or :way;( fP@ PA PB PC PDg is meaningless in so far as itis an artiIcial :way; to reach the goal< assuming that every preference is satisIed< even if nodecision at all is taken=Each of the available decisions can thus be evaluated3u!%BIO( G max%L. min%N%g(. @(. L. L.N%g((<u!%TA( G max%L. min%N%g(. @(. L. @.min%N%r(. B((<u!%BAC( G max%L. min%N%g(. @(. L. A.min%N%g(. C((=



Dubois& Le Berre& Prade and Sabbadin0Possibilistic logic for qualitative decision  !These expressions are the max-min equivalent forms of the min-max expressions given inthe preceding paragraph6 !"! RemarksAs we have seen on the well known Savage;s omelette example< a qualitative< possibilistic de-cision problem can be described either syntactically by the means of two strati?ed bases< orsemantically by the means of a possibility distribution and a qualitative utility function6 Themain feature to notice is that both approaches are equivalent6 We have proposed and imple-mented two original algorithms for treating the syntactical case6 A question is to see which ofthe syntactical or the semantical representation is the more appropriate for a given problem6 Inthe Savage;s omelette example< it is not clear whether a decision maker would give a logic repre-sentation of the problem< or would more willingly give a semantic representation under the formof a utility function6 In the general case< the appropriate representation would depend on theparticular decision problem under consideration< and on the decision maker;s habits6 However<in problems involving a large number of states< one may expect that the logical representationof partial belief about the world< and preferences on goals would be more economic than anexplicit enumeration of states with their levels of plausibility and of preference6 We have alsopointed out that it is possible to pass from one representation to the other< and how it can bedone6 ! Concluding remarksThe main contribution of this paper has been to describe a logical machinery for decision-making<implementing the qualitative possibilistic utility theory< in the framework of possibilistic logic6A link between this logical machinery and the ATMS framework has been pointed out< which hasallowed to adapt some eDcient algorithms proposed in this framework to possibilistic qualitativedecision making6One strong assumption has been made in this paper< which is that certainty levels and pri-ority levels be commensurate6 An attempt to relax this assumption has been made in FDubois<Fargier and Prade JKLMN6 These authors point out that working without the commensurability as-sumption leads them to a decision method close to rational inference machinery in non-monotonicreasoning6 Unfortunately< that method also proves to be either very little decisive or to lead tovery risky decisions6Besides< the links between possibilistic qualitative decision making and diagnosis Fabductiveand consistency-basedN may be further exploredQ FCayrac et al6 JSMN have proposed a way tohandle uncertainty in model-based diagnosis which is technically very close to the one exposedhere in the decision framework6 In FLe Berre and Sabbadin JUVMN< a logical machinery similar tothe one exposed here has been presented< in the diagnosis and repair framework6 This machineryis also based on ATMS techniques6 However< the actions under consideration are repair-actions<preferences are expressed by the means of real-valued goals Fwhere the value of a goal is its



 ! Dubois& Le Berre& Prade and Sabbadin0Possibilistic logic for qualitative decisionutility in the classical sense of decision theory/ of a speci1c kind3 and uncertainty is modeledby 6probability7valued9 assumptions: Methods <also based on the MPL procedure/ are givenfor computing the belief%based expected utility of a decision <a counterpart of classical expectedutility3 in the Dempster7Shafer theory/:Finally3 we can think of dealing with possibilistic logic formulas involving time instants<e:g:3 as in Dubois and Prade EFGH/ in order to extend the syntactical approach presented hereto multiple7stage possibilistic decision <Fargier et al: EIJH/: Such an extended framework will bealso useful if the computation of the result of the decision requires an updating of K:ReferencesEFH S: Benferhat3 D: Dubois3 H: Prade: Representing default rules in possibilistic logic: In Proc23rd Inter2 Conf2 on Principles of Knowledge Representation and Reasoning <KRQGI/ <B:Nebel3 C: Rich3 W: Swartout eds:/3 pp: UVJ7UWX3 Cambridge3 MA3 Oct: I[7IG3 FGGI:EIH B: Bonet3 H: Ge]ner: Arguing for decisions ^ a qualitative model of decision making: InProc2 of the <=th Conf2 on Uncertainty in Arti@cial Intelligence <UAIQGU/ <E: Horwitz3 F:Jensen3 eds:/3 pp: GW7Fc[3 Portland3 Oregon3 July JF7Aug: X FGGU:EJH C: Boutilier: Toward a logic for qualitative decision theory: In Proc2 Ath Inter2 Conf2 onPrinciples of Knowledge Representation and Reasoning <KRQGX/ <J: Doyle3 E: Sandewall3P: Torasso3 eds:/3 pp: V[7WU3 Bonn3 Germany3 May IX7IV3 FGGX:EXH R: I: Brafman3 M: Tennenholtz: On the foundations of qualitative decision theory: In Proc2<=th National Conf2 on Arti@cial Intelligence <AAAIQGU/3 pp: FIGF7FIGU3 Portland3 Oregon3Aug: X7W3 FGGU:E[H T: Castell3 M: Cayrol: Computation of prime implicates and prime implicants by the davisand putnam procedure: In Proc2 ECAIDEF Workshop on Advances in Propositional Deduc%tion3 pp: UF7UX3 Budapest3 FGGU:EUH T: Castell3 C: Cayrol3 M: Cayrol3 D: Le Berre: Eecient computation of preferred modelswith Davis and Putnam procedure: InProc2 European Conference on Arti@cial Intelligence<ECAIQGU/3 pp: J[X7J[W3 FGGU:EVH T: Castell3 C: Cayrol3 M: Cayrol3 D: Le Berre: Modfeles P7restreints: Applications falQinfgerence propositionnelle: In Proc2 Reconnaissance des Formes et Intelligence Arti@cielle<RFIAQGW/3 Clermont7Ferrand3 France3 Jan Ic7II3 pp: Ic[7IFX3 FGGW:EWH D: Cayrac3 D: Dubois3 D: Prade: Practical model7based diagnosis with qualitative pos7sibilistic uncertainty: In Proc2 of the <<th Conf2 on Uncertainty in Arti@cial Intelligence<UAIQG[/3 pp: UW7VU3 Montreal3 Canada3 Aug: FGG[:EGH H: Davis and L: Putnam: A computing procedure for quanti1cation theory3 Journal of theACM <V/3 pp IcF7IF[3 FGUc:EFcH H: Davis3 G: Logemann and D: Loveland: A machine program for theorem proving3 Com%mun2 ACM <[/3 pp JGX7JGV3 FGUI:EFFH J: De Kleer: An assumption based truth maintenance system: InArti@cial Intelligence3 <IW/pp: FIV7FUI3 FGWU:
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