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Using possibilistic logic for modeling qualitative decision :
ATMS-based algorithms*
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e-mail: {dubois, leberre, prade, sabbadin} Qirit.fr

Abstract. This paper describes a logical machinery for computing decisions, where the

available knowledge on the state of the world is described by a possibilistic propositional
logic base (i.e., a collection of logical statements associated with qualitative certainty levels),
and where the preferences of the user are also described by another possibilistic logic base
whose formula weights are interpreted in terms of priorities.

Two attitudes are allowed for the decision maker: a pessimistic risk-averse one and an
optimistic one. The computed decisions are in agreement with a qualitative counterpart to
the classical theory of expected utility, recently developed by three of the authors.

A link 1s cstablished between this logical view of qualitative decision making and an ATMS-
based computation procedure. Efficient algorithms for computing pessimistic and optimistic
optimal decisions are finally given in this logical setting (using some previous work of the
fourth author).

Keywords: qualitative decision, possibilistic logic, possibility theory, ATMS.

1. Introduction

An increasing interest for qualitative decision has recently appeared in the Artificial Intelligence
community : The term “qualitative decision theory” refers to more than one kind of repre-
sentation. Some approaches consider only all-or-nothing notions of utility and plausibility, for
instance (Bonet and Geffner [2]); others use integer-valued functions (Tan and Pearl [34]), (Pearl
[30]). Boutilier [3] exploits preference orderings and plausibility orderings by focusing on the
most plausible states. In (Dubois and Prade [17]), a qualitative analog to von Neumann and

*This paper is an extended and revised version of a conference paper by the same authors [16].



Morgenstern postulates, intended for rational decision under ordinal uncertainty has been proved
to be equivalent to the maximization of a qualitative utility function. Sfeps to a Savage-like
qualitative decision theory are taken by (Dubois, Prade and Sabbadin [21, 22]).

In classical decision theory under uncertainty, the preferences of the decision maker are
directly expressed by means of a utility function, while a probability distribution on the possible
states of the world represents the available, uncertain information about the situation under
consideration. However, it seems reasonable to allow for a more granular and natural expression
of both the preferences and the available knowledge about the world, under the form, e.g.,
of logical statements from which it would be possible to build the utility and the uncertainty
functions. The knowledge about the world is supposed to be given in this paper under the
form of a set of pieces of knowledge having different levels of certainty, while the preferences are
expressed by a set of goals with different levels of priority.

In Section 2 we propose two syntactic approaches based on possibilistic logic, the first one
being more cautious than the second, for computing optimal decisions. They are first presented
in the case of binary uncertainty and preferences, before considering graded uncertainty and
preferences. Here gradual uncertainty and preferences are expressed by means of two distinct
possibilistic propositional logic bases (which are stratified bases). Then, the semantics underly-
ing the two syntactic approaches are shown to be in agreement with the two qualitative utility
functions advocated in (Dubois and Prade [17]). This section is a revised version of a workshop
paper (Dubois et al. [20]).

In Section 3, we recall some background on the ATMS framework, and it is shown how to
encode a decision problem as one of label computation. Then a procedure called MPL (French
acronym for Literal based Preferred Models), is described for computing optimal decisions in
terms of labels. It relies on a modified Davis and Putnam [9] semantic evaluation algorithm,
described in (Castell et al. [6]). Two algorithms based on the use of this procedure, are proposed
to compute optimistic and pessimistic optimal decisions respectively. An example is given in
Section 4, that illustrates the algorithms.

2. Qualitative decision in stratified propositional bases

2.1. Notations

In this article, upper case letters (K, D. P, H....) denote sets of propositional formulas that
can possibly be literals. For any set A of formulas, A" denotes the logical conjunction of the
formulas in A, AV denotes the logical disjunction of the formulas in A.

2.2. Binary case

A decision problem under uncertainty can be cast in a logical setting in the following way. A
vocabulary of propositional variables contains two kinds of variables: decision variables and
state variables. Let 1D be the set of decision variables. Decision variables are controllable, that



is, their value can be fixed by the decision-maker. Making a decision then amounts to fixing the
truth value of every decision variable (or possibly just a part of them). On the contrary state
variables are fixed by nature, and their value is a matter of knowledge by the decision maker.
He has no control on them (although he may express preference about their values).

Let K be a knowledge base (here in propositional logic) describing what is known about the
world including constraints relating the decision variables. Let P be another propositional base
describing goals delimiting the preferred states of the world. K, and P are assumed to be finite,
as is the logical propositional language I under consideration. Assume K and P are classical
logic bases, and preferences are all-or-nothing. The aim of the decision problem, described in the
logical setting, is to try to make all formulas in the goal set P true by acting on the truth-value of
decision variables which control the models of K and P. A good decision d" (from a pessimistic
point of view) is a conjunction of decision literals that entails the satisfaction of every goal in
P, when formulas in K are assumed to be true. Therefore, d" should satisfy

KM AndhF P, (1)

Moreover, K™ A d" must be consistent, for if it is not the case, (1) is trivially satisfied®. Under
an optimistic point of view, we may just look for a decision d”" which is consistent with the
knowledge base and the goals, i.c.

K" nd N PY# L. (2)

This is optimistic in the sense that it assumes that goals will be attained as soon as their negation
cannot be proved.

The similarity is striking, between the two modes of decision under uncertainty and the two
modes of diagnosis reasoning, namely abductive and consistency-based diagnosis solutions (e.g.,
Hamscher et al. [28]). It is then tempting to encode a logical decision problem under uncertainty
by means of techniques coming from the theory of assumption-based truth maintenance systems
(ATMS) initiated by De Kleer [11]. In order to better fit the framework of ATMS (the tool
we will use to compute optimal decisions), we have to change the encoding of decisions from
conjunctions of literals to sets of positive literals. This notion will be explained in greater detail

in Section 3.

Tn the following we implicitly assume that the result of the decision d”" does not modify the contents of the
knowledge base K, which may include for instance picces of gencric conditional knowledge. Clearly, this is not
always the case. Just consider a factual knowledge base describing that either the door or the window is open, and
the decision: have the door shut (if it is not already the case); abviously we are here facing an updating problem
where we should not conclude that the result of the action makes sure that the window is open. So, in the more
general case, K™ Ad" should be changed into K od”, where o denates an updating operation, and K od” is the
result of the updating. The study of such an issue is left for further research. The consistency of K" A d”" should
be restricted to the consistency of d" and the factual part of K when K includes (consistent) generic knowledge

alsa.



2.3. Stratified case

In the logical form of decision problems, the knowledge base may be pervaded with uncertainty,
and the goals may not have equal priority. In classical decision theory, uncertainty is represented
by means of a probability distribution over the possible states of the world, and the goal states
are ranked according to a real-valued utility function. The decision problem amounts to finding
a decision that maximizes an expected utility function.

Let us enrich our logical view of the decision problem, by assigning levels of certainty to
formulas in the knowledge base, and levels of priority to the goals. Thus we obtain two stratified
logical bases that model gradual knowledge and preferences. It has been shown (e.g., Dubois et
al. [15]; see also Section 2.4) that a possibility distribution ranking the possible worlds encodes
the semantics of a possibilistic logic base, i.e., a stratified base whose formulas are gathered into
several layers according to their levels of certainty or priority. First we focus on how a decision
problem can be stated, expressing knowledge and preferences in terms of stratified bases. Then
we will show that the corresponding semantics of the decision process can be represented by the
qualitative utility introduced in (Dubois and Prade [17]).

In the whole paper we will assume that certainty degrees and priority degrees are commen-
surate, and assessed on the same (finite, as is the language under consideration) linearly ordered
scale S. This assumption will be discussed later on. The top element of S will be denoted 1 , and
the bottom element, (0. Knowledge and preferences are stored in two distinct possibilistic bases.
The knowledge base is K = {(¢;. ;) } where a; € S (a; > @) denotes a degree of certainty, and
the ¢;’s are formulas in L where decision literals may appear. The base expressing preferences
or goals is P = {(¢;, ;) }, where 3; € S (8; > @) is a degree of priority, and the 1); are formulas
of L (where decision literals may also appear).

A question may be raised as to the meaning of the different levels of preference or certainty
that are assigned to each sentence. It is clear that the preference ordering can be directly given
by the decision maker. The uncertainty ordering may be assessed by a unique agent, classifying
the sentences into layers of different levels of certainty. In case the knowledge is given by multiple
sources, we can suppose that they have levels of reliability (which may be different), and thus
rank the sentences according to the levels of reliability of the sources which provide them (all
the information given by a source having the same reliability). On the contrary if the sources
are equally reliable, but each of them has its own ordering, we have to suppose that there exists
a common agreement, on the meaning of the layers of each source, so as to be able to merge the
layers of the different sources. Besides, system 7 (Pearl [29]) may also help to rank order pieces
of generic conditional knowledge by allowing to take the specificity of formulas into account
(Benferhat et al. [1]).

Let K, (resp. Pg) denote the set of formulas with certainty at least equal to a (resp. the
formulas with priority at least equal to ). Note that we only consider layers of K (or P) such
that @ >@ and 8 >@ since K = P = L. In the following we also use the notations K, and
Pﬁ (with a <1 and g <1 ), for denoting the set of formulas with certainty or priority strictly
greater than « or  respectively. In particular K(]) = K™ and P(]) = P where K* and P~



denote the sets of formulas in K and P respectively, without their certainty levels. We shall
notice that since the scale S is finite, K, = K./, where o is the level of S just above « (the
same property holds for P).

Making a decigion amounts to choosing a subset d of the decision set D = {l;} where the
I; are distinguished variables of the language .. The corresponding decision d” is the logical
conjunction of literals in the chosen subset. The variables that are not in D are state variables.
Our objective is to rank-order decisions by means of a relation <, which will be done by using
a utility function U : P(D) — S such that d < d' < U(d) < U(d'). In the following, we will use
two different functions: U, which agrees with a pessimistic view, and U* which agrees with an
optimistic one.

In the first case (pessimistic view), we are interested in finding a decision d (if it exists) such
that

KX ANdM F Pﬁ/\ (3)

with « high and g low, i.e., such that the decision d together with the most certain part of K
entails the satisfaction of the goals, even those with low priority. d is implicitly assumed to be
included in the most certain part of K Ud (certainty level equal to 1). Moreover, K2 Ad”" should
be consistent for the a’s satisfying (3). One way of guaranteeing this consistency requirement is
to assume K/ A d” is consistent. By convention, utility (0 is assigned to every decision d that

is not consistent with K. Besides, observe that the (3 satisfying (3) are necessarily such that
B> @ (since P(/\I) = L is inconsistent).

Let n be the order reversing map of scale S. Namely if Sis @ =ap < ... < ay < ... <
a, =1 then n(a;) = a,_;, fori=0,... n.

We are interested in finding « as high as possible, and  as low as possible such that :
K> ndh = Pé\. Ideally, d, along with the most certain part of K only (i.e. Kjy), should
entail every goal in P, even the least preferred ones (P, ). Such a decision should have a
maximal utility (1). The worst case would be when a decision is unable, even with the whole
knowledge(K(D ), to entail at least the most preferred formulas of P (i.e. Pj). Such a decision
should have a utility of (.

Suppose now that d is such that K} A d" = PS, with 8 < n(a). Then we also have
K, ndME P ) because By € Pos and so P - P*

n(a n(a)’
Reciprocally, if 3 > n(«) then n='(3) < a. Since K, C K, -1(5), Py € Pg and Kynd™ = Pg,

it follows that Ké\_l(ﬁ) AdM Pﬁ/\. Letting § = n(a), we get KA Ad" Pﬂ/\((,)
assume that 3 = n(a) in the maximization problem which amounts to maximizing a such that
KOANdME PnA(a), with o > (.

Finally, the pessimistic utility of decision d, defined at the syntactic level, takes the form:

. So it is possible to

Definition 2.1.
Ui(d) = max o
o KANNEP KA A=

and Uy(d) =@ if {a> @, KoNd =P and K) Nd™# 1L} = 0.

n(o)



If now we take the optimistic, we are interested in finding a decision d such that :
KiNdMA Py # L (4)

with o and 3 as low as as possible (a > @, 3 > @ in (4)). That is: the preferred states are
among the most plausible ones and are also consistent with the decision. The optimistic utility
of d is thus given by

Definition 2.2.
Ur(d) = n(a),

= max
KMNIMAPR #—
and U*(d) =@ if{a <1 KN NP} £ 1} = 0.

Observe that U*(d) = 1 iff KA AdMA PC/\D # L. that is if the decision is consistent with every

goal and picce of knowledge.

2.4. Possibilistic semantics of decision in stratified bases

[et us present the semantics underlying the logical expression of decision problems we have
adopted. Interpreting the «;’s (which are attached to the layers of K') as the degrees of necessity
of the formulas in the corresponding layers of K U d, we compute a possibility distribution 7,
over € (the set of all the interpretations of the language L), expressing the semantics of K (see,
e.g.. (Dubois et al. [15])) :

Vw € Q,miey(w) = min n(e;) if w = d", and
Kal) (di,00i) EK Jwl=—h; (avs) E

i, (w) =1 if {¢;/w E ~¢;} =0 and 7, (w) = @ if w E d".

The possibility distribution 7y, rank-orders the interpretations according to their level of
possibility /plausibility induced by the levels of certainty of the formulas in K. This semantics
agrees with the idea that an interpretation w is all the less possible as it violates formulas ¢,
with an higher level of certainty «;. Note that since K2 A d” is supposed to be consistent, 7y,
is normalized, i.e., there exists at least an interpretation w with degree 7y (w) = 1.

From P, by interpreting the f3; attached to the layers of P as degrees of priority of the
formulas in P, we build a utility function g over € in a similar way (w is all the more satisfactory

as it violates no goal with a high priority):

min n(53;).

o) =
( ) (5,8 EPw=1;

and p(w) =1 if {¢;/w = =1} = 0.
The two syntactic utility functions defined in Section 2.3 can be expressed in terms of the
possibility distribution 7, and the utility function p. We have the following results:



Theorem 2.1. Semantical expression of (U.(d))

Let us assume that K& A d™ is consistent.

U.(d) =

0= S o). ).
Proof: (for a finite scale)
-Vw/wEdh, (wE K, Ud) & (Y, ) € Koy > a=wlE é)
& V(i) € K,w s 2¢i = a; < a)
& (ming, o)k fwing (@) > (@)
< 1K, (W) > n(a).

- In the same way we can prove that (w = P )= (u(w) > a).

(o =
- We use these results in the following :

Va/a > 0, (Ké\/\dAI—P;\(d))
e VWw,wEK,Ud=wkEP, )

n(a)
& (Moo, e, @) > n(a) = () > a)
& (W, (T, () < @ = p(w) > a)

& (oo, max(n(mp, (@) ple)

& (mingeq max(n(rr,(w)), plw)) > o).
- Thus we proved :
Va > O, (K ANdME PT/L\(Q) ) < (mingeq max(n(rg,(w)), plw)) > a).
- It is then obvious to show that :

mingeq max(n(mg,(w)), p(w)) > max, gargarps @, as a limit case.
‘ “ n(a)
- The other inequality may be proved by reductio ab absurdo, supposing that

mingeq max(n(rr,(w)), pw)) = 4 > ma'xa/](g\/\d’\l—P"( ) o.

Then, since mingeq max(n(rg,(w)), p(w)) > f = Ké\ AdNE PN we have a contradiction

n(B)’
with the assumption we have just made. So we get the result. O

This result is closely related to an older one by (Prade [31]) expressing the necessity of a

fuzzy event in terms of level-cuts of fuzzy sets for the infinite scale [0,1], noticing that Theorem

1 expresses the necessity of a fuzzy event. A similar theorem is easy to prove for the optimistic

utility function:

Theorem 2.2. Semantical expression of (U*(d)).

U*(d) =

(,/f(g{f}i’fpﬁ_ n(a) = max min (7, (w), p(w)).

Proof: (for a finite scale)

-VYa/K)XNdMANPY #£ L 3w Jw* = K, UdU P,

- w* ': K, Uud& V((ﬁz Oél') e K,y >a=w ‘: b
= V(o (J/,z':) €E K,wE—¢ = o <a



& minggepog, n(e;) > n(a)
& T, (@7) > n(a)

- in the same way we can prove : w* = P, & u(w*) > n(a).
Thus, we proved: 3w*/w* E K,UdU P, < min(rg,(w*), p(w*)) > n(a), that is: Ya/K2 Ad* A
Pl £ 1, max,ecq min(rg,(w), p(w)) > n(a)

- as a limit case: max,kananapryg- n(a) < maxyeq min(rr, (). p(w))

- the converse inequality may be proved ab absurdo in the same way as in the proof of
Theorem 2.1, supposing that

MAX o/ KANIA AP - n(a) < max,eq min(Ti,(w), p(w)) O

The semantical expression of U, (d) obtained in Theorem 2.1 is exactly the qualitative utility
function introduced in (Dubois and Prade [17]). Among the postulates given in [17] so as to
justify the pessimistic qualitative utility, some are qualitative counterparts of von Neumann
and Morgenstern axioms. Others express the risk aversion of the decision maker. Another one
expresses the fact that a one-shot decision is concerned. Tt emphasizes that the utility of the
consequence of the decision, when we know that the state is in A, is of the form p(w), for some
w € A (the worst one for the pessimistic utility). We do not consider (as with expected utility
theory), average benefits, gained after repeated actions.

Maximizing U (d) means finding a decision d whose highly plausible consequences are among
the most preferred ones. The definition of “highly plausible” is decision-dependent and reflects
the compromisge between high plausibility and low utility expressed by the order-reversing map
between the plausibility scale and the utility scale; U.(d) is small as soon as it exists a possible
consequence which is both highly plausible and bad with respect to preferences. This is clearly
a risk-averse and thus a pessimistic attitude. When 7y, is the characteristic function of a set

A, U.(d) reduces to:
Ud(d) = mingea p(w)

which is the Wald criterion, that evaluates the worth of a decision as the worst-case utility.
This criterion has been also recently justified in (Brafman and Tennenholtz [4]) in a Savage-like
setting. By changing the risk aversion postulate into a risk-prone postulate (Dubois and Prade
[18]), the other utility function U*(d) can be justified. It corresponds to an optimistic attitude
since U*(d) is high as soon as it exists a possible consequence of d which is both highly plausible
and highly prized.

3. Computation of decisions

Our purpose is to propose an efficient and unified way of computing both optimistic and pes-
simistic qualitative decisions. In this section, we give some algorithms based on the use of the
MPL procedure (which stands for Modeles Préférés par leurs Littérauz in French) described in
(Castell et al. [6]) to solve qualitative possibilistic decision problems. The MPL procedure will
be briefly described (for a complete description, see (Castell et al. [6])), and it will be shown



how a single pass of MPL allows to compute the decisions consistent with the bases K and
P, whereas with two passes of MPL we obtain the “label” of P (which represents the set of
“minimal” pessimistic decisions). Notions of ATMS and of a label are described in the following
paragraphs.

3.1. ATMS and decision theory

In this section, links between Assumption-based Truth Maintenance Systems (ATMS) and pes-
simistic qualitative decision are formalized. But first of all we restate some basic definitions

about ATMS.

3.1.1. Basic definitions of ATMS

The ATMS technique was introduced by (De Kleer [11], [12]). We consider a set of propositional
symbols § divided in two parts, the set of assumptions H, and the other symbols NH. A set of
assumptions is called an environment. An environment F is inconsistent for a set of clauses K
iff K" A EME L. An environment is consistent iff it is not inconsistent.

Definition 3.1. A nogood is an inconsistent environment minimal for set-inclusion (i.c., F is a
nogood iff K" A EM = L and AE' C E/K" AN E'"ME 1).

Definition 3.2. The label of a formula . denoted labelx (1)), is the set of all consistent envi-
ronments F; minimal for sct-inclusion such that K" A E 2.

Example 3.1. et K ={Ab—c¢, B—=b ¢c—}. S={A,Bbc}. H={A,B}. {{A B}}is
the set of K’s nogoods. labeli (b)={{B}}, labelx (c)={}, labeli (A)={{A}}, labelx (B)={{B}}.

ATMS assumptions are useful for computing decisions: assumptions are distinguished positive
literals, therefore decisions will be modelled by sets of distinguished positive literals in D, con-
sistent with the constraints in K. When d contains several positive literals, d should not be
interpreted as a sequence of decisions but as a single decision consisting in assigning simultanc-
ously a positive truth value to every literal in d. For any such decision denoted d, d" denotes
the logical conjunction of the positive literals in d. The set of all decisions which obey (1) and
such that none of their proper subsets (when they are given in the form of subsets of D) obeys
(1), can then be seen as an extension of De Kleer’s notion of label of a literal [11], to the notion
of label of a conjunction of formulas (of the form labelx (P")).

Example 3.2. The available decisions are to buy zero, one or two items. The decision set
will be D = {Zero,One, Two}, and K should contain the following constraints expressing the
mutual exclugiveness of the available decisions: {One V Two V Zero,=One vV =Two, =One V
—Zero,—mTwoV —Zero} C K. For this example, the decisions that are consistent with the
constraints are: d = {One}, d = {Two} or d = {Zero}.

?These definitions are slightly different from De Kleer’s definitions. For instance, the label notion was originally
defined for a literal.



3.1.2. Using an ATMS in qualitative possibilistic decision theory

We propose to translate our decision problem into a problem tractable by an ATMS. Let us
define the set of assumptions symbols H = D. Then, assume that K is the knowledge base of
the decision problem in conjunctive normal form and consider the goal base P as a formula P”.
Using the symbols in H, a decision d is a subset of H. For any decision d such that K" Ad" - P"
and K" A d" # L there is at least one element F of labely (P) according to the assumption set
H such that ¥ C d.

Proposition 3.1.
KMnNdM = PN and KM NdN # L if and only if 3E € labelg (P) s.t. E C d.

Proof: immediate [rom the definition of a label.

A good (pessimistic) decision is then a superset of an element from labely (P). In the following
we will only look for decisions which are minimal for set inclusion.

Let K" = ¢y ANdy... N, and P" = by Ahy A ... A,,. Finding all decisions d maximizing
« such that: K AdM P:(a) and K22 Ad™ # L is equivalent to finding labelKQ(Pn(a)) # {}

maximizing o.

3.2. The MPL procedure

Let us present here the MPL procedure introduced in (Castell et al. [6]). This procedure does
the following: given a logical formula ¢ in conjunctive normal form, involving two types of
literals, it computes its projection by restricting to one type of literals; and this projection is
the most informative such consequence of ¢ expressed in digjunctive normal form. It is shown
that nogoods in an ATMS are easily obtained by means of this procedure. The definitions are
slightly different from the ones in (Castell et al. [6]) but the principle is still the same. This new
formalization improves the clarity of the proofs. Further information, proofs and links between
the two formalisms can be found in (Le Berre [25] and Castell et al. [7] ).

3.2.1. Definitions

Let F be a set of literals. ~ F denotes {—z|z € F} (where ==z simplifies into 2; e.g.: F =

{=c,a,b}, ~ B = {c,~a,—b}) °.
Definition 3.3. (implicants, implicates) Let ¢ be a propositional formula. Let E, F be

consistent sets of literals.

e The conjunction of literals (or phrase) E” is an implicant of ¢ iff EN = ¢. E” is a prime
implicant of ¢ iff E* = ¢ and AF” an implicant of ¢ such that F' C F.

® Interpretations and models are used in propositional calculus sense. They are represented either by the set

of their literals assigned to True or as a conjunction of literals.



e The disjunction of literals (or clause) EY is an implicate of ¢ iff ¢ = EV. EY is a prime
implicate of ¢ iff ¢ KV and AFY an implicate of ¢ such that F C F.

In the following, H will denote a consistent subset of distinguished literals of the language I,
that will be used to restrict the language to a subset of propositional variables.

Definition 3.4. (restriction) Let M be a subset of literals corresponding to an interpretation.
We call restriction to H of M the set H N M, denoted Ry (M).

Clearly, if M is viewed as a conjunction of literals, Ry (M) is a phrase where only literals in
H appear. It can be viewed as a partial interpretation. The following definition replaces the
preferred models definition of (Castell et al. [6]). A prelerred H-model was previously defined
as a complete assignment of truth value to a subset H of the symbols, containing a maximal
number of “preferred symbols”.

Definition 3.5. (restricted models) Let ¢ be a formula. Let T C H. 1 is a H-restricted
model of ¢ iff IM a model of ¢ such that I = Ry (M).

The following results are borrowed from Castell et al. [6][7].
Property 1. Tis a H-restricted model of ¢ iff the phrase (IU ~ (H L1))" is consistent with ¢.

Indeed since H is consistent, il (/U ~ (H L 1)) were inconsistent, it means that there would
be a literal both in I and in H L I. Now, (U ~ (H L I))" consistent with ¢ is equivalent to
the existence of a common model *.

Theorem 3.1. [ is a H-restricted model of ¢ < IFE" an implicant of ¢ such that HNE = 1.

To prove the = side, just choose as an implicant the phrase built from a common model of
I™ and ¢. Conversely any implicant can be extended to a model. A H-restricted model of ¢
can thus be obtained by considering any of its implicants E” and masking the literals not in H.
Note that the obtained phrase is not an implicant of ¢.

Definition 3.6. Let ¢ be a formula. Let I C H. lis a H-implicant of ¢ iff VM, an interpretation
such that I € M, M is a model of ¢.

It means that a H-implicant of ¢ is a H-restricted model which implies ¢ . One can prove
indeed that the minimal (for set-inclusion) H-implicants of ¢ are exactly the prime implicants
of ¢ included in H. In fact the minimal H-restricted models can be retrieved from a DNF:

Theorem 3.2. The sct of minimal H-restricted models of a DNF ¢ = E{'V ESV ...V E} is
the set of inclusion-minimal elements of Ry (Fy), Ru(F2), ..., Ru(E,)

“Let D be the set of symbols involved in H. [U~ (H — 1)) is exactly a preferred D-model of ¢ in the sense of

[6].



Proof: It is easy to show that the Ry (F;) are H-restricted models of ¢. Suppose now that it
exists F/, a minimal H-restricted model of ¢ that is not in the set of inclusion-minimal elements
of Rp(Eh1). Rp(Ey). ..., Ru(E,). So, it exists M, model of ¢, such that Ry(M) = E, and
Vi, Rp(F) # Rp(FE;). Now, as it is impossible that Ry(F;) C E (minimality of F), there
exists a literal [ € Ry (I7) and [ € I/, and this for all 7. We have [ ¢ M, because [ € H, and
E=Rpy(M)=MnH. So, M falsifies the Ry (F;), and so falsifies ¢, which is contradictory. O

So computing the H-restricted models is obvious if the formula ¢ is in disjunctive normal
form (DNF).

Example: Let K = {=AVe¢,~AV B, =BV -cV A} and H = {-A, —B}. The disjunctive normal
form of K is (=B A —=A)V (mAA=¢)V (AA BAc¢). The H-restricted models are {—=A,-B},
{=A}, and {}. The only H-implicant of K is {=A,=B}.

We can define a function M Py (resp. Ply) that from any formula ¢ of the language computes
another formula made of literals in H, in DNF form, such that the prime implicants (elements
of the disjunction) of M P (¢) (resp. Plp(¢)) are exactly the minimal (for the inclusion of sets
of literals) H-restricted models (resp. H-implicants) of ¢. In the example, we find respectively
{} (which denotes the tautology T) and {=A,—=B}. In the example, we have M Py (¢) = T and
Pl (¢) = —-A A —=B. Clearly, the following properties hold.

Property 2. Vo, Ply(¢) F ¢+ M Py (o).

Proof: Tf " is an element of the disjunction PTg(¢), it is a prime implicant of ¢, which proves
the first . Now, any model M of ¢ defines a H-restricted model Ry (M). So, there exists E”
an clement of the disjunction M Py (¢), such that ' C Ry (M), so the sccond F is proved. O

Theorem 3.3. Let E C H. Vo, ¢ = EY iff MPy(¢)F EV.

Proof: (<) Let M be a model of ¢. Ry (M) is a H-restricted model of ¢, so it contains
an element of M P (¢). A fortiori, M contains an element of M Py (¢), so M models M Py (¢).
As M Py (¢) F EY, we get that M models EV.

(=) We have ¢ = EV. Suppose it false that M Py (¢) b EV. So, there exists E” in M P (o),
such that F; N E = 0. By definition, 3M, model of ¢, such that F; = Ry (M), so F; C M. As

ECH ENMCENPNM=FENE;, =0,s0o M falsifies Y, which is a contradiction. O
Theorem 3.4. Let E C H. V¢, E" = ¢ iff EN = PIy(9).

Proof: (<) is obvious.

(=) As EM F ¢, it contains a prime implicant F” of ¢. As E C H, F” is in Ply(¢), and so
ENE Pl (). O

Corollary 3.1. If all the prime implicants of ¢ are in H then M P (¢) = Pl (9)

This corollary is very important because that is the reason why we can easily compute labels and
nogoods in an ATMS using the M Py function when H is a set of hypothese literals. In a classical
implicant /implicate calculus, this condition is not satisfied. However, a similar, but extended,
approach is introduced in (Castell and Cayrol [5]), to compute prime implicates/implicants.



3.2.2. Principle of the MPL algorithm

The famous problem in complexity theory, called SAT, for SATisfiability of a set of clauses, is
NP-complete. Some of the best complete algorithms which solve SAT, (i.e. C-SAT [13], SATZ
[27],...), are based on an enumerative approach, the Davis and Putnam algorithm [9](also called
Davis-Putnam-Loveland procedure [10]).

A Davis and Putnam algorithm enumerates the interpretations of a knowledge base K until it
finds a model (consistent case) if any (the inconsistent case is when it finds no model). So doing,
it is obvious that searching for models is closely related to finding a disjunctive normal form for
a knowledge base, since it is easy to exhibit models of a DNF. One of the differences with our
algorithm MPL is that MPL does not stop after the first model of K, and rather looks for all
the minimal H-restricted models of K.

Davis and Putnam’s algorithm builds a binary search tree such that at each node, it branches
on the truth value of a literal. So, using a linear ordering relation over the set of literals, we can
rank the interpretations I w.r.t. the subset ordering of their restriction to H, Ry (I): at each
node, we will first branch to falsify a literal from H. Then, if M is the first interpretation which
satisfies the given set of clauses, Ry (M) denotes a minimal H-restricted model.

Now, the problem is “to eliminate the H-restricted models which are not minimal within our
algorithm”. Because of the use of subset ordering, the idea is to add a clause that non minimal H-
restricted models will falsify. Then, all the H-restricted models returned by our algorithm will be
minimal ones. For this purpose, after having found a model M, we add a clause C' = Ve, (vl
Note that each interpretation I such that Ry(M) C Ry () falsifies C',

The following algorithm implements our modified Davis and Putnam procedure. We divide the
set of clauses in two parts: K is the original set of clauses and K A is the set of added clauses.
This algorithm, invoked with K, KA = {} and H as parameters, computes exactly M Py (K).

Algorithm 1: MPL(K KA H)

% this function returns the minimal H restricted models of K ;

Data: K a set of clauses ;

KA a set of added clauses ;
H a consistent set of literals ;

Result: M a set of minimal H-restricted models
begin
M «— {} % M is a local variable ;
MobeL Prer LiT(K,KA{},M,H);
return AM;

end

This algorithm is a modified version of the Davis and Putnam algorithm. Tt produces a
binary search tree, which is developed (the variables in H are instanciated successively) until
a model of K is found. The usual algorithm of Davis and Putnam stops at this point, but as
we want, to find all the minimal H-restricted models of K, we have to go on and search for the



other models of K. But as we search for minimal models, when a model M is found, we add a
new clause {\/(leMﬂH)_‘l} in the set of added clauses, KA. This insures that when building the
other models of K, we will not find one that contains M. In this way, when the algorithm is

ran till its end, it produces all the minimal H-restricted models of K, and only them.

In the function SIMPLIFY() we use classical techniques of Davis and Putnam based algo-
rithms such as unit propagation, restricted resolution. We don’t take into account pure literals®,
because if we do, the resulting set of clauses is not logically equivalent to the initial one (the
consistency is preserved, but it is not sufficient for our purpose).

The function CHOOSE LITERAL() returns a literal from H which is not yet assigned if possible,
else the word “nothing”. We can use the work made in the SAT community about heuristics to
choose this literal (for instance, C-SAT [13], Unit Propagation heuristics [27], etc).

Algorithm 2: MoperL PREF LIT(K, var KA, IP, var M ,H)

Data: K a sct of clauscs ;
K A a set of added clauses ;
1P a consistent set of literals ;
H a consistent set of literals ;
Result: M a set of minimal H-restricted models
begin
SIMPLIFY (K ,IP) :
% — is the empty clause ;
if (K') p= {} and — Q (KYA)]P then
% we have found an implicant of K ;
M+~ MJU{IPNH} ;
KA+ KA U {\/IGTPQH)_‘Z}

else
if — g (I( U I(A)]p then
% we look for a literal of H in K ;
| + CHOOSE LITERAL(K ,IP.H) ;
if [ “nothing” then
% we begin with the negation of the literal ;
MobpeL PreF LIT(K, KA, IPU{~l},M H);
MoberL Prer Lit(K,KA,IPUA{l},M, H);
else
% we just make a consistence test ;
if (KUKA)rp consistent then
M~ MU{IPNH}
KA+ KA U {\/]E[pmy—!l} ;

end

5a literal is pure in a formula iff its complementary literal does not appear in this formula.



Let us take an example: let K = {BVe¢,—~¢V AV B}. Let H = {A, B}. The next figure
shows the binary tree developped by our algorithm. Tt can be divided into fwo steps. First, we
use the modified Davis and Putnam algorithm described before, to assign a truth value to all
literals from H involved in the formula. Then, we only need to know if the resulting formula is
consistent or not, thanks to Theorem 3.1. The consistency test is performed by a usual Davis
and Putnam algorithm. If the formula is consistent, we have a minimal H-restricted model.
The restriction to H of the first model found is {B}. So, we add in the knowledge base the
clause =B. In a same way, we add the clause —=A. This clause prunes the last branch. So the
two minimal H-restricted models are {A} and {B}.

K={BVe¢ -cV AV B}
{BVc,—cVAVB,-A -B}

—-A A

Modified Davis and Putnam

{BVe¢,—~eV B} {BVe¢,~B}

BVe,—cV B, =B}
A

-B B

{e,net A

Inconsistent Consistent Consistent pruned by = A

Consistence test

Usual Davis and Putnam
Restriction to P

{} {B} {A} {A,B}
- B 1s added to the base
- A 1s added to the base

3.2.3. Application to ATMS

Now, we show how to use the algorithm MPL() in the framework of ATMS [11][12]. Indeed,
the basic elements of an ATMS, labels, nogoods, will be efficiently computed by the algorithm,
without any minimization step contrary to De Kleer’s original one.

Proposition 3.2. The set of nogoods of a knowledge base K with respect to a set of hypotheses
H is exactly the set of prime implicants of M Py (=M Py (K")).

proof: E is a nogood iff £ C H is minimal such that K" A EM = L or K" F (~ E)Y.

K" (~ E) iff MPuy (K™ (~ E)Y (Theorem 3.3),

MPoy (KN F (~ B)Y = ENE =M Poy (K7

ENF =M Py (KN iff BN Ply(=M Py (K™)) (Theorem 3.4).

Or equivalently, F" = M Py (=M P.3(K")) (corollary 3.1 since the literals of =M Py (K") are
in H). So, a nogood is exactly a prime implicant of M Py (=M Py (K")). O



Proposition 3.3. Let K be a set of clauses and a set of hypotheses H . Let ¢ be a formula.
The label of ¢ exactly contains the set of prime implicants of M Py (=M Pwy (K" A=¢)) that are

not among the nogoods of K.

The proof is similar to the preceding one since we are then interested in the nogoods of K U—¢.
We have to remove the nogoods from the label because every formula is logical consequence of an

inconsistent one. This can be done by initializing K A with the nogoods, in the MPL algorithm
6

Proposition 3.4. Let K be a set of clauses. Let ¢ and ) two formulas. The label of & N 1) is
exactly the prime implicants of M Py (—M Py (K AN =¢) A= M Py (K A=) (except Nogoods of
K).

Example 3.1, continued K ={-AV -bVe¢,~BVb, ~c}

MPy(K) = =AV =B ({4} {-B})),
SMPuy(K) = AN B ({{A} (B},
MPy(-MPuy(K) = AAB ({4, B}).

So the set of nogood is {{A,B}}.

Let us point out the fact that only the algorithm MPL() is used to compute labels and no-
goods. Difficult operations like subsumption are not explicitly performed for these computations.

3.3. Computation of optimistic optimal decisions via MPL

The use of MPL to solve an optimistic decision problem is easy. Assuming that K and P are
CNF representations of knowledge and goal bases 7 of the decision problem, for a decision d
such that K A d™ A PN # L there is at least one element I of MPL{K U P,{}, D) such that
ECd.

Proposition 3.5.
KNNd"ANP"#+ 1 =3F € MPL(KUP,{},D) s.t. E C d.

Proof: immediate from the definition of minimal D-restricted models. O

A good (optimistic) decision is then a consistent superset of an element from M PL(KUP, {}, D).
In the following we will only look for decisions which are minimal for set inclusion.

Let K" = ¢y Ay... Ay, and PN = by Apa AL . A1)y, Finding d maximizing U*(d) = n(«) such
that: K2Ad" AP £ L (indeed, definition 2.2 is equivalent to finding M PL(K,UP,,{}, D) £ {}

SWe have to compnte nogoods befare any label camputation. The set of added clauses K A contains exactly
M Pyu(K") after a call to MPL(K, KA = {}, H).
TA stratified possibilistic knowledge base can always be put in an equivalent base of weighted clauses [15],

since necessity measures are min-decomposable for conjunction.



minimizing «).
This method has only one restriction: K A P must be a CNF formula, so P must be a CNF

formula, that is P must contain only clauses.

The following algorithm computes the best decisions given K and P, according to the optimistic

utility:

Algorithm 3: OPTIMISTIC

% very simple algorithm to compute optimal optimistic decisions ;
Data: K a stratified knowledge base, P a gradual preference base, D the set of decision
symbols.
Result: - a* such that n(a*) is the utility of the best optimistic decision,
- D the set of the best optimistic decisions.
begin
a +— @ % we consider all the knowledge ;
D+ MPL(K,UP,,{},D):
while D = {} and o < 1 do
Inc(a) % Eliminate the least certain strate remaining in K and P ;
D+ MPL(K,UP,,{},D);:
return < n(a),D > ;

end

3.4. Computation of pessimistic optimal decisions via MPL

It was shown in the previous sections that nogoods and labels of an ATMS set can be obtained
after one or two invocations of the MPL algorithm.

The main advantage of the MPL-technique is its ability to compute the label of a unique literal
without computing the labels of the other literals as with De Kleer’s technique. Moreover, an
MPL-based ATMS can be applied on any set of clauses (CNF formula) and can compute in the
same way the label of a literal, a disjunction or a conjunction of literals.

The label computation presupposes a computation of the nogoods, in order to remove from
the label the inconsistent environments. Nogoods and labels are computed in the same way,
from the knowledge base (K) for no-goods, and from the knowledge base augmented with the
negation of the formula, (K" A =), for the label of this formula.

We are now able to describe an algorithm for the pessimistic case. We need to compute the
nogoods, and then the required label. The restriction here is to have K" A (~ P)" as a CNF
formula, so P¥ being a DNF formula. Since P is a CNF, this procedure will accept only P as
a single clause or a single phrase (both are CNF and DNF form). Thus, we have to use a par-
ticularity of MPL to compute the label of a conjunction of formulas: the label of a conjunction
¥ A ¢ can be performed from the two first steps needed to compute the label of both % and ¢
(Proposition 3.4). This approach allows to stop label computation as soon as the intermediate



label is empty.

Algorithm 4: CoMPUTE PEssIMISTIC DECISION

% the final algorithm, based on the MPL algorithm ;
% Tet Ppey=PFs L Pﬁ. P(gy is the set of preferences with priority level 3;
% « denotes the level (either of certainty or of priority);
% of the next non-empty layer below « ;
Data: K the knowledge base,
P the preference base,
D the set of decision symbols.
Result: ax the utility of the best pessimistic decisions,
D the set of the best pessimistic decisions.
begin
a + 1 % we consider the most certain layer ;
S A}
while S ={} and a > O do
% we must first compute the nogoods of K ;
NG+ MPL(K,,{}.~ D) % first call to MPL ;
NG +~ MPL(=NG',{}, D) % NG contains the nogoods of K, ;
S MPL(K U~ Py, {3,~ D) %
S <~ MPL(=S",~ NG, D) % S contains the label of Py ;
b« 1;
while (> n(a) and S # {} do
S' e S"ANMPL(K,U~ Py, {},~ D) ;
% S contains the label of Pg ;
S+ MPL(=S",~ NG, D) ;
Dec(p) ;
if S ={} then a « maxz(a,n(3)) ;
return < o, 5 > ;

end

Let us briefly illustrate the behavior of this algorithm on an example:

Example: K and P contain 5 layers (both scales are commensurate). First of all, we consider
only the most certain layer of K, and we compute successively the labels of P, P, P, and
finally the label of P; which is the first one to be found empty (see Figure 1). Now « takes
the value max(a, n(f)) = max(3,3) = 3. Then, we consider K5 and compute the labels. Once
again, the labels of Py, Ps, P, are found non-empty (see Figure 2), then the value of f is 1,
which is not strictly greater than n(a) = 1. Therefore, a remains unchanged, and as S # {},

the algorithm returns a and S.
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Figure 1. Example

K P
4 4
3 3
2 2
1 1
0 0

Figure 2.  Example (continued)

3.5. Conclusions about the implementation

It must be pointed out that the algorithm does not make the assumption that K A d” shall be
consistent: For each value of «, the nogoods of K, are computed, and the decisions returned
by the algorithm with a utility « are guaranteed to be consistent with K,. Assuming (as
is suggested earlier in this paper), that KX A d" be consistent would simplify the algorithm,
by making the nogoods computation useless. Furthermore, when a new layer of knowledge is
considered in the algorithm, it is useless to re-compute the labels of the Pg that were previously
found non-empty: the augmented knowledge base, as it is consistent, together with the previous
candidate decisions, keeps on allowing to deduce Pz. Then we shall not reinitialize 3 to 1 in the
loop. Anyway, the algorithm proposed here, by forgetting the consistency assumption, allows to
cope with inconsistent knowledge bases.

One of the major advantages of our approach is that we only need to implement the MPL
algorithm. An efficient implementation of MPL entails an efficient implementation of the decision
algorithm. Thanks to the relation between the MPL algorithm and the Davis and Putnam



algorithm, some improvements on the latter can be used in the former (heuristics for instance).
Another advantage of this technique is the ability of an MPIL-based ATMS to compute the label
of a phrase (a conjunction of literals) or a clause. So we can compute the label of each preference
clause in a simple way.

The anytime aspect of the MPL algorithm can be pointed out here. If you stop the algorithm
before its normal end, you may obtain a subset of the set of optimal decisions. This can be used
for instance if we only need:

e a single optimal decision, or

e the utility of the optimal decision(s).

4. Example

4.1. The problem

Consider (Savage [32], pp. 13-15)’s omelette example. The problem is about deciding whether
or not adding an egg to a 5-egg omelette.

The possible states of the world are: The egg is good {denoted g¢), and The egg is rotten
denoted r. The available acts are: Break the eqq in the omelette (BIO), Break it apart in a
cup (BAC), and Throw it away (T'A). The other literals used for expressing knowledge are: 6e
(meaning that we obtain a 6-egg omelette), 5e (we obtain a 5-egg omelette), wo (the omelette is
wasted), we (an egg is wasted), and ¢ (we have a cup to wash). The possible consequences are:
6e if ¢ holds and we choose BIO; 6¢e A ¢ if g holds and we choose BAC', (6¢); 5e if r holds and
we choose TA, (5); 5e A ¢ if r holds and we choose BAC, (5¢): 5e A we if g holds and we choose
TA, (5w); and wo if r holds and we choose BIO, (w).

The uncertain part of the knowledge base consists only in our opinion on the state of
freshness of the egg.

Concerning the preferences: first of all, we do not want to waste the omelette, then if
possible, we prefer not to waste an egg. Then, if possible, we prefer to avoid having a cup
to wash if the egg is rotten (that is, if it would have been better to throw it away directly).
Finally, if all these preferences are satisfied, then we prefer to have a 6-egg omelette, and the
best situation would be to have, in addition, no cup to wash.

4.2. Knowledge and preferences bases

From the expression of the problem given as above, we can construct two stratified bases of
formulas: the knowledge base K, and the preferences base P.

et us use the scale {0,1,2,3,4,5} for assessing the certainty levels and preferences, where
1 =5 and @ =0. Just notice that we could have used linguistic values instead of numbers:
only comparison and order-reversing are meaningful operations here. In terms of priority-valued
formulas, we get the following base P = {(—wo,5), (~we, 4), (meV =be, 3), (=5e, 2), (—e, 1)}



The preferences could alternately be expressed by the means of a semantical utility function
jt. Namely, p can be computed from the priority-valued formulas form of the knowledge base (see
Section 2.3, and the Section 4.4 that follows): p(w) = min{n(8;)s.t.(¥;,5;) € P and w | =, }.

The utilities assigned to the consequences would be, using this property: pu(6¢) = 5, pu(6¢) =

4, n(5e) = 3, p(be) = 2, p(bw) =1, p(w) = 0.
The two following stratified sets of clauses represent knowledge and preferences and can be

used as input files for our program.

// Knowledge base K
// ##### 1 represents the ith layer

##### 5
// decisions BIO, BAC and TA are mutually exclusive

—-> BIO BAC TA ;

BIO BAC -> ;
BIO TA -> ;
BAC TA -> ;

// we get a 6-egg omelette if and only if the egg is good and we
//break it in the omelette;

g BIO -> 6e ;
g BAC -> 6e ;
6e > g ;
6e TA > ;

// if we break the egg apart and it is rotten or if we throw it

//away we get a 5-egg omelette

TA -> be ;
r BAC -> be ;
BAC —-> cw ;
cw -> BAC ;
5e > TA r ;
5e BIO -> ;

// An egg is wasted if and only if we throw away a good egg

g TA —> we ;
we —> g ;
we -> TA ;

// the omelette is wasted if and only if we break a rotten egg in it



r BIO

-> W

w —> BIO ;
W ->r ;

// an

egg is either good or rotten

gr —->;
> gr ;

#H#HH

// in

_>g

2

this example, we are slightly convinced that the egg is good

’

// Preference base P

#H##HH

#H##HH

we —>

#H##HH

be cw

#H##HH

be —>

###HH

cw —>

5

4

Remarks:

Notations: these two files are used in the above form as input files for our program. #####
i represents the beginning of the expression of the ith layer, either of the knowledge base,
or of the preference base. The scale used for assessing preference and certainty levels is
determined from the highest layer number. If it is n, then the scale is {0,...,n}. The text



after // is a commentary. Pieces of knowledge and preference are expressed by the means of
clauses, separated by ;, =>is the material implication, the left part is in conjunctive form,
the right part in digjunctive form (e.g.: BIO BAC -> = —=(BIO ABAC) = -BIOV -BAC,
6e -> BIO BAC = —6eV BIO Vv BAC).

e The iwo bases, and especially the knowledge base in (his example, may express more than
what is really necessary for computing optimal decisions. Anyway, usually the decision
maker is not able to distinguish the knowledge that will be useful for the decision problem,
from the one that will not be of any use. The decision maker is only concerned with
giving enough knowledge for the program to compute optimal (pessimistic or optimistic)
decisions. Furthermore, the knowledge or the preference base may be redundant, which is
of no importance for the decision problem.

In the following paragraph, we will see how the algorithm works on this example.

4.3. Computation with MPL

Optimistic case

First step : a = O= 0.

The Computation MPL(KqU Pg.{},D) gives us one solution {BI0}.
The optimistic utility of this solution is n(a) = 1.

Pessimistic case

First step : @ = 1= 5.

Computation of the nogoods : NG = {{ BIO, BAC'},{BIO, TA},{BAC,TA}}.

Computation of the label of —w A =we A (=5e V =ew) A =He A mew (n(a) = 1):

Labelg, (—w) = {{BAC},{T A}}. p = 5.

Labelg, (—w A ~we) = {{BAC}}. = 4.

Labelg_ (—w A —we A (=be V —cw) = {}. = 3.

Stop. Try with & = n(3) = 2 (the new value of a is maxz(a, n(8)) = 2, since K4 and K(3) are
empty).

Second Step: a = 2.

Computation of the nogoods : NG = {{BIO, BAC},{BIO, TA},{BAC,TA}}.

Computation of the label of —w A —we (n(a) = 4):

Labelg (—w) = {{}}. 8 =5.

Labelg (—mw A —we) = {{BAC},{BIO}}. f = 4.

Stop. n(a) > 3 = 4.

So, the pessimistic optimal decisions for N((GG)=2 are BIO and BAC for a pessimistic utility
a=2.



4.4. Semantics

In this paragraph, we show how the preceding example can be dealt with in a semantical way.
Of course, we will see that both approaches lead to the same result.

First of all, we shall notice the correspondence between the representations of the preferences
in terms of prioritized formulas and in terms of utility functions over the consequences of actions.
Indeed, a utility function pu, such as the above one, can be always put under the form:

M(w) = max mln(Vw(q])7 Oé])
J

with Yo = ¢;, p(w) = «;, and where 1,(¢;) = 1 if w = ¢;, and @ if not. This max-min form
can be turned into the equivalent min-max form pp(w) = min; max{v,(p;), n(a;)}, where we
recognize the standard semantics of a stratified possibilistic knowledge base P = {(p;, o)}, used
in Section 2.

A part of the knowledge base K is certain (I = level 5). including constraints over the
decision set: {BIOV BAC' VTA,-BIOV -BAC, ...}, factual knowledge {gV r,—gV —r}, and
knowledge about the system, e.g. {g A BIO — 6e,g ATA — we,...}. The only part of the
knowledge base that may be uncertain is about the state of freshness of the egg (represented by
a necessity valued literal : (g, N(g)) or (r, N(r)).

In this example, the possibility distribution 7y, restricting the more or less plausible con-
sequences of a decision d, depends only on the possibility distribution on the two possible states
¢ and r, namely, on II(g) and II(r). Let N(g) = n(I1(r)) and N(r) = n(I1(g)) (the certainty or
necessity of an event is the impossibility of the opposite event). Note that min(N (g), N(r)) =@,
where @ is here the bottom element of our scale (since the possibility distribution over {g,r}
should be normalized whatever decision d).

The pessimistic utilities of the possible decisions, given by U, are the following, according
to the levels of certainty of g and r:

“UL(BIO) = min(max(n(11(1)), u(w)), max(n(11(9)). n(6))).
which simplifies into U.(BIO) = N(g).
- Uy (BAC) = min(max(n(I1(r)). u(5¢)), max(n(11(g)), p(6¢))).
Thus, U.(BAC) = min(max(N(g).2),4).
- U (TA) = min(max(n(I1(r)), u(5)), max(n(11(g)), u(bw))).
Thus, U.(TA)=11if N(g) > 0 and min(3, max(N(r), 1)) if not.
The best decisions are therefore:
- Break the egg in the omelette if N(g) =5 (we are sure that the egg is good).
- Break it in the omelette or apart if N(g) € {2,3,4} (we are rather sure that the egg is good).
- Break it apart in a cup if N(g) < 2 and N(r) < 2 (we are rather ignorant on the quality of
the egg).
- Throw it away or break it apart if N(r) =2 (we have a little doubt on its quality).
- Throw it away if N(r) > 2 (we do not think that the egg is good).

Notice the importance of the commensurability assumption in the computation of U, where

both degrees of certainty and preferences are involved. Note also the qualitative nature of the



approach, since the results depend only on the ordering between the levels in the scale.

4.5. Calculation with symbolic levels

Another solution for computing the pessimistic utility of a decision that combines the syntactic
and the semantic approaches can be adopted. We can translate K into another knowledge base

K’ using additional symbols:

e A; which will express the fact that we need pieces of knowledge belonging to the i** layer
of K o reach the goal,

e P; which will express the fact that some goal in layer j cannot be reached.

° pj which are non-assumption symbols, representing the individual preferences in layer j.

Let K’ be the non-stratified knowledge base obtained from K such that each clause C' from
the first layer is replaced by Ay — ', while the second layer is replaced by the two clauses
A2 — 4, A3 — T,

// Knowledge base K’

// we get a 6-egg omelette if and only if the egg is good and
// we break it in the omelette;

Al g BIO -> 6e ;
Al g BAC -> 6e ;
Al 6e => g
Al 6e TA -> ;

A2 > g
A3 -> r ;

A preference layer j is considered as “satisfied” if and only if every preference in this layer is
satisfied. Therefore, we consrtuct P’ the non-stratified preference base obtained from P in the
following way: a clause is added for expressing the condition under which a layer j is satisfied:
C}Cj2 — P, plus the clause .. — goal. In this way, if an environment of the label
contains the symbol P;, it means that there is at least one preference in P; that is not satisfied.
On the contrary, if it does not, we are sure that every preference in P; is satisfied.

In our example, each layer contains only one clause, so P’ becomes:

// Preference base P’

-> P5 w;
-> P4 we;
-> P3 be;
-> P3 cw;



-> P2 be;
-> P1 cw;
P1 P2 P3 P4 P5 -> goal ;

Labelgiapi(goal) gives us the following result:

{ Environments Associated pessimistic Decision
Label(goal) utility concerned
(from ATMS) (non-automatic process)

{P1 P2 P3 P4 P5} 0 BAC,BIO,TA

{A1 A2 P1 P2 P4} min(N(g),1) BAC,BIO,TA

{A1 A3 P1 P2 P3 P5} O BAC,BIO,TA

{A1 P1 P2 P3 BAC} 2 BAC

{A1 A2 P1 BAC} min(N(g),4) BAC

{A1 P2 P4 TA} 1 TA

{A1 A3 P2 TA} min(N(r),3) TA

{a1 P5 BIO} 0 BIO

{A1 A2 BIO} N(g) BIO

b

The pessimistic utility of a decision can be obtained from the “best way” it allows to
reach the goal, where a “way” is an environment from the label of goal. If for example we
choose decision BIO, then the possible “ways” for reaching the goal are : {P1 P2 P3 P4 P5},
{A1 A2 P1 P2 P4}, {A1 A3 P1 P2 P3 P5}, {A1 P5 BIO}, {A1 A2 BIO}. The “utility of
a way” depends on the least certain assumption it involves, and on the goal with the highest
priority that has to be assumed true (thus, not provable). For instance, {A1 A2 P1 BAC'}
depends on assumption A2 (which level of certainty is N(g)), and assumes that P1 (of pri-
ority 1) is true. Therefore, the utility of this “way” (assuming that BAC is performed) is
min(N(g), n(1)) = min(N{g), 4).

Notice that the environment (or “way”) {P1 P2 P3 P4 P5} is meaningless in so far as it
is an artificial “way” to reach the goal, assuming that every preference is satisfied, even if no
decision at all is taken.

FEach of the available decisions can thus be evaluated:
us(BIO) = maxz(0, min(N(g),1),0,0,N(g)),
(T A) = maxz (0, min(N (g),1),0,1,min(N(r),3)),

. (BAC) = maz (0, min(N(g).1),0,2, min(N(g),4)).



These expressions are the max-min equivalent forms of the min-max expressions given in
the preceding paragraph.

4.6. Remarks

As we have seen on the well known Savage’s omelette example, a qualitative, possibilistic de-
cision problem can be described either syntactically by the means of two stratified bases. or
semantically by the means of a possibility distribution and a qualitative utility function. The
main feature to notice is that both approaches are equivalent. We have proposed and imple-
mented two original algorithms for treating the syntactical case. A question is to see which of
the syntactical or the semantical representation is the more appropriate for a given problem. In
the Savage’s omelette example, it is not clear whether a decision maker would give a logic repre-
sentation of the problem, or would more willingly give a semantic representation under the form
of a utility function. In the general case, the appropriate representation would depend on the
particular decision problem under consideration, and on the decision maker’s habits. However,
in problems involving a large number of states, one may expect that the logical representation
of partial belief about the world, and preferences on goals would be more economic than an
explicit enumeration of states with their levels of plausibility and of preference. We have also
pointed out that it is possible to pass from one representation to the other, and how it can be
done.

5. Concluding remarks

The main contribution of this paper has been to describe a logical machinery for decision-making,
implementing the qualitative possibilistic utility theory, in the framework of possibilistic logic.
A link between this logical machinery and the ATMS framework has been pointed out, which has
allowed to adapt some efficient algorithms proposed in this framework to possibilistic qualitative
decision making.

One strong assumption has been made in this paper, which is that certainty levels and pri-
ority levels be commensurate. An attempt to relax this assumption has been made in (Dubois,
Fargier and Prade [14]). These authors point out that working without the commensurability as-
sumption leads them to a decision method close to rational inference machinery in non-monotonic
rcasoning. Unfortunately, that method also proves to be cither very little decisive or to lead to
very risky decisions.

Besides, the links between possibilistic qualitative decision making and diagnosis (abductive
and consistency-based) may be further explored: (Cayrac et al. [8]) have proposed a way to
handle uncertainty in model-based diagnosis which is technically very close to the one exposed
here in the decision framework. In (Le Berre and Sabbadin [26]), a logical machinery similar to
the one exposed here has been presented, in the diagnosis and repair framework. This machinery
is also based on ATMS techniques. However, the actions under consideration are repair-actions,
preferences are expressed by the means of real-valued goals (where the value of a goal is its



utility in the classical sense of decision theory) of a specific kind, and uncertainty is modeled
by “probability-valued” assumptions. Methods (also based on the MPL procedure) are given
for computing the belief-based expected utility of a decision (a counterpart of classical expected
utility, in the Dempster-Shafer theory).

Finally, we can think of dealing with possibilistic logic formulas involving time instants
(e.g., as in Dubois and Prade [19]) in order to extend the syntactical approach presented here
to multiple-stage possibilistic decision (Fargier et al. [23]). Such an extended framework will be
also useful if the computation of the result of the decision requires an updating of K.
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