
HAL Id: hal-03300776
https://univ-artois.hal.science/hal-03300776v1

Submitted on 25 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DMC: A Distributed Model Counter
Jean-Marie Lagniez, Pierre Marquis, Nicolas Szczepanski

To cite this version:
Jean-Marie Lagniez, Pierre Marquis, Nicolas Szczepanski. DMC: A Distributed Model Counter. 27th
International Joint Conference on Artificial Intelligence (IJCAI’18), Jul 2018, Stockholm, Sweden.
pp.1331-1338, �10.24963/ijcai.2018/185�. �hal-03300776�

https://univ-artois.hal.science/hal-03300776v1
https://hal.archives-ouvertes.fr

DMC: A Distributed Model Counter

Jean-Marie Lagniez1, Pierre Marquis1,2, Nicolas Szczepanski1
1 CRIL-CNRS UMR 8188, Université d’Artois, Lens, France

2 Institut Universitaire de France
lagniez@cril.fr, marquis@cril.fr, szczepanski@cril.fr

Abstract

We present and evaluate DMC, a distributed model
counter for propositional CNF formulae based on
the state-of-the-art sequential model counter D4.
DMC can take advantage of a (possibly large) num-
ber of sequential model counters running on (pos-
sibly heterogeneous) computing units spread over
a network of computers. For ensuring an efficient
workload distribution, the model counting task is
shared between the model counters following a pol-
icy close to work stealing. The number and the sizes
of the messages which are exchanged by the jobs
are kept small. The results obtained show DMC as
a much more efficient counter than D4, the distri-
bution of the computation yielding large improve-
ments for some benchmarks. DMC appears also as
a serious challenger to the parallel model counter
CountAntom and to the distributed model counter
dCountAntom.

1 Introduction
Model counting (aka the #SAT problem) is the task consisting
in computing the number of models of a given propositional
formula Σ (typically in CNF) over the set of its variables.
This task is of tremendous importance to many AI prob-
lems, including probabilistic inference [Sang et al., 2005;
Chavira and Darwiche, 2008; Apsel and Brafman, 2012] and
forms of planning [Palacios et al., 2005; Domshlak and Hoff-
mann, 2006]. It has also many applications outside AI, espe-
cially in the domains of model checking and hardware testing
[Feiten et al., 2012; Klebanov et al., 2013].

The significance of #SAT explains why much effort has
been spent for the last decade in developing new algorithms
for model counting (either exact or approximate) which prove
practical for larger and larger instances [Samer and Szeider,
2010; Chakraborty et al., 2016]. Especially, several (sequen-
tial, exact) model counters have been implemented and eval-
uated, including search-based model counters, like Cachet
[Sang et al., 2004] and sharpSAT [Thurley, 2006], as well
as compilation-based model counters, like C2D [Darwiche,
2001; 2004], SDD [Darwiche, 2011; Oztok and Darwiche,
2015], Dsharp [Muise et al., 2012], and D4 [Lagniez and

Marquis, 2017a]. However, model counting is computation-
ally hard (#P-complete), and actually much harder in prac-
tice than satisfiability (the SAT problem). Hence the solving of
many instances corresponding to real problems still remains
out of reach.

In order to solve more instances within a reasonable
amount of time, a basic approach from a technological side
consists in running existing model counters on more efficient
processing units. Increasing clock rates goes through improv-
ing the level of integration of transistors on chips. Moore’s
law, stated in the mid sixties, is the observation that the num-
ber of transistors in a dense integrated circuit doubles approx-
imately every two years. But it is known that Moore’s law will
”die” at some point since the size of atoms is a fundamen-
tal barrier. Thus, most semiconductor industry forecasters, in-
cluding Gordon Moore himself, expect Moore’s law will end
by around 2025. In order to manage CPU power dissipation,
processor makers now favor multi-core chip designs.

Such a strategy has been followed with some success
for model counting, as exemplified by the performances
of the parallel model counter CountAntom [Burchard et
al., 2015]. In this model counter multiple threads concur-
rently compute the number of models of the input formula
while sharing the conflict clauses learnt and the cached sub-
formulae encountered during the search (see [Burchard et
al., 2015] for details). In CountAntom a specific caching
scheme (so-called ”laissez-faire caching”) is exploited to en-
able the cores to share a common cache while ensuring that
the numbers of models associated with sub-formulae and
stored in the cache are correct. However, the limit concern-
ing the level of integration of transistors on chips which pre-
vents from arbitrary large clock speed improvements also ap-
plies to multi-core CPUs, so that the number of cores that can
be integrated onto a single chip cannot grow as much as one
would expect. Practically speaking, one can nowadays buy
many-core processors based on hundreds, but not on thou-
sands cores.

Going further requires to make an additional step, from
multi-threaded parallelism to distributed parallelism, the ob-
jective being then to benefit from the computational power
of a very large number of possibly heterogeneous computers
connected through a network. Of course, the absence of mem-
ory shared by the processing units in this general case im-
poses some constraints (there is no efficient way to exchange

pieces of information between cores located in different com-
puters because information exchange requires message pass-
ing through a network). Focused on the model counting is-
sue, a pioneering work in that direction is reported in [Bur-
chard et al., 2016]; this paper describes the distributed, paral-
lel model counter dCountAntom based on CountAntom
and extending it by adding a message passing layer enabling
a master counter to share work with slave solvers which are
instances of CountAntom.

In this paper, we present a new distributed model counter,
called DMC, based on a quite different, yet more flexible archi-
tecture than the one used by dCountAntom. Basically, the
hierarchical architecture of dCountAntom prevents a slave
solver from asking help to other slave solvers, which would
nevertheless make sense whenever the sub-formula it works
on proves hard to be solved; this limitation is overcome in
DMC. In addition, for a sake of efficiency, the numbers and
the sizes of the messages which are transmitted in DMC are
limited: unlike what happens in dCountAntom neither the
conflict clauses which are detected nor the sub-formulae for
which some help is expected are explicitly communicated.
The sequential #SAT solver on which the implementation of
DMC is based, namely the state-of-the-art model counter D4,
is also different from the one (called Antom, [Schubert et
al., 2010]) used by dCountAntom (and by CountAntom).
The empirical results we obtained show DMC as a much more
efficient counter than D4, the distribution of the computa-
tion leading to significant time savings and yielding large im-
provements for some benchmarks. We also compared DMC
with CountAntom and dCountAntom, and again, empiri-
cally, the computational benefits were often very significant.
The binary code of DMC is available from the web page of the
Compile! project, at www.cril.fr/KC/

2 Formal Preliminaries
Let L be a language for propositional logic defined induc-
tively from a countable set P of propositional variables, the
usual connectives (¬, ∨, ∧) and including the Boolean con-
stants > and ⊥. A literal ` is a variable ` = x from P or a
negated one ` = ¬x. A clause is a disjunction of literals or⊥,
and it is also viewed as the set of its literals. A CNF formula is
a conjunction of clauses, also viewed as the set of its clauses.

Formulae are interpreted in the classical way. An interpre-
tation ω is a mapping from P to {0, 1}. ω is a model of a
formula Σ when Σ is interpreted to 1 (true) by ω. An inter-
pretation ω is often represented by the set of literals ω is a
model of them. |= denotes logical entailment and ≡ logical
equivalence. For any formula Σ from L, Var(Σ) is the set of
variables from P occurring in Σ, and ‖Σ‖ is the number of
models of Σ over Var(Σ).

The primal graph of a CNF formula Σ is the (undirected)
graph where vertices correspond to the variables of Σ and an
edge connecting two variables exists whenever one can find
a clause of Σ where both variables occur. Every connected
component of this graph (i.e., a maximal subset of vertices
which are pairwise connected by a path) corresponds to a sub-
set of clauses of Σ, referred to as a connected component of
the formula Σ.

BCP denotes a Boolean Constraint Propagator, which is a
key ingredient of many preprocessors and solvers. BCP(Σ)
returns {∅} if there exists a unit refutation (i.e., a derivation
of the empty clause using unit propagation only) from the
clauses of the CNF formula Σ, and BCP(Σ) returns the set
of literals (unit clauses) which are derived from Σ using unit
propagation in the remaining case.

3 DMC: A Distributed Model Counter
Our (exact) model counter DMC is a distributed algorithm as-
sociating with an input CNF formula Σ its number of models
‖Σ‖ computed by taking advantage of a fixed, yet possibly
large number of processing units, which can be spread over
a computer network. Since our purpose is to get a distributed
model counter which does not necessarily boil down to a mul-
tithreaded parallel model counter, one does not assume any
memory share between the processing units in DMC.

3.1 The Architecture of DMC
Organization. Within DMC, the computation of ‖Σ‖ from Σ
relies on n + 1 processing units with n ≥ 2: one master m
and n workers w1, . . . , wn. In our experiments, each worker
wi is an instance of an avatar of the state-of-the-art top-
down model counter D4 [Lagniez and Marquis, 2017a]. D4
is a compilation-based counter, which associates with Σ an
equivalent Decision-DNNF representation [Darwiche, 2001;
2004], and ‖Σ‖ can be computed efficiently from such a rep-
resentation. D4 is based on a SAT solver which exploits as-
sumptions. Assumptions include the assignments of the de-
cision variables which are considered, but also the clauses
which are learnt at each call and which are kept for the sub-
sequent calls (this has a significant impact on the efficiency
of the whole process as it is the case for SAT solving [Au-
demard et al., 2013]). D4 takes advantage of the techniques
used in other top-down model counters for efficiency rea-
sons (mainly, disjoint component analysis, conflict analysis
and non-chronological backtracking, component caching) but
exploits specific decomposition heuristics (see [Lagniez and
Marquis, 2017a] for details). As the other top-down model
counters, D4 computes the number of models of its input for-
mula by developing a search tree containing two types of in-
ternal nodes: decision nodes and decomposable ∧ nodes. De-
cision nodes correspond to variable/truth value assignments,
while decomposable ∧ nodes correspond to the discovery of
disjoint components in the primal graph of the current for-
mula. Promoting the decomposition into disjoint components
using suited branching heuristics appears as a key ingredient
for efficient model counting.

Workers. Each worker wi of DMC has at start its own copy
Σi of the input CNF formula Σ once vivified [Piette et al.,
2008], so that all Σi are identical and equivalent to Σ at
the beginning. The CNF formula Σi is completed during the
computation with the clauses learnt by the underlying SAT
solver (if any) until the worker terminates. Learnt clauses are
marked as such. Since those clauses are logical consequences
of Σ, the CNF formulae Σi stored by the workers remain log-
ically equivalent to Σ during the computation (but they are
not pairwise identical in general because of the learnt clauses

that usually differ). The addition of clauses to Σi as soon as
they are learnt typically increases the set of clauses which
can derived from Σi using unit propagation only. Whenever
a worker wi is busy, its job consists in counting the number
of models of the connected component C of Σi under a given
partial assignment γ, where V is the set of variables of C (for
the sake of simplicity, one says that wi computes ‖Σ‖ w.r.t.
(γ, V)). The partial assignment γ consists of literals based on
decision variables or obtained using unit propagation from
those literals. As with previous counters, when the current set
of clauses (i.e., C conditioned by γ) can be partitioned into
two subsets that do not share any variable, a decomposition
node is added to the search tree developed by wi (one can
count separately the numbers of models of the two disjoint
components of C and then multiply these numbers to get the
number of models of C). Each job done by wi is thus charac-
terized by a pair (γ, V), associated with a unique identifier of
the form $k = uid(γ, V). In general, a number of jobs (γ, V)
will be considered by each worker wi during the overall com-
putation process.

What make the workers used in DMC different from stan-
dard sequential model counters are threefold: (1) the CNF in-
stances on which each avatar wi of D4 is run are not given
explicitly, but must be computed during a preliminary step
from the CNF formula Σi, a partial assignment γ (gathering
the truth values assigned to some decision variables) and a
set V of variables (characterizing the clauses on which the
focus must be laid); when run on a given instance, instead of
systematically returning a number of models, every worker
returns an arithmetic expression based on + and ×, non-
negative integers and identifiers of jobs of the form $k (the
identifiers corresponding to expressions or numbers of mod-
els returned by other workers to which the worker under con-
sideration delegated some parts of the work to be done for
solving the current instance), (2) since for the model count-
ing purpose there is no need to generate a compiled form,
no Decision-DNNF representation is actually computed, (3)
some preprocessing techniques reported in [Lagniez and Mar-
quis, 2017b] are first applied to the instance on which the
model counter is run afterwards; for the sake of flexibility, it
is not mandatory that all the avatars of the #SAT solver used in
DMC exploit the same preprocessing techniques; more gener-
ally, avatars of other (compilation-based or search-based) top-
down model counters, like Cachet or sharpSAT, could be
used instead of avatars of D4, provided that (1) is ensured.

Master. The role of the master is to ensure some connections
between the workers, in such a way that when wi is busy (i.e.,
wi is currently involved in the computation of ‖Σ‖w.r.t. some
(γ, V)) and wj is available (idle and ready to work), wi may
ask wj to compute for it ‖Σ‖ w.r.t. (γ′, V ′) where γ′ is an ex-
tension of γ (i.e., γ′ contains all the elementary assignments
of variables to truth values that occur in γ, and possibly addi-
tional ones), and V ′ is a subset of V . To do so, m maintains
a list of all the workers, where each worker wi is associated
with a flag indicating whether wi is busy or available.

At the beginning, the master process m first activates
worker w1; this worker w1 starts counting the models of Σ
(i.e., the first job ofw1 is to compute ‖Σ‖w.r.t. ({},Var(Σ)))

by developing a search tree. Once it has activated w1, the
master m wakes up in a sequential way the other workers
w2, . . . , wn. Each time a worker wj has just been waked up
or has finished its current job, wj becomes available again
and is ready to work. wj contacts the master m to let m know
that wj is available, and m turns the corresponding flag to
”available”. Whenever m knows that a worker wj is avail-
able, m asks successively each busy worker wi whether wi
needs some help or not. wi may respond positively or not
(e.g., when its current job is such that γ is large enough or V
is small enough, wi may decide to finish the job alone). The
choice of accepting some help for finishing the job is made by
comparing the number of variables that remain in the instance
to the value of the parameter nbVarSeq of DMC. If this num-
ber of variables is small enough (i.e., lower than nbVarSeq),
then wi finishes the job itself. This test is important to avoid
ping-pong effects, i.e., the fact that the workers finally spend
more time communicating one another (asking some help)
instead of actually counting models. As soon as a worker wi
responds positively (”I need some help”) to the master, m
communicates to wi the name j of wj so that wi can send
a message to wj , and m switches the flag associated with
wj . The message sent to wj consists of a pair (γ′, V ′) such
that γ′ extends γ and V ′ is a subset of V . Thus wj starts the
computation of ‖Σ‖ w.r.t. (γ′, V ′) so that wj is busy again.
Note that knowing γ′ and a single variable occurring in V ′ is
not enough to characterize V ′ entirely because of the learnt
clauses which may differ among the workers wi and wj .

At the end, when all the workers are available, the compu-
tation can stop: the master m broadcasts a message to every
worker wi to let wi know that it can terminate and m finally
computes and returns the number of models of Σ, by evaluat-
ing in a bottom-up way the arithmetic tree corresponding to
the set of pairs $k = expression collected so far.

Job sharing. Whenever a workerwi is ready to get some help
from another worker wj , wi chooses an open node N in its
own backtrack queue. By construction, N corresponds either
to (1) a pending literal l over variable v (the remaining child
of a decision node over v considered by wi when solving the
job (γ, V)) or (2) a child of a decomposable ∧ node. wi then
associates with N the identifier uid(γ′, V ′) where γ′ is γ ex-
tended with the assignment γ′′ of truth values of the nodes
encountered from the root of the search tree explored by wi
for solving (γ, V) to N , and V ′ is the subset of variables oc-
curring in the formula rooted atN . In our implementation, the
nodeN chosen by wi is the first node which is not already as-
sociated with an identifier when the queue is parsed from its
end (the first node pushed into the queue) to its head (which
corresponds to the next node that will be explored by wi if
a backtrack occurs). The rationale for this choice is three-
fold: it makes the part of the search space to be explored by
wj as large as possible, thus avoiding wj to turn back to the
idle state too early; it prevents from generating a very large
arithmetic tree; and it promotes component caching which, in
practice, is typically much more effective at the bottom of the
search tree (to be explored by wi) than at its top.

Once it has sent the job (γ′, V ′) to wj , worker wi resumes
its own job. When a backtrack actually takes place and an

Initial CNF formula Σ = (¬a ∨ b ∨ ¬f) ∧ (¬a ∨ ¬b ∨ ¬f) ∧ (¬a ∨ b ∨ c ∨ f) ∧ (¬a ∨ d ∨ e ∨ f)

STEPS WORKER w1 WORKER w2M WORKER w3M MASTER

Yes

Contact w2

$2

Listen w1

Need help ?

No
Need help ?

Yes

Contact w3

$3

Listen w1

Need help ?

$2 = 32

$1=$2+($3×3)

$3 = 3

Stop

Stop

Stop

MASTER M w1M M w2M M w3M

1

(γ,V)=(∅, {a,b,c,d,e,f})

a Waiting Waiting
Idle: w2, w3

Expressions:

$1=uid(∅, {a,b,c,d,e,f})

2

(γ,V)=(∅, {a,b,c,d,e,f})
Learn the clause ¬a∨¬f

a

∧

d ∨ e b ∨ c

$2

(γ,V)=(¬a,{b,c,d,e,f})

>
Waiting

Idle: w3

Expressions:

$1=uid(∅, {a,b,c,d,e,f})
$2=uid(¬a, {b,c,d,e,f})

3

(γ,V)=(∅, {a,b,c,d,e,f})

a

∧

d $3

$2

> e

> ⊥

Job done
$2 = 32

(γ,V)=(a,{b,c})

b

Idle: ∅
Expressions:

$1=uid(∅, {a,b,c,d,e,f})
$2=32

$3=uid(a, {b,c})

4 Job done
$1 = $2 + ($3× 3)

(γ,V)=(a,{b,c})

b

> c

> ⊥

Idle: w1, w2

Expressions:

$1=$2 + ($3× 3)

$2=32

$3=uid(a, {b,c})

5 Job done
$3 = 3

Idle: w1, w2, w3

Expressions:

$1=$2 + ($3× 3)

$2=32

$3=3

6
Evaluation

$1=32 + (3× 3)

$1=41

Figure 1: DMC at work on a toy example, with three workers.

open node associated with an identifier is considered, wi can
skip this node since wi knows that the work corresponding to
this part of the search space has been or is currently achieved
by another worker. When its backtrack queue is finally empty,
wi has finished its job: wi sends to the master m a message
consisting of the identifier uid(γ, V) of the job, and an arith-
metic expression characterizing the number of models of the
instance given by (γ, V). This expression is based on + (at
each decision node one must add the numbers of models of
the two children, once normalized),× (at each decomposable
∧ node one must multiply the numbers of models of the chil-
dren, and at each decision node N normalisation requires to
multiply the number of models of each child by 2c where c
is the number of variables of N occurring only in the other
child), non-negative numbers (numbers of models that have
been computed by wi itself) and identifiers (of the form $k,
naming expressions characterizing numbers of models which
are computed by other workers to whichwi asked some help).

As a matter of illustration, Figure 1 presents DMC at work
on a simple CNF formula Σ. Three workers are used and

nbVarSeq is supposed set to 3. The status of each worker
over time is stated. At each step when a worker is not idle, its
current job (γ, V) is made precise, as well as the search tree
developed so far for doing this job. When a job is finished, the
corresponding arithmetic expression is reported. The master
column reports at each step the workers that are idle, and the
current set of arithmetic expressions. When all workers are
idle (step 6), the arithmetic expression $1 associated with the
initial job (i.e., computing the number of models ‖Σ‖ = 41
of the input formula) can be evaluated. The rightmost column
indicates the various communication steps done during the
computation.

As already evoked, when wj receives some job (γ′, V ′)
from wi (working itself on job (γ, V)), wj starts with a pre-
liminary step which aims to make precise the clauses on
which it has to work. If all the workers shared the same CNF
formula Σ during the computation, it would be enough to re-
strict V ′ to a singleton V ′ = {v} and to look for the clauses
containing at least one variable corresponding to a node of
the primal graph of BCP(Σ | γ′) belonging to the same con-

nected component as the node associated with v. But this is
not the case: the clauses learnt by wj are not necessarily the
same ones as those learnt by wi when the message (γ′, V ′)
is sent from wi to wj and this changes the picture a lot. Even
if the preprocessing techniques used by wi and wj coincided,
there would be no guarantee that V ′ corresponds to a con-
nected component of BCP(Σj | γ′) when V ′ is a connected
component of BCP(Σi | γ′). This is due to the fact that the
notion of decomposability is syntactic: the connected com-
ponents of two equivalent CNF formulae do not coincide in
general. Therefore, the number of models of the CNF formula
characterized by Σj , γ′ and V ′ can differ from the number of
models of the CNF formula characterized by Σi, γ′ and V ′.
As a matter of illustration, let us consider a very simple ex-
ample (see Figure 1, with wi = w1 and wj = w3, steps 3
to 5) Suppose that wi has previously learnt a clause ¬a∨¬f ,
which has not been learnt by wj : if the set of clauses of Σi | γ
reduces to ¬a ∨ b ∨ ¬f , ¬a ∨ ¬b ∨ ¬f , ¬a ∨ b ∨ c ∨ f ,
¬a∨ d∨ e∨ f , and ¬a∨¬f , and γ′ is γ extended by setting
a to true, then BCP(Σi | γ′) has two connected components:
one corresponding to b ∨ c and the other one corresponding
to d ∨ e. Suppose that wi requires the help of wj for com-
puting the number of models of b ∨ c. Then wi sends to wj
the message (γ′, V ′) with V ′ = {b, c}. But V ′ is not the
set of variables of a connected component of the CNF for-
mula BCP(Σj | γ′) when Σj | γ reduces to ¬a ∨ b ∨ ¬f ,
¬a ∨ ¬b ∨ ¬f , ¬a ∨ b ∨ c ∨ f , and ¬a ∨ d ∨ e ∨ f . This
explains why a preliminary step is necessary. This step con-
sists in computing first a model ω of BCP(Σj | γ′); if there is
no such a model, then the number of models corresponding
to (γ′, V ′) is 0 and wj has finished the job (γ′, V ′); in the
remaining case, ω is projected onto the set of variables not
occurring in V ′, giving rise to a partial assignment γ′′ and
then the model counter associated with wj computes and re-
turns the number of models of BCP(Σj | γ′′). By construction,
this number of models coincides to the number of models of
the connected component of BCP(Σi | γ′). Stepping back to
the previous example, a model ω of Σj | γ′ = (b ∨ ¬f) ∧
(¬b∨¬f)∧ (b∨ c∨ f)∧ (d∨ e∨ f) is computed by wj , for
instance ω = {b,¬c, d, e,¬f}; then, the model counter asso-
ciated with wj computes and returns the number of models of
BCP(((b∨¬f)∧(¬b∨¬f)∧(b∨c∨f)∧(d∨e∨f)) | d∧e∧¬f),
which is equal to the number of models of b ∨ c as expected.

3.2 Comparison with (d)CountAntom
CountAntom. Unlike CountAntom [Burchard et al., 2015],
DMC is a ”true” distributed model counter, in the sense that the
processing units which are used for the computation of ‖Σ‖
are not necessarily restricted to the cores of the (unique) pro-
cessor on which the computation takes place. This makes a
very significant difference between the two counters. While
the limitation of the number of processing units is in favor
of DMC, the presence of a memory shared by the threads of
the processor renders feasible for CountAntom to let the
processing units share many information, especially the con-
flict clauses learnt and the cached sub-formulae encountered
during the search. Obviously enough, the possibility to dele-
gate some jobs to workers implemented on other computers
restricts the applicability of component caching in DMC. For

each job (γ, V) done by a worker wi (possibly with the help
of other workers), every CNF sub-formula considered by wi
can be cached once wi has succeeded in computing the cor-
responding number of models; if a formula put in the cache
is encountered again by wi during the achievement of the job
(γ, V), then its number of models can be retrieved from the
cache instead of re-computing it. However, since the cache
used by wi is stored in the memory of wi and there is no
memory shared between the workers, the workers helping wi
to do the job (γ, V) cannot take advantage of it.

dCountAntom. dCountAntom [Burchard et al., 2016] is a
distributed model counter (the only one we are aware of). It
extends CountAntom with an additional message passing
layer allowing a master counter (which is unique) to delegate
work to slave counters (clones of CountAntom) and per-
mits those slave solvers to exchange information in order to
guide the computation. The master counter can share a node
(corresponding to a part of the search tree to be explored)
with a slave only if the node is at a decision level of suf-
ficient depth (its value is made precise by a parameter δ of
dCountAntom) but a slave solver wi cannot give jobs to
other slave solvers. Whenever a slave wi cannot solve a node
within a preset amount of time τ , wi gives up the correspond-
ing job and gives it back to the master which continues the
computation. In order to break down such a hard node, its
children can only be shared with the slave processes again
after a predefined number of decision levels.

In our opinion, the distribution strategy followed by
dCountAntom, which follows a cube-and-conquer ap-
proach, suffers from several weaknesses. First of all, each
time a slave gives up a job, the corresponding computational
effort is wasted. Furthermore, when the instance considered
by the master is hard enough, the slave processes can be idle
most of the time. Since slaves cannot delegate jobs to other
slaves (which would make sense when trying to solve diffi-
cult sub-formulae), if the number of cores of the processor
on which a CountAntom slave is run is not enough to get
a result before the fixed time limit, almost all the work will
finally be done by the master itself, leading to a significant
workload imbalance. This is avoided by DMC since the dis-
tribution policy used in it promotes the concentration of the
computational efforts on the hardest parts of the search space.
Indeed, the distribution policy followed by DMC is close to
work stealing, a well-known scheduling strategy for parallel
computations, especially suited for multithreaded computer
programs (see, for instance, [Blumofe and Leiserson, 1999]).
The nodes N corresponding to the unexplored parts of the
current search tree of a worker correspond to its work items.
As in work stealing, the exploration of the search tree rooted
atN may spawn new work items that can feasibly be executed
in parallel with its other work (these new items correspond to
decision nodes which are descendants of N). However, when
a processorwj runs out of work, it does not look at the queues
of other processors wi (again, there is no memory shared by
the processing units) for ”stealing” work items, but insteadwj
sends a request to the master. Then another worker wi which
is currently busy will eventually accept this help and give a
work item to wj .

In dCountAntom, conflict clauses are shared as soon
as they are learnt (whenever the master learns a clause or
receives such a clause from a slave, it transmits it to all
slaves). Furthermore, every sub-formula corresponding to a
sub-problem to be solved is transmitted by the master to a
slave. This leads to many communications passing through
the master, including communications involving messages
of large size (those corresponding to some sub-formulae to
be solved). Contrastingly, the distribution policy used by
DMC is more parsimonious as to the messages transmitted.
The clauses learnt are not exchanged by the workers and
the sub-formulae corresponding to unexplored parts of the
search space are not explicitly communicated. In more de-
tail, the sizes of the messages transmitted from the workers
to the master for asking some help when available or ac-
cepting/refusing to be helped, are bounded by the size of the
identifier of the worker so they are very short. The sizes of
the messages (γ′, V ′) transmitted from a worker to another
worker which is ready to help are upper bounded by the num-
ber of variables in Σ. The sizes of the arithmetic expressions
transmitted from any worker wi to the master when solving
(γ, V) is at most linear in the size of the longest branch of the
search tree developed by wi to achieve this job.

Finally, the performance of dCountAntom looks heavily
dependent on the choices of the parameter δ and of the time-
out τ set up for the slaves. In DMC, the only parameter used
is nbVarSeq. No parameters like δ and τ are considered,
thus the issue of tuning the values of these parameters is also
avoided.

4 Experiments
Experimental Setting. In order to evaluate and compare
DMC with the model counters D4, CountAntom, and
dCountAntom, we have considered 50 CNF instances
gathered into 9 data sets, as follows: BN (Bayesian networks)
(11), BMC (Bounded Model Checking) (3), Configuration
(5), Planning (12), Random (2), Qif (2) (Quantitative Infor-
mation Flow analysis - security), Circuit (3), Fault Injection
(6), Output Probability (6). All the instances from the first
7 families come from the SAT LIBrary www.cs.ubc.ca/
˜hoos/SATLIB/index-ubc.html. They have been se-
lected as hard enough for not being solved with a time limit of
3600s by at least one of the counters considered in the exper-
iments reported in http://www.cril.univ-artois.
fr/KC/documents/d4Results.pdf, namely D4,
C2D, Dsharp, Cachet, sharpSAT. Especially, some of
those instances have not been solved by D4, others have
been solved but each of them required at least 300s CPU
time. Basically, the rationale of the selection process was
to avoid trivial instances, while keeping sufficiently many
benchmarks for which the computations of D4 terminated
(this was useful to evaluate the improvement of DMC over
D4). The instances of the last two families include those con-
sidered in the experiments reported in [Burchard et al., 2015;
2016] and are available from https://projects.
informatik.uni-freiburg.de/projects/
countantom/files.

The experiments have been conducted on a cluster of six-

teen 32 GiB RAM computers containing each two quad-core
bi-processors Intel XEON X5500 at 2.67 GHz. The cluster is
equipped with an Ethernet controller at 1 GiB/s. A time-out
(wall clock time) of 3600s has been considered for each in-
stance. In the experiments, every worker used within DMC is
an avatar of D4, which takes advantage of the same prepro-
cessing combination, namely the computation of the back-
bone of the input [Monasson et al., 1999], followed by an
occurrence reduction step [Lagniez and Marquis, 2017a]. A
worker does not ask any help whenever the number of vari-
ables V of its current job (γ, V) does not exceed the value
of the parameter nbVarSeq of DMC, fixed to 30 in our ex-
periments. In our implementation of DMC, the communica-
tions between processes are managed using the library Open-
MPI for message passing interface (MPI). MPI is hardware
independent and it supports many communication techniques
(point-to-point, collective, shared-memory, Ethernet, etc.).

A first round of experiments has consisted in letting the
number of cores to vary when running DMC on the set of
benchmarks, in order to evaluate the benefits obtained in
terms of computational time, as well as the corresponding
speedups. Here, for any instance Σ solved in tn seconds by
DMC running on n cores, the speedup is given by the ratio
min(t1,3600)

tn
, where t1 is the number of seconds used by DMC

running on one core only (so t1 is undefined if Σ has not
been solved within 3600s by DMC running on one core). Thus,
the measured speedups are in fact lower bounds of the actual
speedups that would be computed by letting DMC on one core
to run up to exhaustion if this was feasible. The number n of
cores used for the workers varied from 1 up to 128 follow-
ing a geometric progression with common ratio 2. The case
when a single worker is considered mainly amounts to com-
paring DMC with the avatar of D4 considered in the experi-
ments. It turns out that the performance of DMC running on
one core is really close to the one of the corresponding avatar
of D4. This can be easily explained by the architecture used
(when one core is considered, only, the communication time
is negligible, the unique worker does all the job). A second
round of experiments has consisted in running CountAntom
on one computer of the cluster (thus exploiting 8 cores) and
dCountAntom on the whole cluster (using 128 cores).

Experimental Results. The results we have obtained are syn-
thesized on Figure 2.

Figure 2 (a) presents a cactus plot which indicates for a
given amount of (wall clock) time (reported on the y-axis)
the number of instances solved reported (on the x-axis). This
is done for all the counters considered in the experiments,
i.e., DMC running on 1, 2, 4, 8, 16, 32, 64, or 128 cores,
CountAntom running on 8 cores and dCountAntom run-
ning on 128 cores. As to DMC, it can be observed that
adding some cores leads as expected to reduce the time
needed to solve the instances, thus to solve more instances
within a given limit. DMC running on 8 cores has been
able to solve 44 instances, while CountAntom (running
on 8 cores as well) solved only 26 instances. Interestingly,
the instances solved by the two counters differ: 2 instances
solved by CountAntom have not been solved by DMC,
and 14 instances solved by DMC have not been solved by

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50

Ti
m

e
(w

al
lc

lo
ck

)i
n

se
co

nd
s

instances solved

128

64

32

16

8

4

2

1

8

128
DMC(128)

DMC(64)
DMC(32)
DMC(16)

DMC(8)
DMC(4)
DMC(2)
DMC(1)

CA(8)
DCA(128)

(a) # instances solved as a function of the time spent

0.01

0.1

1

10

100

1000

2 4 8 16 32 64 128

Sp
ee

du
p

cores

3.19
4.54

8.39

14.40

24.78
30.73

1.97

68.54
98.50

174.41

407.23

725.80

1358.49 1389.96

0.21

0.03
0.02

0.03 0.03
0.02 0.02

LINEAR SPEEDUP

(b) speedup as a function of the number of cores

Figure 2: Comparison of the performances of the model counters (a) and speedup achieved by DMC depending on the number of cores (b).

CountAntom. The importance of the caching ingredient
and of the learnt clauses in the solving process may explain
this discrepancy. dCountAntom running on 128 cores has
been able to solve only 16 instances in due time. For 10
instances, the program did not terminate properly but with
a segmentation fault. So even if dCountAntom had suc-
ceeded in solving them, it would have solved less instances
than CountAntom running on 8 cores. Such disappointing
results can be explained by the significance of the values of
the parameters δ and τ chosen for the computations (their de-
fault values may be not suited to the instances we have con-
sidered). As explained in [Burchard et al., 2016], the perfor-
mance of dCountAntom turns out to be very sensitive to the
values of δ and τ .

Figure 2 (b) focuses on DMC and reports on the y-axis
some box-and-whisker plots synthesizing the amount of (wall
clock) time spent to solve the instances depending on the
number of cores used, which is reported on the x-axis. The
bottom and top of each box are the first and third quartiles,
and the band inside the box is the second quartile (the me-
dian). The ends of the whiskers represent the minimum and
maximum of all of the data. In many cases, this figure shows
significant improvements in the time spent by DMC to solve
instances when additional processing units are considered.
The median value of the speedup ratio between DMC on 1 core
and DMC on 128 cores (30.73) exceeds one order of magni-
tude. The number of instances solved within the time limit of
1h varies from 38 for DMC on 1 core to 47 (over 50) for DMC
on 128 cores.

For the sake of efficiency, the architecture of DMC was de-
signed to keep small enough the time during when the pro-
cessors are idle, and the time overhead used for computa-
tions which are not dedicated to the main task, here model
counting (i.e., the time spent for distributing/scheduling the
computation and the time spent for communication purposes
with the other processors). In order to determine how much

this requirement has been fulfilled, we made some additional
measurements. Thus, for each number n of cores considered
in the experiments and each instance solved by DMC with n
cores, we have evaluated the ratio of the sums of the durations
spent by the workers in communication tasks or being idle,
over the total time used for solving the instance. Empirically,
it turns out that these ratios are typically small, especially for
the hardest instances, even when the number of cores is high.
For instance, for the hardest instance among those consid-
ered in our experiments, namely comm-p10-p-t10 from
the planning family, with 17539 variables and 75516 clauses,
which has been solved by DMC on 128 cores in 2872.58s (and
not solved by any of the other model counters we considered),
the ratio is equal to 0.81% only. This shows that our objec-
tive of keeping small enough the communication time and the
time during which the workers are idle has been reached to a
significant extent.

5 Conclusion
We have presented DMC, a distributed model counter for CNF
formulae, based on the sequential model counter D4. Unlike
the parallel counter CountAntom, DMC can take advantage
of a (possibly large) number of sequential model counters
running on (possibly heterogeneous) computing units spread
over a network of computers. In DMC, the workload distribu-
tion follows a policy close to work stealing and the number
and the sizes of the messages which are exchanged by the
jobs are kept small. As such, DMC differs significantly from
the distributed counter dCountAntom which is based on a
cube-and-conquer approach and uses a much more demand-
ing communication strategy. The empirical results we have
obtained show DMC as a much more efficient counter than D4,
the distribution of the computation leading to time savings of
several orders of magnitude and yielding large improvements
for some benchmarks. Experimentally, DMC appears also as a
serious challenger to CountAntom and to dCountAntom.

Indeed, while the number of processing units used in our ex-
periments was quite restricted, our empirical evaluation has
shown that the ability to distribute the model counting task
thanks to DMC permits to solve in a reasonable amount of
time instances that were out of reach before.

As a next step, it would be interesting to take advantage
of the best of CountAntom within DMC, i.e., to exploit the
shared memory between workers running on the same com-
puter. The problem of determining the amount of information
to be shared by “co-located” workers for optimizing the per-
formance of the computation does not look so easy. This is an
interesting perspective for further research.

Acknowledgments
This work has been partly supported by the CPER DATA
project funded by the Région Hauts-de-France We are also
grateful to the reviewers for their useful comments.

References
[Apsel and Brafman, 2012] Udi Apsel and Ronen I. Braf-

man. Lifted MEU by weighted model counting. In Proc.
of AAAI’12, 2012.

[Audemard et al., 2013] Gilles Audemard, Jean-Marie
Lagniez, and Laurent Simon. Just-in-time compilation of
knowledge bases. In Proc. of IJCAI’13, pages 447–453,
2013.

[Blumofe and Leiserson, 1999] Robert D. Blumofe and
Charles E. Leiserson. Scheduling multithreaded com-
putations by work stealing. Journal of the ACM,
46(5):720–748, 1999.

[Burchard et al., 2015] Jan Burchard, Tobias Schubert, and
Bernd Becker. Laissez-faire caching for parallel #sat solv-
ing. In Proc. of SAT’15, pages 46–61, 2015.

[Burchard et al., 2016] Jan Burchard, Tobias Schubert, and
Bernd Becker. Distributed parallel #sat solving. In Proc.
of CLUSTER’16, pages 326–335, 2016.

[Chakraborty et al., 2016] Supratik Chakraborty, Kuldeep S.
Meel, and Moshe Y. Vardi. Algorithmic improvements
in approximate counting for probabilistic inference: From
linear to logarithmic SAT calls. In Proc. of IJCAI’16,
pages 3569–3576, 2016.

[Chavira and Darwiche, 2008] Mark Chavira and Adnan
Darwiche. On probabilistic inference by weighted model
counting. Artificial Intelligence, 172(6-7):772–799, 2008.

[Darwiche, 2001] Adnan Darwiche. Decomposable negation
normal form. Journal of the Association for Computing
Machinery, 48(4):608–647, 2001.

[Darwiche, 2004] Adnan Darwiche. New advances in com-
piling cnf into decomposable negation normal form. In
Proc. of ECAI’04, pages 328–332, 2004.

[Darwiche, 2011] Adnan Darwiche. SDD: A new canonical
representation of propositional knowledge bases. In Proc.
of IJCAI’11, pages 819–826, 2011.

[Domshlak and Hoffmann, 2006] Carmel Domshlak and
Jörg Hoffmann. Fast probabilistic planning through
weighted model counting. In Proc. of ICAPS’06, pages
243–252, 2006.

[Feiten et al., 2012] Linus Feiten, Matthias Sauer, Tobias
Schubert, Alexander Czutro, Eberhard Böhl, Ilia Polian,
and Bernd Becker. #SAT-based vulnerability analysis of
security components - A case study. In Proc. of DFT’12,
pages 49–54, 2012.

[Klebanov et al., 2013] Vladimir Klebanov, Norbert Man-
they, and Christian J. Muise. Sat-based analysis and quan-
tification of information flow in programs. In Proc. of
QUEST’13, pages 177–192, 2013.

[Lagniez and Marquis, 2017a] Jean-Marie Lagniez and
Pierre Marquis. An Improved Decision-DNNF Compiler.
In Proc. of IJCAI’17, pages 667–673, 2017.

[Lagniez and Marquis, 2017b] Jean-Marie Lagniez and
Pierre Marquis. On preprocessing techniques and their
impact on propositional model counting. J. Autom.
Reasoning, 58(4):413–481, 2017.

[Monasson et al., 1999] Rémi Monasson, Riccardo
Zecchina, Scott Kirkpatrick, Bart Selman, and Lidror
Troyansky. Determining computational complexity from
characteristic ‘phase transitions’. Nature, 33:133–137,
1999.

[Muise et al., 2012] Christian J. Muise, Sheila A. McIlraith,
J. Christopher Beck, and Eric I. Hsu. Dsharp: Fast d-
DNNF compilation with sharpSAT. In Proc. of AI’12,
pages 356–361, 2012.

[Oztok and Darwiche, 2015] Umut Oztok and Adnan Dar-
wiche. A top-down compiler for sentential decision dia-
grams. In Proc. of IJCAI’15, pages 3141–3148, 2015.

[Palacios et al., 2005] Héctor Palacios, Blai Bonet, Adnan
Darwiche, and Hector Geffner. Pruning conformant plans
by counting models on compiled d-DNNF representations.
In Proc. of ICAPS’05, pages 141–150, 2005.

[Piette et al., 2008] Cédric Piette, Youssef Hamadi, and
Lakhdar Saı̈s. Vivifying propositional clausal formulae.
In Proc. of ECAI’08, pages 525–529, 2008.

[Samer and Szeider, 2010] Marko Samer and Stefan Szeider.
Algorithms for propositional model counting. J. Discrete
Algorithms, 8(1):50–64, 2010.

[Sang et al., 2004] Tian Sang, Fahiem Bacchus, Paul Beame,
Henry A. Kautz, and Toniann Pitassi. Combining com-
ponent caching and clause learning for effective model
counting. In Proc. of SAT’04, 2004.

[Sang et al., 2005] Tian Sang, Paul Beame, and Henry A.
Kautz. Performing Bayesian inference by weighted model
counting. In Proc. of AAAI’05, pages 475–482, 2005.

[Schubert et al., 2010] Tobias Schubert, Matthew D. T.
Lewis, and Bernd Becker. Antom - solver description,
2010. SAT Race.

[Thurley, 2006] Marc Thurley. sharpSAT - counting models
with advanced component caching and implicit BCP. In
Proc. of SAT’06, pages 424–429, 2006.

