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Abstract. While AGM belief revision identifies belief states with sets of
formulas, proposals for iterated revision are usually based on more com-
plex belief states. In this paper we investigate within the AGM framework
several postulates embodying some aspects of iterated revision. Our main
results are negative: when added to the AGM postulates, our postulates
force revision to be maxichoice (whenever the new piece of information is
inconsistent with the current beliefs the resulting belief set is maximal).
We also compare our results to revision operators with memory and we
investigate some postulates proposed in this framework.

1 Introduction

While AGM belief revision identifies belief states with sets of formulas, proposals
for iterated revision are usually based on more complex belief states. Following
the work of [7], they are usually represented by total pre-orders on interpreta-
tions. In fact in [6], Darwiche and Pearl first stated their postulates (C1-C4) in
the classical AGM framework. But it has been shown in [8, 15] that (C2) is incon-
sistent with AGM, and that under the AGM postulates (C1) implies (C3) and
(C4). To remove these contradictions, Darwiche and Pearl rephrased their and
the AGM postulates in terms of epistemic states [7]. This has lead to a widely
accepted framework for iterated revision, and most of the work on iterated belief
revision now uses this more complex framework.

So an interesting question investigated in this paper is which requirements
on iteration one can consistently add to the usual AGM framework. We focus
on the status of old information, and formulate several postulates embodying
that aspect of iterated revision. They all express that old information about A

determine in some way the current status of A.
In particular, the first postulate says that if the agent was informed about A

before revision (in the sense that either A or ¬A was accepted) then the agent
should remain informed about A after revision.

Our second postulate is motivated by the following basic algorithm for the
revision of a belief set B by a new piece of information A [11, 19]: first put A

in the new belief set, then add as many old beliefs from B as possible. So the
second postulate expresses that the corresponding operator is idempotent with
respect to B. We also study a family of postulates that generalizes this idea.



We also review other postulates coming from the iterated revision literature,
in the classical belief set framework.

Our results are mainly negative: when added to the AGM postulates, our
postulates lead to extreme revision operators. In particular the first two postu-
lates force revision to be maxichoice: whenever the new piece of information is
inconsistent with the current beliefs then the resulting belief set is maximal.

These “impossibility results” about iterated revision in the usual AGM frame-
work can be seen as a justification for the increase in representational complexity
that shows up when one goes from AGM to iterated belief revision frameworks
(see e.g. [7, 15, 18, 13, 17, 4]). Instead of “flat” belief sets (alias sets of interpre-
tations), the latter work with epistemic states, that can be represented by pre-
orders on interpretations.

The paper is organized as follows. In section 2 we give some definitions and
notations. In section 3 we consider the Darwiche and Pearl postulates in the
AGM framework. More specifically, we focus on their first postulate. In section
4 we investigate the implications of trying to retain old information as much as
possible. In section 5 we explore a family of postulates, saying that re-introducing
old pieces of information is harmless. In section 6 we compare our results to
revision operators with memory [13, 14] and we investigate the implications of
some postulates coming from this work. We conclude in section 7.

2 Preliminaries

We work with a propositional language built from a set of atomic variables,
denoted by p, q, . . . Formulas are denoted by A,B,C, . . . We identify finite sets
of formulas (that we call belief sets) with the conjunction of their elements. A
belief set B is informed about a formula C if B ` C or B ` ¬C. A belief set B

is maximal (or complete) if B is informed about every C.
The set of all interpretations is denoted W, and the set of all belief sets

is denoted B. For a formula B, Mod(B) denotes the set of models of B, i.e.
Mod(B) = {ω ∈ W : ω |= B}. For a set of interpretations M ⊆ W, Form(W )
denotes the formula (up to logical equivalence) whose set of models is M , i.e.
Form(W ) = {B : ω |= B iff ω ∈ M}.

A pre-order ≤ is a reflexive and transitive relation. < is its strict counterpart:
ω < ω′ if and only if ω ≤ ω′ and ω′ 6≤ ω. And ' is defined by ω ' ω′ iff ω ≤ ω′

and ω′ ≤ ω. A pre-order is total is for all ω, ω′ we have ω ≤ ω′ or ω′ ≤ ω.
min(M,≤) denotes the set {ω ∈ M |@ω′ ∈ M : ω′ < ω}.

Definition 1 (AGM belief revision). An AGM belief revision operator ? is
a function that maps a belief set B and a formula A to a belief set B ? A such
that :

(R1) B ? A ` A

(R2) If B ∧ A 0 ⊥, then B ? A ≡ B ∧ A

(R3) If A 0 ⊥, then B ? A 0 ⊥
(R4) If B1≡B2 and A1≡A2, then B1 ? A1 ≡ B2 ? A2



(R5) (B ? A) ∧ C ` B ? (A ∧ C)
(R6) If (B ? A) ∧ C 0 ⊥, then B ? (A ∧ C) ` (B ? A) ∧ C

The postulates (R1-R4) are often called the basic AGM postulates, and the
set (R1-R6) the extended AGM postulates, indicating that people consider the
former to be more fundamental. Notice however that they do not put very hard
constraints on ?. It is the two last ones (R5) and (R6) that allow to state the
below representation theorem, which says that a revision operator corresponds
to a family of pre-orders on interpretations. (The theorem is due to Katsuno and
Mendelzon, but the idea can be directly traced back to Grove [10].) But first we
need the following:

Definition 2 (Faithful assignment). A function that maps each belief set B

to a pre-order ≤B on interpretations is called a faithful assignment if and only
if the following holds:

1. If ω |= B and ω′ |= B, then ω 'B ω′

2. If ω |= B and ω′ 6|= B, then ω <B ω′

3. If B1 = B2, then ≤B1
=≤B2

Theorem 1. A revision operator ? satisfies postulates (R1-R6) if and only if
there exists a faithful assignment that maps each belief set B to a total pre-order
≤B such that:

Mod(B ? A) = min(Mod(A),≤B)

We say that the assignment is the faithful assignment corresponding to the
revision operator.

Let us now introduce a special family of revision operators, called maxichoice
revision operators [1, 9].

Definition 3 (maxichoice revision). A belief revision operator ? is a maxi-
choice revision operator if for every B and A, if B ` ¬A then B ?A is maximal.

Maxichoice revision operators are not very satisfactory, since they are too
precise and have a too drastic behaviour. In fact, with those operators, learning
any piece of information that conflicts with the current beliefs, however incom-
plete they are, causes the agent to have beliefs on any formula: for any formula
A, either the agent believes that A holds or he believes that ¬A holds. They
are considered as an upper-bound for revision operators (the lower-bound being
full-meet revision operators [1, 9]).

We will use a characterization of maxichoice operators on the semantical
level. First we define:

Definition 4. A linear faithful assignment is a faithful assignment that satisfies

4. If ω 6|= B and ω′ 6|= B, then ω <B ω′ or ω′ <B ω

The following result is is part of the folklore in the literature on revision:

Theorem 2. A revision operator ? is a maxichoice operator if and only if its
corresponding assignment is a linear faithful assignment.

The proof is straightforward.



3 Darwiche and Pearl postulates in the AGM framework

In [6], Darwiche and Pearl first stated their well-known postulates (C1-C4) in
the classical AGM framework.

(C1) If A ` C, then (B ? C) ? A ≡ B ? A

(C2) If A ` ¬C, then (B ? C) ? A ≡ B ? A

(C3) If B ? A ` C, then (B ? C) ? A ` C

(C4) If B ? A 0 ¬C, then (B ? C) ? A 0 ¬C

But it has been shown in [8, 15] that (C2) is inconsistent with AGM, and
that under the AGM postulates (C1) implies (C3) and (C4). To remove these
contradictions, Darwiche and Pearl rephrased their and the AGM postulates in
terms of epistemic states [7].

As (C1) is consistent with the AGM postulates, one might wonder what the
constraints imposed by this postulate on the revision operators are like. This
question has not been investigated as far as we know. The consistency of (C1)
with AGM is easily established by noticing that the full meet revision operator
satisfies (C1) [15]. But is this the only AGM operator satisfying (C1), or do we
face a wider family?

Let us define another particular family of revision operators.

Definition 5. Let ≤ be a total pre-order on interpretations. A revision operator
? is said to be imposed by ≤ if its corresponding faithful assignment satisfies the
following property:

i. If ω 6|= B and ω′ 6|= B, then (ω ≤B ω′ iff ω ≤ ω′).

As far as we know, this family of operators has not been studied yet. Such
operators are not satisfactory since the result of a revision does not depend of
the belief set, but merely of the new piece of information (see theorem 3). This
seems to be counter-intuitive and to go against the basic ideas behind revision.
Nevertheless, such operators fulfill all AGM postulates, and the full meet revision
operator is a particular case (when ≤ is a flat pre-order, i.e. ω ' ω′,∀ω, ω′ ∈ W).

Theorem 3. Let ? be an AGM revision operator, and let f be any function
mapping formulas to formulas such that f(A) ` A and ifA1 ≡ A2 then f(A1) ≡
f(A2). ? is imposed if and only if for any belief set B and formula A, the following
holds:

(IMP) If B ` ¬A then B ? A ≡ f(A).

Proof. The only if part is straightforward: define f(A) as min(Mod(A),≤).
For the if part we need to build the imposed pre-order ≤ from f(A). This

can be established by noting that if we take a formula A that has exactly two
(distinct) models ω and ω′, then by (IMP) for every B such that A ∧ B ` ⊥,
we have B ? A ≡ f(A). By (R1) and (R3), Mod(f(A)) = {ω} or Mod(f(A)) =



{ω′} or Mod(f(A)) = {ω, ω′}. Since ? is an AGM operator, the faithful as-
signment gives us, for every B inconsistent with A, that ω <B ω′ whenever
Mod(f(A)) = {ω}, ω′ <B ω whenever Mod(f(A)) = {ω′}, and ω 'B ω′ when-
ever Mod(f(A)) = {ω, ω′}. That means that there exists a pre-order ≤ defined
as ω ≤ ω′ iff ω ∈ Mod(f(Form(ω, ω′))) and such that for all B such that
ω, ω′ 6|= B, ω ≤B ω′ iff ω ≤ ω′.

This result states that for any revision that is not an expansion the old belief
set is not taken into account in the result of the revision.

Now let us return to the case of the (C1) postulate and state the following
result:

Theorem 4. An AGM revision operator satisfies (C1) if and only if it is im-
posed.

Proof. The if part is straighforward, since either B ∧ A is consistent and then
(C1) is a consequence of (R2), or B ∧ A is not consistent, and then (C1) is a
consequence of theorem 3.

For the only if part, suppose that the operator ? satisfies (R1-R6) and (C1).
We will show that the operator is imposed and there exists an f such that (IMP)
is satisfied. If ? satisfies (C1) then (IMP) holds, since for every A and B such
that A ∧B is not consistent, by (R2) we have that B ? A ≡ (¬A ? (A ∨B)) ? A.
Thus by (C1) we get that (¬A ? (A ∨ B)) ? A = ¬A ? A, consequently we get
B ?A ≡ ¬A?A. Thus f can be defined by stipulating that f(A) = ¬A?A. This
means that the result of the revision depends only on the input A.

This result casts serious doubts on the (C1) postulate in the AGM framework.

4 “Keep on being informed about A”

When an agent receives new information she has to modify her current set of
beliefs B in order to take it into account. One major requirement of AGM theory
is the principle of minimal change, that means that when one revises a belief set
by a new piece of information, one has to keep “as much as possible” of the old
belief set.

The following property tries to capture this intuition, by saying that revising
by A can not induce a loss of information: if B is informed about C, then learning
A can not lead to loose this information.

(Compl) If B ` C then B ? A ` C or B ? A ` ¬C

Unfortunately it can be proved that :

Theorem 5. If ? satisfies (R1-R6) and (Compl), then ? is a maxichoice revision
operator.



Proof: This can be proved straightforwardly: suppose B ` A. If ` A then
the theorem holds. Else we have B ` A ∨ C and B ` A ∨ ¬C. By (Compl),
B ?¬A ` A∨C or B ?¬A ` ¬A∧¬C, and B ?¬A ` A∨¬C or B ?¬A ` ¬A∧C.
Among the four cases, the one where B?¬A ` (A∨C)∧(A∨¬C) is impossible be-
cause B?¬A ` A by (R4) and 6` A. The one where B?¬A ` (¬A∧¬C)∧(¬A∧C)
is impossible because B ? ¬A ` ⊥. It follows that B ? ¬A ` ¬C or B ? ¬A ` C.
�

It is straightforward to show that every maxichoice revision operator sat-
isfies (Compl). Together with the preceding theorem it follows that (Compl)
characterizes maxichoice revision.

Remark 1. Formula (3.17) in [9] is just (COMPL) (modulo a typo). There,
proposition (3.19) says that “B ? A is maximal for any sentence A such that
¬A ∈ B”, i.e. (3.17) entails maxichoice revision. The proof refers to observation
3.2 of [2], but the latter presupposes already that ? is a maxichoice operator,
and establishes that this entails maximality.

So this postulate puts too strong a requirement on classical AGM revision
operators.

In the next section we will investigate another requirement also based on the
assumption that we can keep as much as possible of the old information.

5 “Re-introducing old information doesn’t harm”

Another way of ensuring that one does not forget previous information is to
suppose that we can re-introduce the old belief set without changing the current
one. It can be seen as some kind of left-idempotency of the revision operator. This
idea is very close to the one used for defining revision with memory operators
[14, 13, 3].

First we need the following abbreviations.

Definition 6. Given a set of beliefs B and pieces of information Ai, then for
1 ≤ i ≤ n we define Bi by:

Bi = (...((B ? A1) ? A2) ? . . .) ? Ai

Thus B0 = B, B1 = B ? A1, and B2 = (B ? A1) ? A2.

Our abbreviation enables us to concisely formulate the following family of
postulates:

(Memi) Bi ≡ B ? Bi, for i ≥ 0

Hence:

(Mem0) says B0 ≡ B ? B0, i.e. B ≡ B ? B,



(Mem1) says B1 ≡ B ? B1, i.e. B ? A1 ≡ B ? (B ? A1), and
(Mem2) says B2 ≡ B ? B2, i.e. (B ? A1) ? A2 ≡ B ? ((B ? A1) ? A2).
...

Let us see now what is the relation of the postulates (Memi) with the AGM
postulates.

Theorem 6. (Mem0) is derivable from the basic AGM postulates.

The proof only uses the postulate (R2).

Theorem 7. (Mem1) is derivable from the extended AGM postulates.

Proof: From (R1) we know that (B ? A) ∧ A ≡ B ? A. Now using (R5) and
(R6) with C = B ? A, we have B ? (A ∧ (B ? A)) ≡ (B ? A) ∧ (B ? A). That is
directly B ? (B ? A) ≡ B ? A.

�

Theorem 8. (Mem2), (Mem3), etc. cannot be derived from the AGM postulates.

Proof: This can be established e.g. by considering Dalal’s revision operator
[5], which is known to satisfy the AGM postulates [12] and showing that is
does not satisfy the (Memi) postulates. Indeed, consider B = ¬p, A1 = ¬q,
A2 = p∨ q. Then B2 = (¬p ?¬q) ? (p∨ q) = (¬p∧¬q) ? (p∨ q) = p⊕ q where ⊕
is the exclusive or. But this is different from B ? B2 = ¬p ? ((¬p ? ¬q) ? (p ∨ q))
= ¬p ? ((¬p ∧ ¬q) ? (p ∨ q)) = ¬p ? (p ⊕ q) = ¬p ∧ q.

�

We can easily find revision operators satisfying these additional postulates :

Theorem 9. If ? is a maxichoice revision operator then ? satisfies every postu-
late (Memi).

The postulates of this family are ordered by strength, as shows the following
result:

Theorem 10. If ? satisfies postulate (Memi+1) then ? satisfies postulate (Memi).

The other way round, (Memi) does not always imply (Memi+1): this is im-
mediate for i = 0.

So is those families of operators, defined from the (Memi) postulates, are wide
ones ? It is not the case. We show that, once again, only maxichoice revision
operators satisfy our postulates.

Theorem 11. If ? satisfies (R1-R6) and (Mem2), then ? is a maxichoice revi-
sion operator.



Proof: Suppose that A is consistent and that B ` ¬A. We want to show that
B ? A is maximal, i.e. for an arbitrary C we have that either B ? A ` C, or
B ? A ` ¬C.

First, (Mem2) tells us that (¬A∨C) ?B ?A = (¬A∨C) ? ((¬A∨C) ?B ?A),
and similarly (¬A∨¬C) ?B ?A = (¬A∨¬C) ? ((¬A∨¬C) ?B ?A). As B ` ¬A

we have B = (¬A ∨ C) ? B by (R2), and similarly B = (¬A ∨ ¬C) ? B. Hence
(¬A∨C)?B?A = (¬A∨C)?((¬A∨C)?B?A) = (¬A∨C)?(B?A), and similarly
(¬A ∨ ¬C) ? B ? A = (¬A ∨ ¬C) ? ((¬A ∨ ¬C) ? B ? A) = (¬A ∨ ¬C) ? (B ? A).
Now suppose that not(either B ?A ` C, or B ?A ` ¬C ), i.e. B ?A is consistent
with C, and B ? A consistent with ¬C. Then we must have (¬A ∨C) ? B ? A =
(¬A ∨C) ? ((¬A ∨C) ? B ? A) = (¬A ∨C) ? (B ? A) = (¬A ∨C) ∧ (B ? A), and
(¬A∨¬C) ? B ? A = (¬A∨¬C) ? ((¬A∨¬C) ? B ? A) = (¬A∨¬C) ? (B ? A) =
(¬A∨¬C)∧ (B ?A). As B ?A ` A, we would have that (¬A∨C)∧ (B ?A) ` C,
and (¬A ∨ ¬C) ∧ (B ? A) ` ¬C. But by AGM (¬A ∨ C) ? (B ? A) must be
consistent.

�

A corollary of the theorems 10 and 11 is that a revision operator satisfies
a (Memi) postulate if and only if it is a maxichoice revision operator. So each
postulate of this family is a characterisation of maxichoice operators.

As explained at the beginning of this section, the idea of this family of postu-
lates seems very close to the one behind the definition of revision with memory
operators. In the next section we will investigate more deeply the links between
revision with memory operators and the requirements on classical AGM revision
operators.

6 The relation with revision with memory operators

Belief revision operators with memory [14, 13] keep trace of the history of beliefs
in order to be able to use them whenever further revisions make this possible.
They are based on a notion of belief state that is more complex than the flat set
of beliefs of the AGM framework.

Basically, if we represent epistemic states Φ by a pre-order on interpretations,
noted ≤Φ, we can extract the associated belief set with the projection operator
Bel(Φ) = min(W,≤Φ). The pre-order ≤Φ represents the agent’s relative confi-
dence in interpretations. For example ω <Φ ω′ means that for the agent in the
epistemic state Φ the interpretation ω seems (strictly) more plausible than the
interpretation ω′.

The usual logical notations extend straightforwardly to epistemic states (they
in fact denote conditions on the associated belief sets). For example Φ ` C, Φ∧C

and ω |= Φ respectively mean Bel(Φ) ` C, Bel(Φ) ∧ C and ω |= Bel(Φ).
Now let us define revision with memory operators. This family of operators

is parametrized by a classical AGM operator. It can be seen as a tool to change
a classical AGM operator with bad iteration properties into an operator that
has good ones.



Definition 7 (Revision with memory). Suppose that we dispose of a classi-
cal AGM operator ?. (We will use its corresponding faithful assignment C →≤C .)
Then we define the epistemic state (the pre-order) Φ ◦ C that results from the
revision with memory of Φ by the new information C as:

ω ≤Φ◦C ω′ iff ω <C ω′ or
ω 'C ω′ and ω ≤Φ ω′

This definition means that each incoming piece of information induces some
credibility ordering. (The exact ordering induced depends on the classical AGM
operator that has been chosen.1) And the new epistemic state is built by listening
first to this incoming piece of information, and then to the old epistemic state
(this is the well known primacy of update principle).

In fact, it is shown in [13], that an epistemic state for revision with memory
operators can be encoded as the history of the new pieces of information acquired
by the agent since its “birth”. So we can suppose that the agent starts from
an “empty” epistemic state Ξ, that is represented by a flat pre-order2, and
successively accommodates all the pieces of information. So if we suppose that
all revision sequences start from Ξ, it can be shown that all revision with memory
operators satisfy the (Memi) postulates, since they all take the history of the
revisions into account.

Theorem 12. A revision operator with memory satisfies (Memi), ∀i.

In fact, a logical characterization for revision with memory operators has
been given in [13]. Most of the postulates are generalizations of AGM postulates
in the epistemic states framework, but there are also some specific postulates
characterizing revision with memory. We will examine now their status in the
classical belief set framework. Those postulates have been written for epistemic
states, but we can translate them for belief sets (with some simplifications) as
follows :

(Hist1) (B ? A) ? C ≡ B ? (A ? C)
(Hist2) If C ? A ≡ A, then (B ? C) ? A ≡ B ? A

(Hist3) If C ? A ` D, then (B ? C) ? A ` D

The first postulate expresses some kind of associativity and aims at expressing
the strong influence of the new piece of information. The second one says that
if a formula C does not distinguish between the models of A, then learning C

before A is without effect on the resulting belief set. The third one says that the
consequences of a revision also holds if we first learn another piece of information.

The counterpart of (Hist1), (Hist2) and (Hist3) for epistemic states are re-
spectively named (H7), (H’7) and (H’8) in [13]. It is shown there that in the

1 Note that one of the possibilities is a two level pre-order with the models of the
formula at the lowest level, and the counter-models at the top level. That gives the
more “classical” operator of the family [18, 16, 20, 3].

2 that is ∀ω, ω′ ω 'Ξ ω′



presence of the other postulates (H1-H6) (that are mainly a generalisation of
AGM postulates in the epistemic state framework), (H7) is equivalent to (H’7-
H’8).

This equivalence no longer holds in the belief set framework. Let us see now
the implications of these three postulates in this framework.

Theorem 13. There is no operator that satisfies (R1-R6) and (Hist1).

Proof: Let ω0, ω1, ω2, ω3 be 4 distinct interpretations. Now take four formu-
las A,B,C,D such that Mod(A) = {ω1, ω2}, Mod(B) = {ω0, ω1}, Mod(C) =
{ω2, ω3} and Mod(D) = {ω1, ω3}. From (Hist1) we have that (B ? A) ? C = B ?

(A?C), that is from (R2) (B∧A)?C = B?(A∧C). As Mod(A∧C) = {ω2}, from
(R1) and (R3) it follows that Mod(B?(A∧C)) = {ω2}, hence Mod((B∧A)?C) =
{ω2}. On the other side, starting from (Hist1) with (B ? D) ? C = B ? (D ? C),
we obtain similarly Mod(B ? (D ∧C)) = Mod((B ∧D) ? C) = {ω3}. Now notice
that B∧D ≡ B∧A, so (R4) says that (B∧A)?C ≡ (B∧D)?C. Contradiction. �

Note that (Hist2) is stronger that the postulate (C1) proposed by Darwiche
and Pearl. As (C1) is consistent with the AGM postulates we will consider a
weakening of the (Hist2) postulate, that accounts for the case when A 6` C:

(StrictHist2) If C ? A ≡ A and A 0 C, then (B ? C) ? A ≡ B ? A

Theorem 14. If an operator ? satisfies (R1-R6) and (StrictHist2), then ? is a
maxichoice revision operator.

Proof: We show that if ? satisfies (StrictHist2), then ? is maxichoice. If ?

is not maxichoice, then there exists a formula C such that ≤C is not linear,
that means that we can find a formula A and two distinct interpretations ω, ω′,
with Mod(A) = {ω, ω′} (with ω 6= ω′) such that C ∧ A is not consistent3 and
ω 'C ω′, ie C ?A = A. (StrictHist2) then says that for all B (B ?C)?A = B ?A.
In particular if we take B such that Mod(B) = Mod(C) ∪ {ω}, that means
that C ? A = B ? A = A. But from (R2) we get that B ? A = B ∧ A, so
Mod(B ? A) = {ω}. Contradiction. �

So, as a corollary of theorems 14 et 4, every operator satisfying (R1-R6) and
(Hist2) must be an imposed maxichoice operator.

Theorem 15. There is no operator that satisfies (R1-R6) and (Hist3).

Proof: Let ω0, ω1, ω2 be 3 distinct interpretations. Now take four formulas
A,B,C,D such that Mod(A) = {ω1, ω2}, Mod(B) = {ω0}, Mod(C) = {ω0, ω1},
and Mod(D) = {ω0, ω2}. As from (R2) C ?A = C∧A, then Mod(C ?A) = {ω1},
so from (Hist3) and (R3), that means that Mod((B ? C) ? A) = {ω1}. On the

3 When ? is an AGM revision operator and C ? A = A, then C ∧ A 0 ⊥ is equivalent
to A ` C.



other side, starting from D ?A, we find similarly that Mod((B ?D)?A) = {ω2}.
Finally, as from (R2) we find easily that (B ? C) ≡ (B ? D), from (R4) we have
that (B ? C) ? A ≡ (B ? D) ? A. Contradiction. �

These three results show, once again, that it is hard to try to formulate it-
eration postulates in the AGM framework. Whereas those properties are mean-
ingful in the epistemic state framework, two of them, (Hist1) and (Hist3), are
not consistent with AGM postulates for belief set revision, and the last one,
(StrictHist2), implies the maxichoice property.

7 Conclusion

Studies in iterated belief revision have been stated in the epistemic state frame-
work mainly because of the influence of Darwiche and Pearl’s proposal [6, 7] and
its incompatibility with the AGM belief set framework. But since, few work has
been done to see if some properties on iteration can be stated in the classical
framework.

We have addressed this issue in this paper by looking at some candidates
postulates. In different ways, all of them express that the result of a revision
must keep as much as possible of the old information.

Our results are mainly negative. When the proposed postulates are not incon-
sistent with classical AGM ones, they inexorably lead to the maxichoice property,
which is far from satisfactory for a sensible revision operator. So the results ob-
tained in this paper can be seen as “impossibility results” about iteration in the
classical AGM framework.

This study is then important to justify the gap, both in terms of knowledge
representation and in terms of computational complexity, induced by all the
iterated revision approaches that abandon the classical framework and work
with more complex objects, viz. epistemic states.
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