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Abstract. Automatically deriving intelligible explanations to decisions made by
an AI system is a challenging task in many cases. In this report, the stress is laid
on the intelligibility issue, which concentrates a part of the difficulty of the prob-
lem, and relies on the fact that defining what a “good” explanation is does not
solely concern what should be explained (the explanandum), but also depends on
who receives the corresponding explanans (the explainee). We sketch some gen-
eral results about intelligibility, that do not rely on specific assumptions on the AI
system at hand. A notion of projection is used to characterize among the conse-
quences of an explanation those which can be understood by the user. We evaluate
the projection operation in terms of intelligibility, information, and explainability.

Keywords: Explainable AI · Intelligible explanations · Projection.

1 Introduction

Explainability is the degree to which a human being can understand why a decision has
been made. It is an important issue, especially when decisions are generated automat-
ically by AI systems, including classifiers and other machine learning (ML) models.
Obviously enough, in general, the trace of an algorithm cannot be considered as an ex-
planation: though it justifies why the output has been generated from the input, such a
trace is not comprehensible most of the time. In the past decade, ML techniques have
revolutionized vision, speech, language understanding, and many other fields. How-
ever, the most powerful ML models in term of quality of predictions are still poorly
explainable.

In the meanwhile, the explanation requirement for decisions based on automated
processing had become a legal issue in Europe since the implementation of the General
Data Protection Regulation (EU) 2016/679 (“GDPR”) on May 25th, 2018 [12]. GDPR
is a regulation in EU law on data protection and privacy for all individual citizens of the
European Union (EU) and the European Economic Area (EEA), see also [12]. GDPR
stipulates (Recital 71) that: “The data subject should have the right not to be subject to
a decision, which may include a measure, evaluating personal aspects relating to him
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or her which is based solely on automated processing [...] In any case, such processing
should be subject to suitable safeguards, which should include specific information to
the data subject and the right to obtain human intervention, to express his or her point
of view, to obtain an explanation of the decision reached after such assessment and to
challenge the decision.”

Accordingly, there has been a growing body of work on explainable and robust AI
(XAI) for the past couple of years (see among many other references [3,11,16,15,2,20,26,29,30]).

In this paper, the focus is laid on explanations represented by logical formulae. The
virtue of logical settings is that a formal meaning can be given to explanations, so that
any reasoning process based on those explanations can be analyzed (for instance, to
determine whether or not it is truth-preserving). Obviously enough, there exist many
logic-based notions of explanations. Accordingly, a number of formal settings have
been designed to characterize explanations in logical terms and to reason about them.

Among others, abduction (often defined as inference to the best explanation) gave
rise to a number of formal developments for centuries (it was already considered by
Aristotle in his “Prior Analytics”), and to an abundant literature in philosophy and in
AI. The basic pattern of abductive inference can be exemplified as follows. Suppose
that I want to explain why Socrates is mortal. Knowing that every man is mortal, an
explanation is that Socrates is a man. Clearly, abduction is ampliative, meaning that the
conclusion that is reached goes beyond what is (logically) contained in the premises,
thus it can be wrong. To illustrate it and quote Ionesco in his drama “Rhinoceros”:
Socrates is mortal, every cat is mortal, therefore Socrates is a cat.

For other scenarios, a less demanding explanation model can be considered, where
explanations are only expected to be consistent with the explananda. Such a less de-
manding model is considered in model-based diagnosis [28,17], where a diagnosis for
a system can be considered as an explanation of the discrepancy between the observed
behaviour of the system and its expected one when every component is functioning
normally.

Whatever the model, representing explanations as logical formulae is not enough
to ensure that they are comprehensible. Especially, it cannot be guaranteed that the
explanation receiver (here, a human being) will be able to draw simple reasonings from
the explanations that have been provided if the corresponding formulae are not of small
size, if they have a complex structure or if they are too numerous to be embraced as
a whole. But even when there is a single explanation given as a simple fact, it can
be meaningless for the explainee, just because it is totally unrelated to the concepts
she/he/it is aware of. In such a case, what can be done with the explanation that has been
computed? How to make it somewhat intelligible while preserving as much information
as possible? Is it possible to do so without questioning its explanatory power?

As advocated in [14], intelligibility is among the research questions pertaining to
XAI that have not been explored in depth, and as such, it should receive more attention.
To make a step in this direction, in the following, the stress is laid on the intelligibil-
ity issue about explanations. We specifically focus on the communication problem in
explanation, i.e., the fact that the explanation is for someone [25]. We consider a sim-
ple user model, consisting of a logical vocabulary (a set of facts - atomic propositions
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- which are supposed to be meaningful for the user). Based on it, our purpose is to
address the research questions listed above.

Our investigation thus departs from many recent works that focus on deriving ex-
planations (of various kinds) for specific AI systems (e.g., a classifier) and typically
aim to explain the output returned by the system (e.g., the prediction done) from the
corresponding input, by synthesizing the trace of the computation. Especially, we do
not commit to any specific AI system. Instead, we assume the existence of a (logic-
based) domain theory, from which concepts of explanations can be defined and which
can be exploited by the AI system to make the explanations intelligible (or in general
”more intelligible”) once they have been generated. We consider two concepts of ex-
planations (abductive explanations and consistent explanations). We present a notion of
projection that can be used to characterize, among the consequences of an explanation,
those which can be understood by the explainee, i.e., those that can be expressed using
her logical vocabulary. We evaluate the projection operation in terms of intelligibility,
information, and explainability. We focus on the specific case of definable explanations.
We also explain how projections can be computed and simplified provided that the ex-
planation provider is aware of some part of the knowledge of the explanation receiver
(alias the user). We show how the notions of forgetting and definability (which are well-
studied concepts in logic – forgetting goes back to George Boole) can be exploited to
reason about the intelligibility of explanations.

The rest of the paper is organized as follows. After some formal preliminaries (Sec-
tion 2), we present two abductive model for explanations in Section 3. In Section 4, we
define the notion of projection, study some of its properties, and explain how to com-
pute and simplify projections. Finally, Section 5 concludes the paper and presents some
perspectives for further research.

2 Formal Preliminaries

PROPPS denotes the propositional language built up from a finite set PS of symbols,
the Boolean constants > (true) and ⊥ (false), and the connectives ¬, ∨, ∧, ⇒, ⇔.
Var(φ) denote the set of propositional variables occurring in the formula φ. IfX ⊆ PS ,
X̄ denotes the subset of PS given by PS \X .

A clause is a finite disjunction of literals. A CNF formula is a conjunction of clauses.
A term is a finite conjunction of literals. A canonical term over a subset X of PS is a
consistent term in which every variable x ∈ X occurs either as a positive literal (x) or
as a negative literal (¬x). A DNF formula is a disjunction of terms.

An interpretation ω is an assignment of a truth value to each variable of PS . For-
mulas are interpreted in the classical way. |= denotes entailment and ≡ denotes logical
equivalence. Every finite set of formulas is interpreted conjunctively. An implicant of
a formula φ is a term γ such that γ |= φ. Any formula is equivalent to the disjunction
of its implicants (when terms are considered up to logical equivalence, any formula has
finitely many implicants).
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3 Two Explanation Models

We now present the two concepts of explanations (abductive explanations and consis-
tent explanations) that are considered in the rest of the paper. The following logic-based
setting for explanations elaborates a bit over the one presented in [8].

Definition 1 (abductive/consistent explanations). Let T be a propositional formula
of PROPPS (a domain theory), that is supposed consistent,A a subset of propositional
symbols of PS (the assumptions), M a finite set of propositional formulae of PROPPS

(the manifestations) and a subset M∗ of it (the conjunctively-interpreted set manifesta-
tions to be explained, alias the explananda).

– A conjunction γ of variables from A is an abductive explanation for M∗ w.r.t. T
and M if and only if
• ∀m ∈M∗, T ∧ γ |= m,
• T ∧ γ is consistent.

– A conjunction γ of variables fromA is a consistent explanation forM∗ w.r.t. T and
M if and only if T ∧ γ ∧M∗ is consistent.

The largest M ′ such that M∗ ⊆ M ′ ⊆ M and γ is an explanation for M ′ w.r.t. T
and M is referred to as the set of manifestations that are covered by γ.

In this setting, an (abductive / consistent) explanation must explain all the manifes-
tations for which an explanation is sought (those of M∗), and possibly more. Clearly
enough, any abductive explanation is a consistent one, but the converse does not hold.

Observe that though explanations are structurally simple (as conjunctions of atoms)
in these models, it is not possible in general to guarantee that a single explanation of
the manifestations to be explained exists. It can be the case that no explanation can be
found, and alternatively, it may happen that many explanations are possible. Preference
criteria (e.g., minimality and/or coverage) can be used to restrict the set of candidate
explanations, going from explanations to preferred explanations.

Most plausible explanations are typically preferred for an obvious reason. However,
it is not always easy to characterize such most plausible explanations due to a lack of
plausibility information. Thus, when considering a logic-based setting for representing
explanations, minimal explanations are often considered, i.e., explanations that are as
weak as possible from a logical standpoint. Assuming that a probability distribution
over the set all explanations exist (but is unknown), a first explanation that is a logical
consequence of a second explanation is at least as probable as the latter. Especially,
focusing on minimal explanations ensures that explanations do not contain pieces of
information that are irrelevant to the explanandum.

In some cases, several criteria must be aggregated in order to define a notion of
preferred explanation. Thus, in the setting for explanations described above, a trade-off
can be looked for: a first explanation can be considered as preferred to a second expla-
nation when the former covers a superset of manifestations covered by the latter, and
this comparison relation typically conflicts with the minimality criterion (more assump-
tions are often necessary to cover more manifestations). The two comparison relations
(modeled here as partial preorders) can be combined in various ways (a simple one is
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lexicographic aggregation: prefer first the explanations covering the maximal (w.r.t. ⊆)
subsets of manifestations, and among them, select those which are minimal).

While, by definition, the set of preferred explanations cannot be larger than the set
of all explanations, it can still be exponentially large in the size of the input (this hap-
pens for abductive/consistent explanations). Furthermore, preferred explanations can be
structurally more complex (hence less intelligible) and/or harder to compute than other
explanations. Simplicity (Occam’s razor, which states that from two explanations the
simpler explanation is preferable) is a key criterion that is often considered.

Simplicity is also valuable when intelligibility is expected. In some settings, espe-
cially the one for abductive/consistent explanations presented above, simplicity amounts
to minimality (a conjunction of variables is a simple – and as logically weak – as it con-
tains few variables).

Example 1. Let T = (ms ⇒ (bv ∧ ss ∧ he)) ∧ (my ⇒ (bv ∧ ¬he)) (the meaning
given to the atomic propositions occurring in this formula will become clear soon).
When A = {ms,my, co}, M∗ = {bv} and M = {bv, ss}, the atoms ms, my, are two
(minimal) abductive explanations for M∗ w.r.t. T and M . The set of manifestations
covered by ms is {bv, ss} and the set of manifestations covered by my is {bv}. co is
irrelevant to the explanandum (this symbol does not even occur in the domain theory T ).
Every consistent term over A that does not imply ms ∧my is a consistent explanation
for M∗ w.r.t. T and M .

Obviously enough, both the structure of the explanations, their sizes and their num-
ber impact their comprehensibility. Another dimension in the complexity of explaining
is the computational effort that must be spent to derive explanations (i.e., all of them,
or only one of them, or even to decide whether an explanation exists – this last issue
gives a lower bound on the complexity of the other problems: when it is intractable,
the problem of generating one / all explanations are intractable as well). Of course, the
computational complexity of deriving explanations heavily depends both on their size
and structure, as well as of their numbers (when the goal is to compute all of them).
However, the size, structure and number of explanations are not the sole parameters
that have an impact on the difficulty to derive explanations. The type of explanation
under consideration plays also a key role.

Thus, in the consistent explanation model, the problem of deciding whether a con-
sistent explanation for M∗ w.r.t. T and M given A exists amounts to deciding whether
T ∧M∗ is consistent, which is intractable, but “only” NP-complete. In the abductive
model, as easy consequences of results reported in [8], the problem of deciding whether
an abductive explanation for M∗ w.r.t. T and M given A exists is likely to be more dif-
ficult (it is Σp

2 -complete).
A further aspect to be taken into account when dealing with explanations is the

meta-explanation issue and its complexity. Explaining is finding out explanations, while
meta-explaining is explaining why a given piece of information is an explanation, or,
in the case when counterfactual explanations are sought for, why a given piece of in-
formation is not an explanation. When explanations are logical formulae from a given
language, meta-explanations are objects from the associated meta-language. From a
computational complexity point of view, such objects are certificates. Again, the nature
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of the meta-explanations and the complexity to derive them depend on the underlying
explanation model, and as such they may differ. In the abductive model for explana-
tions, in order to explain why a given γ is an abductive explanation of M∗ w.r.t. T and
M , one must find a model of T that is compatible with γ (again a short certificate) but
also a proof of the fact that T ∧ γ |= M∗ (or equivalently that (T ∧ γ)⇒M∗ is a valid
formula). Such proofs are not of polynomial size in general for existing proof systems
(e.g., the ones based on resolution) and it is unlikely that polynomial-sized proofs of
such formulae may exist in any formal system for propositional logic that is sound and
complete for the validity question (the existence of such proofs would imply that NP
= coNP, that is considered unlikely in complexity theory). Contrastingly, in order to
explain why a given γ is a consistent explanation for M∗ w.r.t. T and M , one must find
a model of T ∧M∗ that is compatible with γ. Such certificates are small (their sizes are
equal to the numbers of propositional variables appearing in the input).

Finally, even when the explanations are structurally simple, of small size, not nu-
merous ... and provided for free, we are not necessarily done. Indeed, it can be the case
that the explanations that are reported are totally useless because they are not intelligi-
ble.

4 Looking for Intelligible Explanations

To make the intelligibility issue more precise, let us consider two agents, an explanation
provider (or explainer) and an explanation receiver (or explainee). Each of those two
agents can be a human being or an artificial agent (the pieces of information exchanged
by the two agents can be made formal and their exchange is ruled by protocols that can
be automated). The purpose of the explainer is to provide the explainee with intelligible
explanations.

For the sake of illustration, let us consider the following scenario:

Example 2 (Example 1, cont’d). Abraham goes to her ophthalmologist because he has
some eye trouble: distant objects are blurry while close objects appear normal for him.
Abraham believes that he suffers from myopia, so that eyeglasses will be enough to
treat the problem. Abraham indicates to her physician that he has a blurred vision. After
having examined him, her doctor suspects that Abraham suffers from Marfan syndrome.
It is the first time that Abraham hears this disease name (this term is totally meaningless
for Abraham). Though the fact that Abraham suffers from Marfan syndrome can be
considered as an intelligible explanation of the symptoms shown by Abraham from
the doctor point of view, it is not from Abraham’s point of view since it is entirely
unrelated to the concepts Abraham is aware of. At that stage what is very important for
Abraham is to get all the information he may understand (given her own vocabulary
and background knowledge) that are about this disease, especially as to its treatment
and prognosis. Is it a severe disease? What are its causes? What are its most serious
complications? How to cure it? Abraham is specifically interested in knowing whether
his children might suffer from this disease at some point as well.

Formally, consider the domain theory T appearing in Example 1 where the variables
used have the following meanings:
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– ms: “Abraham suffers from Marfan syndrome”.
– my: “Abraham suffers from myopia”.
– bv: “Abraham has a blurred vision”.
– ss: “Abraham has the thumb sign”. The thumb sign (or Steinberg’s sign) is elicited

by asking the person to flex the thumb as far as possible and then close the fingers
over it. A positive thumb sign is where the entire distal phalanx is visible beyond the
ulnar border of the hand, caused by a combination of hypermobility of the thumb
as well as a thumb which is longer than usual.

– co: “Abraham suffers from conjunctivitis”.
– he: “Abraham suffers from a hereditary disease”.

The explanation “Marfan syndrome” can be generated automatically as a minimal
abductive explanation γ = ms for M∗ w.r.t. T and M (in the sense of Definition 1),
where A, M∗, T and M are as reported in Example 1. The manifestations M∗ are
explicitly reported by Abraham who asks her physician for an explanation of them. The
other manifestations from M \M∗ (here ss) are observed directly by the doctor (but
in the general case, the patient could be aware of them as well). The ms explanation
is short, and structurally simple. It is meaningful for the ophthalmologist because she
knows the domain theory T , but it is not intelligible by Abraham (who probably has an
incomplete domain theory since he is not a physician).

4.1 Making an explanation intelligible through projection

The issue is now to determine how to take advantage of the user model, which can
be more or less sophisticated, to derive meaningful information from explanations that
cannot be understood as such. A very simple abstraction of the explainee is given by
her logical vocabulary, i.e., the set of atomic propositions that are supposed to be intel-
ligible. Explanations can then be projected onto this vocabulary:

Definition 2 (projecting an explanation onto a vocabulary). Let γ be a proposi-
tional formula of PROPPS (an explanation). Let U be a subset of PS (the user vo-
cabulary). Let T be a propositional formula of PROPPS (a domain theory), that is
supposed consistent. The projection of γ onto U given T is the set Π({γ}, T, U) of all
logical consequences of T ∧ γ belonging to PROPU .

Example 3 (Example 1, cont’d). The discussion she had with Abraham suggested that
Abraham’s vocabulary contains my, bv, he. Hence the physician assumes that U =
{my, bv, he}. Then she may project γ = ms onto U given T . The resulting set is
equivalent to bv∧¬my∧he. Doing so, the physician makes γ somewhat intelligible to
Abraham, indicating (among other things) that the disease she suspects Abraham suffers
from explains the blurred vision symptom, and that unlike myopia, it is a hereditary
disease.

Observe that the idea of projection considered here is independent of the nature of
the explanation. It makes sense as soon as explanations take the form of logical state-
ments. Especially, one can take advantage of it for explanations that are not abductive
or consistent explanations.
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Note also that replacing the domain theory T by its projection onto the user vo-
cabulary U before computing explanations, or alternatively restricting the set A of as-
sumptions to A ∩ U , would not have the same effect as projecting explanations onto U
given T : doing so would not lead to the same set of explanations in the general case, so
that the set of intelligible consequences that could be deduced from an explanation may
heavily differ as well.

Example 4 (Example 1, cont’d). The projection of T onto U is equivalent to my ⇒
(bv ∧¬he), and w.r.t. this projected theory and M , there is only one minimal abductive
explanation for M∗, namely my. Similarly, assuming that A has been reduced to A ∩
U = {my}, my is the unique minimal abductive explanation for M∗ w.r.t. T and M .

Clearly enough, unlike ms, my does not cover the manifestation ss and for this
reason, it has been considered as less preferred. Finally, my has consequences over
U given my ⇒ (bv ∧ ¬he) that conflict with the consequences of ms over U given
T since the former is not a hereditary disease (¬he is a consequence of my given
my ⇒ (bv ∧ ¬he)) while the latter is a hereditary disease (he is a consequence of ms
given T ).

4.2 From projecting to forgetting

By definition, the projection of an explanation onto a vocabulary given a domain theory
is an infinite set. In order to make use of it, it is important to associate with it a finite
representation that can be computed by an agent (human or artificial), as we did it in
the example above. It turns out that computing a finite representation of the projection
of the explanation onto a user vocabulary amounts to removing second-order quantifi-
cations in a logical formula, which is also known in the propositional case as forgetting
propositional variables in a formula. To be more precise, projecting γ onto U given
T consists in forgetting in T ∧ γ every variable that does not belong to U , where the
operation of forgetting is defined as follows (see [21,18,6] for more details):

Definition 3 (forgetting). Let φ be a formula from PROPPS and X ⊆ PS . The
forgetting of X in φ, noted ∃X.φ, is a quantified Boolean formula over PS , equivalent
to a formula from PROPPS that can be inductively defined as follows:

– ∃∅.φ ≡ φ;
– ∃{x}.φ ≡ φx←0 ∨ φx←1;
– ∃({x} ∪X).φ ≡ ∃V.(∃{x}.φ).

∃X.φ represents the logically strongest consequence ψ (unique up to logical equiv-
alence) of φ that is independent of X , where ψ is independent of X means that there
exists a formula χ from PROPPS s.t. ψ ≡ χ and Var(χ) ∩X = ∅.

Accordingly, forgetting a set of variables within a formula leads to weaken it. To be
more precise, if V ⊆W holds, then ∃V.φ |= ∃W.φ holds. Moreover, φ is consistent iff
∃V ar(φ).φ is valid (see [18]).

Many characterizations of forgetting, together with complexity results, are reported
in [18]. Noticeably, for every V ⊆ PS and every formula φ from PROPPS , we have
∃V.φ ≡ ∃Vφ.φ, where Vφ = V ∩ V ar(φ) – which means that forgetting variables that
do not appear in a formula does not have any effect.
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4.3 What is got and what is lost when projecting an explanation

Obviously, replacing an explanation by its projection onto a user vocabulary given a
domain theory is not a neutral operation in general. Thus, it is important to evaluate the
projection operation in terms of intelligibility, information, and explainability.

First of all, projecting an explanation onto a user vocabulary can only increase the
amount of intelligible information furnished to the user, assuming that the user has
her/his/its own knowledge base TU (a propositional formula) such that U = Var(TU ),
and T |= TU (this means that the explainee has possibly a partial knowledge of the
domain theory of the explainer, but has no wrong beliefs). Especially, whenever a rep-
resentation of the projection of an explanation γ onto U given T is provided to a user,
she can derive thanks to it and using her restricted domain theory TU the same set of
consequences over U as if she was fully aware of the domain theory T :

Proposition 1. Let γ, T , TU be three formulae from PROPPS such that T |= TU , and
let U ⊆ PS . The set of logical consequences over U of TU ∧ γ (i.e., the information
that can be deduced by the user when γ is added to her knowledge base) is a subset of
the set of logical consequences over U of {TU} ∪Π({γ}, T, U), which coincides with
Π({γ}, T, U); using symbols:

Π({γ}, TU , U) ⊆ Π(Π({γ}, T, U), TU , U) = Π({γ}, T, U).

Proof. Π(Π({γ}, T, U), TU , U) is equivalent to ∃Ū .((∃Ū .(γ∧T ))∧TU ). ∃Ū .((∃Ū .(γ∧
T ))∧TU ) is equivalent to (∃Ū .(γ∧T ))∧(∃Ū .∧TU ) since ∃Ū .(γ∧T ) is independent on
Ū . Now, when T |= TU , we also have γ∧T |= TU so that ∃Ū .(γ∧T ) implies ∃Ū .TU ),
showing that Π(Π({γ}, T, U), TU , U) = Π({γ}, T, U). Finally, since Π({γ}, TU , U)
is equivalent to ∃Ū .(γ ∧ TU ), and since γ ∧ T |= γ ∧ TU when T |= TU , we also have
that ∃Ū .(γ ∧ T ) implies ∃Ū .(γ ∧ TU ), showing that Π({γ}, TU , U) ⊆ Π({γ}, T, U),
and this completes the proof.

However, the projection process leads to an information loss in the general case,
meaning that the projection of γ onto U given T is not equivalent to T ∧ γ in the
general case, but is “only” a logical consequence of it:

Proposition 2. Let γ, T be two formulae from PROPPS and let U ⊆ PS . We have
T ∧ γ |= Π({γ}, T, U) but in the general case we do not have T ∧ γ ≡ Π({γ}, T, U).

Proof. On the one hand, since Π({γ}, T, U) is equivalent to ∃Ū .(γ ∧T ), showing that
T ∧γ |= Π({γ}, T, U) amounts to proving that T ∧γ |= ∃Ū .(γ∧T ), which is obvious
since the consequences of γ ∧ T over U are straightforwardly among the consequences
of γ ∧ T . On the other hand, the running example shows that T ∧ γ 6≡ Π({γ}, T, U):
from the projection of γ onto his own vocabulary given T , Abraham cannot derive that
he suffers from Marfan disease.

Indeed, the projection of an explanation onto a vocabulary does not necessarily
correspond to an explanation itself. In fact, this depends on the explanation model at
hand. Thus, in the abductive model, an explainability loss may occur:
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Example 5 (Example 1, cont’d). As discussed previously, in order to explain the mani-
festations that are observed, the physician prefers the abductive explanation ms to the
abductive explanation my because ms covers more symptoms than my. The projection
of ms onto U is equivalent to bv ∧ ¬my ∧ he but this formula cannot be considered
as an abductive explanation for M∗ since it is not a conjunction of assumptions from
A. Furthermore, the only conjunction of variables from A ∩ U that is consistent with
it is the empty conjunction. This empty assumption is consistent with T but it does not
explain the manifestations M∗ (we have T 6|= bv).

Contrastingly, consistent explainability is preserved though projection, simply be-
cause this operation is consistency-preserving (for any γ over A such that T ∧ γ ∧M∗
is consistent, Π({γ}, T, U) ∪ {T} ∪M∗ is consistent).

4.4 The case of definable explanations

Now, an interesting question is to determine whether a loss of information actually
occurs when a projection is achieved. When some concepts used in the explanation at
hand do not belong to the user vocabulary (as it is the case in the running example),
one can conclude that some pieces of information have disappeared. More generally, as
discussed before, some information are lost whenever T∧γ 6≡ Π({γ}, T, U). However,
a less demanding interpretation of information loss also makes sense: it can be the case
that the explanation under consideration can be reformulated using the user vocabulary
in the domain theory, so that no information is actually lost when the explanation itself
is replaced by an equivalent reformulation.

As a matter of illustration, let us consider the sequel of the discussion between
Abraham and her doctor:

Example 6 (Example 1, cont’d). At that stage of the consultation, once the physician
told Abraham that he suspected that Abraham suffers from Marfan disease, Abraham
asks her for a counterfactual explanation: why not considering myopia3 as an expla-
nation? The doctor then explains that Abraham also has the thumb sign, and myopia
does not explain it. Since ss does not belong to U , once again, this explanation is not
intelligible by Abraham.

Suppose that the domain theory T contains also the piece of knowledge ss⇔ (ht∧
lt) where ht means that Abraham’s thumb is hypermobile and lt means that Abraham’s
thumb is longer than usual. Given that ht and lt are simple concepts, the physician may
assume that Abraham is able to understand them, so that U = {my, bv, he, ht, lt}.

This time, unlike what happened for ms, the explanation ss that is not intelligible
by Abraham can be reformulated using Abraham’s vocabulary: ss precisely means that
Abraham’s thumb is hypermobile (ht) and longer than usual (lt).

Deciding whether such a reformulation exists and, if so, computing a representation
of it, amounts to a definability issue:

3 my indeed is an abductive explanation in this case, however it is not a preferred one.
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Definition 4 (definable explanation). Let γ, T ∈ PROPPS , U ⊆ PS . The explana-
tion γ can be considered as definable in terms of the user vocabulary U in the domain
theory T whenever there exists a formula ΦU ∈ PROPU such that γ is equivalent
to ΦU in T , i.e., we have T |= γ ⇔ ΦU . When γ is definable, any admissible ΦU is
referred to as a definition of γ on U in T .

When γ is definable in terms of U in T , one can project ΦU onto U given T instead
of projecting γ onto U given T . Indeed, we have

Π({γ}, T, U) = Π({ΦU}, T, U).

This is particularly helpful when the user knowledge base TU is known to be equiv-
alent to ∃Ū .T since in this situation, instead of providing Π({γ}, T, U) to the user, one
can simply let her known as an explanation that ΦU holds, and from it, she will be able
to deduce every piece of information conveyed by Π({γ}, T, U).

The definability issue has been considered in logic for decades, focusing on the case
when γ is atomic (i.e., in the propositional case, a variable) (see [19] for details):

Definition 5 (explicit definability). Let φ ∈ PROPPS , X ⊆ PS and y ∈ PS .
φ explicitly defines y in terms of X iff there exists a formula ΦX ∈ PROPX s.t.
φ |= ΦX ⇔ y.

Definability and forgetting are strongly connected. Indeed, whenever y is defined in
terms of X in φ, the definitions of y on X in φ are precisely the formulae ΦX satisfying
the following condition (see Theorem 8 in [18]):

∃X̄.(T ∧ y) |= ΦX |= ¬∃X̄.(T ∧ ¬y).

Now, it is quite easy to lift the case when γ is a propositional variable to the general
case when γ is any formula. To do so, it is enough to prove that a formula γ is definable
in terms of U w.r.t. a domain theory T if and only if T ∧ (xγ ⇔ γ) defines the (fresh)
variable xγ (i.e., not belonging to Var(T )∪Var(γ)∪U ) in terms of U [19]. Obviously
enough, any definition of xγ on U in T ∧ (xγ ⇔ γ) also is a definition of γ on U in T .

Interestingly, in the abductive model for explanation, the projection of an explana-
tion γ onto a vocabulary U given a domain theory T does not lead to an explainability
loss whenever γ is definable in terms of U w.r.t. T :

Proposition 3. Let γ, T ∈ PROPPS , A,U ⊆ PS such that U ⊆ A. Let M∗,M be
finite sets of propositional formulae of PROPPS such that M∗ ⊆ M . Suppose that γ
is an abductive explanation for M∗ w.r.t. T and M and that γ is definable in terms of
U in T , so that there exists a formula ΦU from PROPPS that is a definition of γ on U
in T . Let γU be any implicant of ΦU that is consistent with T . Then γU is an abductive
explanation for M∗ w.r.t. T and M .

Proof. We first prove that ΦU has an implicant γU that is consistent with T . Towards
a contradiction, since ΦU is equivalent to the disjunction of its implicants, if every
implicant γU of ΦU is inconsistent with T , then T ∧ ΦU is inconsistent as well. But
since T |= (γ ⇔ ΦU ), if T ∧ ΦU is inconsistent then T ∧ γ also is inconsistent. This
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contradicts the fact that γ is an abductive explanation for M∗ w.r.t. T and M . Let now
consider any implicant γU of ΦU that is consistent with T . It remains to show that
T ∧ γU |= M∗. Since γU |= ΦU , we have T ∧ γU |= T ∧ ΦU . Since T |= (γ ⇔ ΦU ),
we also have T ∧ ΦU |= T ∧ γ. Altogether we get that T ∧ γU |= T ∧ γ. Hence if
T ∧ γ |= M∗ then we also have T ∧ γU |= M∗, which completes the proof.

4.5 Computing and simplifying projections

In the general case, the projection of an explanation onto a vocabulary given a domain
theory cannot be represented compactly (under standard assumptions of complexity
theory, any circuit encoding it is of size exponential in the input size in the worst case,
see [18]). This is still the case when the explanation is structurally simple (for instance,
when it takes the form of a conjunction of variables, as in the explanation setting con-
sidered in this report) and when it is definable in terms of the user vocabulary in the
domain theory. This shows that the conditions to be satisfied for considering an ex-
planation as intelligible are not independent one another: projecting an explanation of
small size and simple structure onto a user vocabulary to make it intelligible may lead
to a projection which is hard to be understood, this time because of its size.

When γ ∧ T is given as a CNF formula
∧k
i=1 δi and Ū = {x} ∪X , a CNF formula

equivalent to Π({γ}, T, U) can be computed in a recursive way by eliminating x in
γ ∧ T , obtaining thus a new CNF formula equivalent to ∃{x}.(γ ∧ T ), in which the
variables ofX are then eliminated. Eliminating x in γ∧T basically amounts to applying
the resolution principle: ∃{x}.(γ ∧ T ) is equivalent to the CNF formula consisting of
the clauses δi of γ ∧ T such that x 6∈ Var(δi), conjoined with all the resolvents on x
of the clauses of γ ∧ T . In the general case, the resulting CNF formula can be of size
exponential in the size of γ ∧ T .

Nevertheless, there exist restrictions under which the projection of an explanation
onto a vocabulary given a domain theory can be represented in space polynomial in the
size of the input, and can even be computed in polynomial time from it. Thus, when
γ is a conjunction of literals and T is a DNNF representation [4], one can compute in
polynomial time a representation of the projection as a DNNF representation. This also
holds when T is a DNF representation (in that case, the projection will be represented as
a DNF formula). This mainly comes from the fact that DNNF and DNF as representation
languages offer a conditioning transformation and a forgetting transformation in poly-
nomial time [5]. When the size of U is considered as bounded, the size of the projection
remains small as well.

Deciding whether an explanation γ is definable in terms of a vocabulary U given a
theory T is “mildly hard” (coNP-complete in general) since it is not necessary to guess
a corresponding definition of γ on U in T to solve this decision problem (this comes
from the equivalence between explicit and implicit definability and a method to decide
the latter [27]). The generation of a definition is typically much more expensive, since
under standard assumptions of complexity theory, there is no polynomial-size circuit
representing such a definition in the general case [19]. The other way around, when the
explanation γ under consideration is a formula that is definable in terms on U in T , it
can be the case that a definition of it on U in T that is exponentially smaller than γ
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exists. Such a size shift (both ways) between an explanation and a definition of it must
be taken into account when the goal is to get an intelligible explanation.

On the other hand, assuming that the explainer is aware of a part T pU of the knowl-
edge base TU of the explainee (alias the user), the explainer can exploit it to simplify
the projection Π({γ}, T, U) into a formula simp(Π({γ}, T, U), T pU ) using theory rea-
soning w.r.t. T pU . More formally, let T pU be a formula such that T |= TU |= T pU and
Var(T pU ) = U , the objective is to generate a formula simp(Π({γ}, T, U), T pU ) satisfy-
ing T pU ∧ simp(Π({γ}, T, U), T pU ) ≡ Π({γ}, T, U) that is as simple as possible, so as
to improve the intelligibility. Indeed, given that the user knows T pU , from simp(Π({γ},
T, U), T pU ), she will be able to recover using her knowledge base TU (which is at least
as strong as T pU ) all the consequences of Π({γ}, T, U) that are not consequences of
simp(Π({γ}, T, U), T pU ). Especially, doing so, the pieces of information from Π({γ},
T pU , U) that are irrelevant to the explanation γ but appear inΠ({γ}, T, U) because they
are consequences of T pU are filtered out. Thus, a strong violation of Grice’s maxim of
quantity [13] is avoided (Grice’s maxims are norms governing cooperative communi-
cation among agents; the quantity maxim indicates that the contribution of the provider
should not contain information that the receiver is already aware of).

Going a step further requires to make precise what “simple” means. This is clearly
dependent on the representation chosen forΠ({γ}, T, U). A standard format is the CNF
one: each conjunct (a clause) is simple enough and the way they are connected is clear as
well. IfΠ({γ}, T, U) is given as a CNF formula, a candidate for simp(Π({γ}, T, U), T pU )
is the conjunction of the theory prime implicates of Π({γ}, T, U) w.r.t. T pU . Basically,
whenever two clauses δ1, δ2 of Π({γ}, T, U) are such that δ1 ∧ T pU |= δ2, δ2 can be
removed; furthermore, if a subclause δ3 of δ1 is such that δ3 ∧ T pU |= δ1, then δ1 can be
replaced by δ3 (see [23,24] for more details).

5 Conclusion

This paper is centered on the intelligibility question for explanations. A simple user
model, consisting of a logical vocabulary (a set of facts which are meaningful for the
explainee), has been considered. On this ground, we have presented a notion of projec-
tion that can be used to characterize, among the consequences of an explanation, those
which can be understood by the explainee, i.e., those that can be expressed using her
vocabulary. We have evaluated the projection operation in terms of intelligibility, infor-
mation, and explainability. We have studied the specific case of definable explanations.
We have also sketched how projections can be computed and simplified.

This work calls for many perspectives for further research. One of them is to con-
sider more expressive settings than classical propositional logic and to investigate the
extent to which the results presented in the paper can be lifted. Interestingly, the key
operation of forgetting has been studied in many logical settings, especially logic pro-
gramming, modal logics, description logics, and it already gave rise to many papers and
some pieces of software (see among others [22,36,37,33,34,7,9,1,35,32,31]). Another
perspective is to instantiate our approach to other explanation settings, especially set-
tings for which explanations are event-based (obviously enough, there exist numerous
logical settings for modeling and reasoning about actions; furthermore the notion of for-
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getting actions has already been considered so far [10]). Finally, more work is needed
to figure out the interplay between the criteria that are expected to be fulfilled by in-
telligible explanations. When the size and/or the structure of a projection that has been
simplified and compressed remain(s) too complex, it would make sense to approximate
it so as to improve its intelligibility. However, this may have an impact on the explana-
tory power of the explanation (just as it happens when considering the projection of the
explanation instead of the explanation itself since Π({γ}, T, U) is an approximation of
T ∧ γ, logically speaking the best possible one onto U ). It is likely that some trade-offs
should be looked for.
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