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Abstract5

Linear Temporal Logic (LTL) has found extensive applications in Computer Science and Artificial Intelligence,6

notably as a formal framework for representing and verifying computer systems that vary over time. Non-7

monotonic reasoning, on the other hand, allows us to formalize and reason with exceptions and the dynamics of8

information. The goal of this paper is therefore to enrich temporal formalisms with non-monotonic reasoning9

features. We do so by investigating a preferential semantics for defeasible LTL along the lines of that extensively10

studied by Kraus et al. in the propositional case and recently extended to modal and description logics. The main11

contribution of the paper is a decidability result for a meaningful fragment of preferential LTL that can serve as12

the basis for further exploration of defeasibility in temporal formalisms.13
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1 Introduction17

Specification and verification of dynamic computer systems is an important task, given the increasing18

number of new computer technologies being developed. Recent examples include blockchain19

technology and various existing tools for home automation of the different production chains provided20

by Industry 4.0. Therefore, it is fundamental to ensure that systems based on them have the desired21

behavior but, above all, satisfy safety standards. This becomes even more critical with the increasing22

deployment of artificial intelligence techniques as well as the need to explain their behaviors.23

Several approaches for qualitative analysis of computer systems have been developed. Among24

the most fruitful are the different families of temporal logic. The success of these is due mainly to25

their simplified syntax compared to that of first-order logic, their intuitive syntax, semantics and their26

good computational properties. One of the members of this family is Linear Temporal Logic [15, 19],27

known as LTL, is wildly used in formal verification and specification of computer programs.28

Despite the success and wide use of linear temporal logic, it remains limited for modeling and29

reasoning about the real aspects of computer systems or those that depend on them. In fact, computer30

systems are not either 100% secure or 100% defective, and the properties we wish to check may have31

innocuous and tolerable exceptions, or conversely, exceptions that must be carefully addressed in32

order to guarantee the overall reliability of the system. Similarly, the expected behavior of a system33

may be correct not for all possible execution, but rather for its most “normal” or expected executions.34

It turns out that LTL, because it is a logical formalism of the so-called classical type, whose35

underlying reasoning is that of mathematics and not that of common sense, does not allow at all36

to formalize the different nuances of the exceptions and even less to treat them. First of all, at the37

level of the object language (that of the logical symbols), it has operators behaving monotonically,38

and at the level of reasoning, posses a notion of logical consequence which is monotonic too, and39

consequently, it is not adapted to the evolution of defeasible facts.40

Non-monotonic reasoning (NMR), on the other hand, allows to formalize and reason with41

exceptions, it has been widely studied by the AI community for over 40 years now. Such is the case42

of Kraus et al. [12] , known as the KLM approach.43

However, the major contributions in this area are limited to the propositional framework. It is44

only recently that some approaches to non-monotonic reasoning, such as belief revision, default45
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rules and preferential approaches, have been studied for more expressive logics than propositional46

logic, including modal [3, 5] and description logics [4]. The objective of our study is to establish a47

bridge between temporal formalisms for the specification and verification of computer systems and48

approaches to non-monotonic reasoning, in particular the preferential one, which satisfactorily solves49

the limitations raised above.50

In this paper, we define a logical framework for reasoning about defeasible properties of program51

executions, we investigate the integration of preferential semantics in the case of LTL, hereby52

introducing preferential linear temporal logic LTL˜. The remainder of the present paper is structured53

as follows: In Section 3 we set up the notation and appropriate semantics of our language. In54

Sections 4, 5 and 6, we investigate the satisfiability problem of this formalism. The appendix55

contains proofs of results in this paper. The remaining proofs can be viewed anonymously in56

https://github.com/calleann/Preferential_LTL.57

2 Preliminaries: LTL and the KLM approach to NMR58

Let P be a finite set of propositional atoms. The set of operators in the Linear Temporal Logic can be59

split into two parts: the set of Boolean connectives (¬,∧), and that of temporal operators (�,♦,©,U),60

where � reads as always, ♦ as eventually, © as next and U as until. The set of well-formed sentences61

expressed in LTL is denoted by L. Sentences of L are built up according to the following grammar:62

α ::= p | ¬α | α ∧ α | α ∨ α | �α | ♦α | ©α | αUα.63

Let the set of natural numbers N denote time points. A temporal interpretation I is a mapping64

function V : N −→ 2P which associates each time point t ∈ N with a set of propositional atoms65

V (t) corresponding to the set of propositions that are true in t. (Propositions not belonging to V (t)66

are assumed to be false at the given time point.) The truth conditions of LTL sentences are defined as67

follows, where I is a temporal interpretation and t a time point in I:68

I, t |= p if p ∈ V (t); I, t |= ¬α if I, t 6|= α;69

I, t |= α ∧ α′ if I, t |= α and I, t |= α′; I, t |= α ∨ α′ if I, t |= α or I, t |= α′;70

I, t |= �α if I, t′ |= α for all t′ ∈ N s.t. t′ ≥ t; I, t |= ♦α if I, t′ |= α for some t′ ∈ N s.t. t′ ≥ t;71

I, t |= ©α if I, t+ 1 |= α;72

I, t |= αUα′ if I, t′ |= α′ for some t′ ≥ t and for all t ≤ t′′ < t′ we have I, t′′ |= α.73

We say α ∈ L is satisfiable if there are I and t ∈ N such that I, t |= α.74

We now give a brief outline to Kraus et al.’s [12] approach to non-monotonic reasoning. A75

propositional defeasible consequence relation |∼ [12] is defined as a binary relation on sentences of76

an underlying propositional logic. The semantics of preferential consequence relation is in terms of77

preferential models: A preferential model on a set of atomic propositions P is a tuple P def= (S, l, g )78

where S is a set of elements called states, l : S −→ 2P is a mapping which assigns to each state s a79

single world m ∈ 2P and g is a strict partial order on S satisfying smoothness condition. Intuitively,80

the states that are lower down in the ordering are more plausible, normal or in a general case preferred,81

than those that are higher up. A statement of the form α |∼ β holds in a preferential model iff he82

minimal α-states are also β-states.83

3 Preferential LTL84

In this paper, we introduce a new formalism for reasoning about time that is able to distinguish85

between normal and exceptional points of time. We do so by investigating a defeasible extension of86

LTL with a preferential semantics. The following example introduces a case scenario we shall be87

using in the remainder of this section, with the purpose of giving a motivation for this formalism and88

better illustrating the definitions in what follows.89

https://github.com/calleann/Preferential_LTL
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I Example 1. We have a computer program in which the values of its variables change with time.90

In particular, the agent wants to check two parameters, say x and y. These two variables take one91

and only one value between 1 and 3 on each iteration of the program. We represent the set of atomic92

propositions by P = {x1, x2, x3, y1, y2, y3} where xi (resp. yi) for all i ∈ {1, 2, 3} is true iff the93

variable x (resp. y) has the value i in a current iteration. Figure 1 depicts a temporal interpretation94

corresponding to a possible behaviour of such a program:95

x1, y1 x2, y3 x3, y3 x2, y1 x1, y2 x2, y3 · · ·

0 1 2 3 4 5

Figure 1 LTL interpretation V (for t > 5, V (t) = V (5) = {x2, y3})

Under normal circumstances, the program assigns the value 3 to y whenever x = 2. We can96

express this fact using classical LTL as follows: �(x2 → y3), with x2 → y3 is defined by ¬x2 ∨ y3.97

Nevertheless, the agent notices that there is one exceptional iteration (Iteration 3) where the program98

assigns the value 1 to y when x = 2.99

Some might consider that the current program is defective at some points of time. In LTL, the100

statement �(x2 → y3) ∧ ♦(x2 ∧ y1) will always be false, since y cannot have two different values101

in an iteration where x = 2. Nonetheless we want to propose a logical framework that is exception102

tolerant for reasoning about a system’s behaviour. In order to express this general tendency (x2 → y3)103

while taking into account that there might be some exceptional iterations which do not crash the104

program. We base our semantic constructions on the preferential approach [16, 12].105

3.1 Introducing defeasible temporal operators106

Britz & Varzinczak [5] introduced new modal operators called defeasible modalities. In their setting,107

defeasible operators, unlike their classical counterparts, are able to single out normal worlds from108

those that are less normal or exceptional in the reasoner’s mind. Here we extend the vocabulary of109

classical LTL with the defeasible temporal operators �∼ and ♦∼. Sentences of the resulting logic LTL˜110

are built up according to the following grammar:111

α ::= p | ¬α | α ∧ α | α ∨ α | �α | ♦α | ©α | αUα | �∼α | ♦∼α112

The intuition behind these new operators is the following: �∼ reads as defeasible always and ♦∼ reads113

as defeasible eventually.114

I Example 2. Going back to our example 1, we can describe the normal behaviour of the program115

using the statement �∼(x2 → y3) ∧ ♦(x2 ∧ y1). In all normal future time points, the program assigns116

the value 3 to y when x = 2. Although unlikely, there are some exceptional time points in the future117

where x = 2 and y = 1. But those are ‘ignored’ by the defeasible always operator.118

The set of all well-formed LTL˜ sentences is denoted by L˜. It is worth to mention that any119

well-formed sentence α ∈ L is a sentence of L˜. We denote a subset of our language that contains120

only Boolean connectives, the two defeasible operators �∼, ♦∼ and their classical counterparts by121

L?. Next we shall discuss how to interpret statements that have this defeasible aspect and how to122

determine the truth values of each well-formed sentence in L˜.123

3.2 Preferential semantics124

First of all, in order to interpret the sentences of L˜ we consider, as stated on the preliminaries, (N, <)125

to be a temporal structure. Hence, a temporal interpretation that associates each time point t with a126

truth assignment of all propositional atoms.127
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The preferential component of the interpretation of our language is directly inspired by the128

preferential semantics proposed by Shoham [17] and used in the KLM approach [12]. The preference129

relation g is a strict partial order on our points of time. Following Kraus et al. [12], t g t′ means130

that t is more preferred than t′. The reasoner has now the tools to express the preference between131

points of time by comparing them w.r.t. each other, with time points lower down the order being more132

preferred than those higher up.133

I Definition 3 (Minimality w.r.t. g ). Let g be a strict partial order on a set N and N ⊆ N. The134

set of the minimal elements of N w.r.t. g , denoted by min g (N), is defined by min g (N) def= {t ∈ N |135

there is no t′ ∈ N such that t′ g t}.136

I Definition 4 (Well-founded set). Let g be a strict partial order on a set N. We say N is137

well-founded w.r.t. g iff min g (N) 6= ∅ for every ∅ 6= N ⊆ N.138

I Definition 5 (Preferential temporal interpretation). An LTL˜ interpretation on a set of pro-139

positional atoms P , also called preferential temporal interpretation on P , is a pair I def= (V, g ) where140

V is a temporal interpretation on P , and g ⊆ N × N is a strict partial order on N such that N is141

well-founded w.r.t. g . We denote the set of preferential temporal interpretations by I.142

In what follows, given a preference relation g and a time point t ∈ N, the set of preferred time143

points relative to t is the set min g ([t,+∞[) which is denoted in short by min g (t). It is also worth144

to point out that given a preferential interpretation I = (V, g ) and N, the set min g (t) is always a145

non-empty subset of [t,+∞[ at any time point t ∈ N.146

Preferential temporal interpretations provide us with an intuitive way of interpreting sentences147

of L˜. Let α ∈ L˜, let I = (V, g ) be a preferential interpretation, and let t be a time point in I in N.148

Satisfaction of α at t in I , denoted I, t |= α, is defined as follows:149

I, t |= �∼α if I, t′ |= α for all t′ ∈ min g (t);150

I, t |= ♦∼α if I, t′ |= α for some t′ ∈ min g (t).151

The truth values of Boolean connectives and classical modalities are defined as in LTL. The152

intuition behind a sentence like �∼α is that α holds in all preferred time points that come after t. ♦∼α153

intuitively means that α holds on at least one preferred time point relative in the future of t.154

We say α ∈ L˜ is preferentially satisfiable if there is a preferential temporal interpretation I and155

a time point t in N such that I, t |= α. We can show that α ∈ L˜ is preferentially satisfiable iff there156

is a preferential temporal interpretation I s.t. I, 0 |= α. A sentence α ∈ L˜ is valid (denoted by |= α)157

iff for all temporal interpretation I and time points t in N, we have I, t |= α.158

I Example 6. Going back to Example 1, we can see that the time points 5 and 1 are more “normal”159

than iteration 3. By adding preferential preference g := {(5, 3), (1, 3)}, we denote the preferential160

temporal interpretation by I = (V, g ). We have that I, 0 6|= �(x2 → y3) ∧ ♦(x2 ∧ y1) and161

I, 0 |= �∼(x2 → y3) ∧ ♦(x2 ∧ y1).162

We can see that the addition of g relation preserves the truth values of all classical temporal163

sentences. Moreover, for every α ∈ L, we have that α is satisfiable in LTL if and only if α is164

preferentially satisfiable in LTL˜.165

We discuss some properties of these defeasible modalities next. In what follows, let α, β be166

well-formed sentences in L˜. We have duality between our defeasible operators: |= �∼α↔ ¬ ♦∼¬α.167

We also have |= �α→ �∼α and |= ♦∼α→ ♦α. Intuitively, This property states that if a statement168

holds in all of future time points of any given point of time t, it holds on all our future preferred time169

points. As intended, this property establishes the defeasible always as “weaker” than the classical170

always. It can commonly be accepted since the set of all preferred future states are in the future. This171
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is why we named �∼ defeasible always. On the other hand, we see that ♦∼ is “stronger” than classical172

eventually, the statement within ♦∼ holds at a preferable future.173

The axiom of distributivity (K) can be stated in terms of our defeasible operators. We can also174

verify the validity of these two statements |= �∼(α ∧ β) ↔ (�∼α ∧ �∼β) and |= (�∼α ∨ �∼β) →175

�∼(α ∨ β), the converse of the second statement is not always true.176

The reflexivity axiom (T) for the classical operators does not hold in the case of defeasible177

modalities. We can easily find an interpretation I = (V, g ) where I, t 6|= �∼α→ α. Indeed, since we178

can have t 6∈ min g (t) for a temporal point t, we can have I, t |= �∼α and I, t |= ¬α.179

One thing worth pointing out is the set of future preferred time points changes dynamically as we180

move forward in time. Given three time points t1 ≤ t2 ≤ t3, t3 6∈ min g (t1) whilst t3 ∈ min g (t2)181

could be true in some cases. Hence, if I, t |= �∼�∼α does not imply that for all t′ ∈ min g (t),182

I, t′ |= �∼α. Therefore, the transitivity axiom (4) does not hold also in our defeasible modalities. On183

the other hand, given those three time points, t3 6∈ min g (t1) implies that t3 6∈ min g (t2).184

And since we do not have a version of the axioms (T) and (4) for our defeasible operators, we do185

not have the collapsing property on the case �∼, ♦∼. Redundant sentences in the case modal sentences186

such as �� . . .�α can be reduced to �α. It is not the case for our preferential operators �∼ and ♦∼.187

3.3 State-dependent preferential interpretations188

We define a class of well-behaved LTL˜ interpretations that are useful in the remainder of the paper.189

I Definition 7 (State-dependent preferential interpretations). Let I = (V, g ) ∈ I. I is state-190

dependent preferential interpretation iff for every i, j, i′, j′ ∈ N, if V (i′) = V (i) and V (j′) = V (j),191

then (i, j) ∈ g iff (i′, j′) ∈ g .192

In what follows, Isd denotes the set of all state-dependent interpretations. The intuition behind193

setting up this restriction is to have a more compact form of expressing preference over time points. In194

a way, time points with similar valuations are considered to be identical with regards to g , they express195

the same preferences towards other time points. Moreover, we have some interesting properties that196

do not in the general case. In particular, we have the following property :197

I Proposition 8. Let I = (V, g ) ∈ Isd and let i, i′, j, j′ ∈ N s.t. i ≤ i′, i′ ≤ j′ and j ∈ min g (i).198

If V (j) = V (j′), then j′ ∈ min g (i
′).199

This property is specific to the class of state-dependent interpretations. However, the following200

proposition is true for every I ∈ I.201

I Proposition 9. Let I = (V, g ) ∈ I and let i, j ∈ N s.t. j ∈ min g (i). For all i ≤ i′ ≤ j, we202

have j ∈ min g (i
′).203

4 A useful representation of preferential structures204

One of the objectives of this paper is to establish some computational properties about the satisfiability205

problem. In order to do this, we introduce into the sequel different structures inspired by the approach206

followed by Sistla and Clarke in [18]. They observe that in every LTL interpretation, there is a time207

point t after which every t-successor’s valuation occurs infinitely many times. This is an obvious208

consequence of having an infinite set of time points and a finite number of possible valuations. That209

is the case also for LTL˜ interpretations.210

I Lemma 10. Let I = (V, g ) ∈ I. There exists a t ∈ N s.t. for all l ∈ [t,+∞[, there is a k > l211

where V (l) = V (k).212
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For an interpretation I ∈ I, we denote the first time point where the condition set in Lemma 10 is213

satisfied by tI . We can split each temporal structure into two intervals: an initial and a final part.214

I Definition 11. Let I = (V, g ) ∈ I. We define: init(I) def= [0, tI [; final(I) def= [tI ,+∞[;215

range(I) def= {V (i) | i ∈ final(I)}; val(I) def= {V (i) | i ∈ N}; size(I) def= length(init(I)) +216

card(range(I)), where length(·) denotes the length of a sequence and card(·) set cardinality.217

In the size of I we count the number of time points in the initial part and the number of valuations218

contained in the final part. In what follows, we discuss some properties concerning these notions and219

state dependent interpretations.220

I Proposition 12. Let I = (V, g ) ∈ Isd and let i ≤ j ≤ i′ ≤ j′ be time points in final(I) s.t.221

V (j) = V (j′). Then we have j ∈ min g (i) iff j′ ∈ min g (i
′).222

I Lemma 13. Let I = (V, g ) ∈ Isd and i ≤ i′ be time points of final(I) where V (i) = V (i′).223

Then for every α ∈ L?, we have I, i |= α iff I, i′ |= α.224

What we have in Lemma 13 is that given an interpretation I ∈ Isd, points of time in final(I) that225

have the same valuations satisfy exactly the same sentences.226

I Definition 14 (Faithful Interpretations). Let I = (V, g ) ∈ Isd, I ′ = (V ′, g ′) ∈ Isd be227

two interpretations over the same set of atoms P . We say that I, I ′ are faithful interpretations if228

val(I) = val(I ′) and, for all i, j, i′, j′ ∈ N s.t. V ′(i′) = V (i) and V ′(j′) = V (j), we have (i, j) ∈ g229

iff (i′, j′) ∈ g ′.230

Throughout this paper, we write init(I) .= init(I ′) as shorthand for the condition that states:231

length(init(I)) = length(init(I ′)) and for each i ∈ init(I) we have V (i) = V ′(i).232

I Lemma 15. Let I = (V, g ) ∈ Isd, I ′ = (V ′, g ′) ∈ Isd be two faithful interpretations over P233

such that V ′(0) = V (0) (in case init(I) is empty), init(I) .= init(I ′), and range(I) = range(I ′).234

Then for all α ∈ L?, we have that I, 0 |= α iff I ′, 0 |= α.235

Lemma 15 implies that the ordering of time points in final(·) does not matter, and what matters is236

the range(·) of valuations contained within it. It is worth to mention that Lemma 13 and 15 hold only237

in the case interpretations in Isd and they are not always true in the general case.238

Sistla & Clarke [18] introduced the notion of acceptable sequences. The general purpose behind239

it is the ability to build, from an initial interpretation, other interpretations. We adapt this notion for240

preferential temporal structures. We then introduce the notion of pseudo-interpretations that will241

come in handy in showing decidability of the satisfiability problem in L? in the upcoming section.242

In the sequel, the term temporal sequence or sequence in short, will denote a sequence of ordered243

integer numbers. A sequence allows to represent a set of time points. Sometimes, we will consider244

integer intervals as sequences. Moreover, given two sequences N1, N2, the union of N1 and N2,245

denoted byN1∪N2, is the sequence containing only elements ofN1 andN2. An acceptable sequence246

is a temporal sequence that is built relatively to a preferential temporal interpretation I as follows:247

I Definition 16 (Acceptable sequence w.r.t. I). Let I = (V, g ) ∈ I and N be a sequence of248

temporal time points. N is an acceptable sequence w.r.t. I iff for all i ∈ N ∩ final(I) and for all249

j ∈ final(I) s.t. V (i) = V (j), we have j ∈ N .250

The particularity we are looking for is that any picked time point in init(·) (resp. final(·))251

will remain in the initial (resp. final) part of the new interpretation. It is worth pointing out that252

an acceptable sequence w.r.t. a preferential temporal interpretation can be either finite or infinite.253
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Moreover, N is an acceptable sequence w.r.t. any interpretation I ∈ I. The purpose behind the notion254

of acceptable sequence is to construct new interpretations starting from an LTL˜ interpretation.255

Given N an acceptable sequence w.r.t. I , if N has a time point t in final(I), then all time points256

t′ that have the same valuation as t must be in N . Thus, we have an infinite sequence of time points.257

As such, we can define an initial part and a final part, in a similar way as LTL˜ interpretations. We258

let init(I,N) be the largest subsequence of N that is a subsequence of init(I). Note that if N does259

not contain any time point of final(I), then N is finite.260

We now define the notions init(·), final(·), range(·), and size(·) for acceptable sequences.261

I Definition 17. Let I = (V, g ) ∈ I, and let N be an acceptable sequence w.r.t. I . We define:262

init(I,N) def=N ∩ init(I); final(I,N) def=N \ init(I,N); range(I,N) def= {V (t) | t ∈ final(I,N)};263

val(I,N) def= {V (t) | t ∈ N}; size(I,N) def= length(init(I,N)) + card(range(I,N)).264

It is worth mentioning that, thanks to Definition 16, given an acceptable sequence w.r.t. I , we265

have size(I,N) ≤ size(I).266

I Definition 18 (Pseudo-interpretation over N ). Let I = (V, g ) ∈ I and N be an acceptable267

sequence w.r.t. I . The pseudo-interpretation over N is the tuple IN def= (N,V N , g N ) where:268

V N : N −→ 2P is a valuation function over N , where for all i ∈ N , we have V N (i) = V (i),269

g N⊆ N ×N , where for all (i, j) ∈ N2, we have (i, j) ∈ g N iff (i, j) ∈ g .270

The truth values of L? sentences in pseudo-interpretations are defined in a similar fashion as271

for preferential temporal interpretations. With |=P we denote the truth values of sentences in a272

pseudo-interpretation. We highlight truth values for classical and defeasible modalities.273

IN , t |=P �α if IN , t′ |=P α for all t′ ∈ N s.t. t′ ≥ t;274

IN , t |=P ♦α if IN , t′ |=P α for some t′ ∈ N s.t. t′ ≥ t;275

IN , t |=P �∼α if for all t′ ∈ N s.t. t′ ∈ min g N (t), we have IN , t |=P α;276

IN , t |=P ♦∼α if IN , t′ |=P α for some t′ ∈ N s.t. t′ ∈ min g N (t).277

I Proposition 19. Let I = (V, g ) ∈ I,N1, N2 be two acceptable sequences w.r.t. I . ThenN1∪N2278

is an acceptable sequence w.r.t. I s.t. size(I,N1 ∪N2) ≤ size(I,N1) + size(I,N2).279

I Proposition 20. Let I = (V, g ) ∈ I and N be an acceptable sequence w.r.t. I . If for all distinct280

t, t′ ∈ N , we have V (t′) = V (t) only when both t, t′ ∈ final(I,N), then size(I,N) ≤ 2|P|.281

5 Bounded-model property282

The main contribution of this paper is to establish certain computational properties regarding the283

satisfiability problem in L?. The algorithmic problem is as follows: Given an input sentence α ∈ L?,284

decide whether α is preferentially satisfiable. In this section, we show that this problem is decidable.285

The proof is based on the one given by Sistla and Clarke to show the complexity of propositional286

linear temporal logic [18]. Let L? be the fragment of L˜ that contains only Boolean connectives and287

temporal operators (�, �∼,♦, ♦∼). Let α ∈ L?, with |α| we denote the number of symbols within α.288

The main result of the present paper is summarized in the following theorem, of which the proof will289

be given in the remainder of the section.290

I Theorem 21 (Bounded-model property). If α ∈ L? is Isd-satisfiable, then we can find an291

interpretation I ∈ Isd such that I, 0 |= α and size(I) ≤ |α| × 2|P|.292

Hence, given a satisfiable sentence α ∈ L?, there is an interpretation satisfying α of which the size293

is bounded. Since α is Isd-satisfiable, we know I, 0 |= α. From I we can construct an interpretation294

I ′ also satisfying α, i.e., I ′, 0 |= α, which is bounded on its size by |α| × 2|P|.295
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The goal of this section is to show how to build said bounded interpretation. Let α ∈ L? and296

let I ∈ Isd be s.t. I, 0 |= α. The first step is to characterize an acceptable sequence N w.r.t. I297

such that N is bounded first of all, and “keeps” the satisfiability of the sub-sentences α1 contained298

in α i.e., if I, t |= α1, then IN , t |=P α1 (see Definition 18). We do so by building inductively a299

bounded pseudo-interpretation step by step by selecting what to take from the initial interpretation I300

for each sub-sentence α1 contained in α to be satisfied. In what follows, we introduce the notion of301

Anchors(·) as a strategy for picking out the desired time points from I . Definitions 23–25 tell us how302

to pick said time points.303

I Definition 22 (Acceptable sequence transformation). Let I = (V, g ) ∈ I and let N be a304

sequence of time points. Let N ′ be the sequence of all time points t′ in final(I) for which there is305

t ∈ N ∩ final(I) with V (t′) = V (t). With AS(I,N) def=N ∪N ′ we denote the acceptable sequence306

transformation of N w.r.t. I .307

The sequence AS(I,N) is the acceptable sequence transformation of N w.r.t. I . In the previous308

definition, N ′ is the sequence of all time points t′ having the same valuation as some time point t ∈ N309

that is in final(I). It is also worth to point out that N ′ can be empty in the case of there being no time310

point t ∈ N that is in final(I). N is then a finite acceptable sequence w.r.t. I where AS(I,N) = N .311

This notation is mainly used to ensure that we are using the acceptable version of any sequence.312

I Definition 23 (Chosen occurrence w.r.t. α). Let I = (V, g ) ∈ I, α ∈ L˜ and N be an313

acceptable sequence w.r.t. I s.t. there exists a time point t in N with I, t |= α. The chosen occurrence314

satisfying α in N , denoted by tI,Nα , is defined as follows:315

tI,Nα
def=

{
min<{t ∈ final(I,N) | I, t |= α}, if {t ∈ final(I,N) | I, t |= α} 6= ∅

max<{t ∈ init(I,N) | I, t |= α}, otherwise
316

Notice that < above denotes the natural ordering of the underlying temporal structure317

The strategy to pick out a time point satisfying a given sentence α in N is as follows. If said318

sentence is in the final part, we pick the first time point that satisfies it, since we have the guarantee to319

find infinitely many time points having the same valuations as tI,Nα that also satisfy α (see Lemma320

13). If not, we pick the last occurrence in the initial part that satisfies α. Thanks to Definition 23, we321

can limit the number of time points taken that satisfy the same sentence.322

I Definition 24 (Selected time points). Let I = (V, g ) ∈ I, N be an acceptable sequence w.r.t.323

I and α ∈ L˜ s.t. there is t in N s.t. I, t |= α. With ST (I,N, α) def= AS(I, (tI,Nα )) we denote the324

selected time points of N and α w.r.t. I . (Note that (tI,Nα ) is a sequence of only one element.)325

Given a sentence α ∈ L˜ and an acceptable sequence N w.r.t. I s.t. there is at least one time326

point t where I, t |= α, the sequence ST (I,N, α) is the acceptable sequence transformation of the327

sequence (tI,Nα ). If tI,Nα ∈ init(I), the sequence ST (I,N, α) is the sequence (tI,Nα ). Otherwise, the328

sequence ST (I,N, α) is the sequence of all time points t in final(I) that have the same valuation as329

tI,Nα . In both cases, we can see that size(I,ST (I,N, α)) = 1.330

Given an interpretation I = (V, g ) and N an acceptable sequence w.r.t I , the representative331

sentence of a valuation v is formally defined as αv def=
∧
{p | p ∈ v} ∧

∧
{¬p | p 6∈ v}.332

I Definition 25 (Distinctive reduction). Let I = (V, g ) ∈ I and let N be an acceptable sequence333

w.r.t. I . With DR(I,N) def=
⋃
v∈val(I,N) ST (I,N, αv) we denote the distinctive reduction of N .334

Given an acceptable sequence N w.r.t. I , DR(I,N) is the sequence containing the chosen335

occurrence tI,Nαv
that satisfies the representative αv in N for each v ∈ val(I,N). In other words,336

we pick the selected time points for each possible valuation in val(I,N). There are two interesting337
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results with regard to DR(I,N). The first one is that DR(I,N) is an acceptable sequence w.r.t. I .338

This can easily be proven since ST (I,N, αv) is also an acceptable sequence w.r.t. I , and the union339

of all ST (I,N, αv) is an acceptable sequence w.r.t. I (see Proposition 19). The second result is that340

size(I,DR(I,N)) ≤ 2|P|. Indeed, thanks to Proposition 19, we can see that size(I,DR(I,N)) ≤341 ∑
v∈val(I,N) size(ST (I,N, αv)). Moreover, we have size(I,ST (I,N, αv)) = 1 for each v ∈342

val(I,N). On the other hand, there are at most 2|P| possible valuations in val(I,N). Thus, we can343

assert that
∑
v∈val(I,N) size(I,ST (I,N, αv)) ≤ 2|P|, and then we have size(I,DR(I,N)) ≤ 2|P|.344

I Definition 26 (Anchors). Let a sentence α ∈ L? starting with a temporal operator, let I = (V, g345

) ∈ Isd, and let T be a non-empty acceptable sequence w.r.t. I s.t. for all t ∈ T we have I, t |= α.346

The sequence Anchors(I, T, α) is defined as: Let α1 ∈ L?.347

Anchors(I, T,♦α1) def= ST (I,N, α1);
Anchors(I, T,�α1) def= ∅;
Anchors(I, T, ♦∼α1) def=

⋃
t∈T ST (I,AS(I,min g (t)), α1);

Anchors(I, T, �∼α1) def= DR(I,
⋃
t∈T AS(I,min g (t))).

348

Given an acceptable sequence T w.r.t. I ∈ Isd where all of its time points satisfy α, where α is a349

sentence starting with a temporal operator, Anchors(I, T, α) is an acceptable sequence w.r.t. I . This350

is due thanks to the notion of selected time points and distinctive reduction (see Definition 24 and 25).351

Anchors(I, T, α) contains the selected time points satisfying the sub-sentence α1 of α (except for352

�α1). Our goal is to have the selected time points that satisfy α1 for each t ∈ T .353

It is worth to point out that the choice of Anchors(I, T,�α1) = ∅ is due to the fact α1 is satisfied354

starting from the first time t0 ∈ T i.e., for all t ≥ t0, we have I, t |= α. So no matter what time point355

t we pick after t0, we have I, t |= α1. On the other hand, by the nature of the semantics of �∼α1,356

all t ∈
⋃
ti∈T AS(I,min g (ti)) satisfy α1. The acceptable sequence Anchors(I, T, �∼α1) contains357

only the selected time points for each distinct valuation in
⋃
ti∈T AS(I,min g (ti)).358

The following are some properties of Anchors(·) that are worth mentioning:359

I Lemma 27. Let α1 ∈ L? be a sentence starting with a temporal operator, I = (V, g ) ∈360

Isd and let T be a non-empty acceptable sequence w.r.t. I where for all t ∈ T we have I, t |=361

♦∼α1. Then for all t, t′ ∈ Anchors(I, T, ♦∼α1) s.t. V (t) = V (t′) and t 6= t′, we have t, t′ ∈362

final(I,Anchors(I, T, ♦∼α1)).363

I Proposition 28. Let α ∈ L? be a sentence starting with a temporal operator, I = (V, g ) ∈ Isd.364

Let T be a non-empty acceptable sequence w.r.t. I where for all t ∈ T we have I, t |= α. Then, we365

have size(I,Anchors(I, T, α)) ≤ 2|P|.366

I Proposition 29. Let α1 ∈ L?, I = (V, g ) ∈ Isd, let T be a non-empty acceptable sequence367

w.r.t. I s.t. for all t ∈ T we have I, t |= �∼α1, with α1 ∈ L?. For all acceptable sequences N w.r.t. I368

s.t. Anchors(I, T, �∼α1) ⊆ N and for all ti ∈ N ∩ T , we have the following: Let IN = (V N , g N )369

be the pseudo-interpretation over N and t′ ∈ N , if t′ 6∈ min g (ti), then t′ 6∈ min g N (ti).370

Proposition 29 helps us mitigate the dynamic nature of min g (ti). The selected time points help371

us circumvent adding time points that were not originally “preferred” w.r.t. ti in I , and becoming372

preferred in the reduced structure IN that we want to build. The strategy of building Anchors(·) is373

explained by the fact that we want to preserve the truth values of defeasible sub-sentences of α in the374

bounded interpretation.375

With Anchors(·) defined, we introduce the notion of Keep(·). Keep(·) will help us compute376

recursively starting from the initial satisfiable sentence α down to its literals, the selected time points377

to pick in order to build our pseudo-interpretation.378
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I Definition 30 (Keep). Let α ∈ L? be in NNF, I = (V, g ) ∈ Isd, and let T be an acceptable379

sequence w.r.t. I s.t. for all t ∈ T we have I, t |= α. The sequence Keep(I, T, α) is defined as ∅, if380

T = ∅; otherwise it is recursively defined as follows:381

Keep(I, T, `) def= ∅, where ` is a literal;382

Keep(I, T, α1 ∧ α2) def= Keep(I, T, α1) ∪Keep(I, T, α2);383

Keep(I, T, α1 ∨ α2) def= Keep(I, T1, α1) ∪Keep(I, T2, α2), where T1 ⊆ T (resp. T2 ⊆ T ) is the384

sequence of all t1 ∈ T (resp. t2 ∈ T ) s.t. I, t1 |= α1 (resp. I, t2 |= α2);385

Keep(I, T,♦α1) def= Anchors(I, T,♦α1) ∪Keep(I,Anchors(I, T,♦α1), α1);386

Keep(I, T,�α1) def= Keep(I, T, α1);387

Keep(I, T, ♦∼α1) def= Anchors(I, T, ♦∼α1) ∪Keep(I,Anchors(I, T, ♦∼α1), α1);388

Keep(I, T, �∼α1)def=Anchors(I, T, �∼α1)∪Keep(I, T ′, α1), where T ′ =
⋃
ti∈T AS(I,min g (ti)).389

With µ(α) we denote the number of classical and non-monotonic modalities in α.390

I Proposition 31. Let α ∈ L? be in NNF, I = (V, g ) ∈ Isd, and let T be a non-empty acceptable391

sequence w.r.t. I s.t. for all t ∈ T we have I, t |= α. Then, we have size(I,Keep(I, T, α)) ≤392

µ(α)× 2|P|.393

Given an acceptable sequence N w.r.t. I , we need to make sure when a time point t ∈ N in394

our acceptable sequence s.t. I, t |= α, then IN , t |=P α. The function Keep(I, T, α) returns the395

acceptable sequence of time s.t. if Keep(I, T, α) ⊆ N and t ∈ T , then said condition is met. We396

prove this in Lemma 32.397

I Lemma 32. Let α ∈ L? be in NNF, I = (V, g ) ∈ Isd, and let T be a non-empty acceptable398

sequence w.r.t. I s.t. for all t ∈ T we have I, t |= α. For all acceptable sequences N w.r.t. I , if399

Keep(I, T, α) ⊆ N , then for every t ∈ N ∩ T , we have IN , t |=P α.400

Since we build our pseudo-interpretation IN by adding selected time points for each sub-sentence401

α1 of α, we need to make sure that said sub-sentence remains satisfied in IN . Lemma 32 ensures that.402

I Definition 33 (Pseudo-interpretation transformation). Let I = (V, g ) ∈ Isd and let N be an403

infinite acceptable sequence w.r.t. I . The pseudo-interpretation IN = (V N , g N ) can be transformed404

into a preferential interpretation I ′ = (V ′, g ′) ∈ Isd as follows:405

for all i ≥ 0, we have V ′(i) = V N (ti);406

for all i, j ≥ 0, ti, tj ∈ N , we have (ti, tj) ∈ g N iff (i, j) ∈ g ′.407

We can now prove our bounded-model theorem.408

Proof of Theorem 21. We assume that α ∈ L? is Isd-satisfiable. The first thing we notice is that409

|α| ≥ µ(α) + 1. Let α′ be the NNF of the sentence α. As a consequence of the duality rules of L?,410

we can deduce that µ(α′) = µ(α). Let I = (V, g ) ∈ Isd s.t. I, 0 |= α′. Let T0 = AS(I, (0)) be an411

acceptable sequence w.r.t. I . We can see that size(I, T0) = 1. Since for all t ∈ T0 we have I, t |= α′412

(see Lemma 13), we can compute recursively U = Keep(I, T0, α
′). Thanks to Proposition 31, we413

conclude that U is an acceptable sequence w.r.t. I s.t. size(I, U) ≤ µ(α′)× 2|P|. Let N = T0 ∪ U414

be the union of T0 and U and let IN = (N,V N , g N ) be its pseudo-interpretation over N . Thanks to415

Proposition 19, we have size(I,N) ≤ 1 + µ(α′) × 2|P|. Thanks to Lemma 32, since 0 ∈ N ∩ T0416

and Keep(I, T0, α
′) ⊆ N , we have IN , 0 |=P α′. In case N is finite, we replicate the last time point417

tn infinitely many times. Notice that size(I,N) does not change if we replicate the last element.418

We can transform the pseudo interpretation IN to I ′ ∈ Isd by changing the labels of N into a419

sequence of natural numbers minding the order of time points in N (see Definition 33). We can420

see that size(I ′) = size(I,N) and I ′, 0 |= α. Consequently, we have size(I ′) ≤ 1 + µ(α′)× 2|P|.421

Hence, from a given interpretation I s.t. I, 0 |= α we can build an interpretation I ′ s.t. I ′, 0 |= α and422

size(I ′) ≤ 1 + µ(α′)× 2|P|. Without loss of generality, we conclude that size(I ′) ≤ |α| × 2|P|. J423
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6 The satisfiability problem in L?
424

We now provide an algorithm allowing to decide whether a sentence α ∈ L? is Isd-satisfiable or not.425

For this purpose, first we focus on particular interpretations of the class Isd, namely the ultimately426

periodic interpretations (UPI in short), and a finite representation of these interpretations, called427

ultimately periodic pseudo-interpretation (UPPI in short). As we will see in the second part of this428

section, to decide the Isd-satisfiability of a sentence α ∈ L?, the proposed algorithm guesses a429

bounded UPPI in a first step. Then, it checks the satisfiability of α by the UPI of the guessed UPPI.430

I Definition 34 (UPI). Let I = (V, g ) ∈ Isd and let π = card(range(I)). We say I is an431

ultimately periodic interpretation if:432

for every t, t′ ∈ [tI , tI + π[ s.t. t 6= t′ (see Definition 10), we have V (t) 6= V (t′),433

for every t ∈ [tI ,+∞[, we have V (t) = V (tI + (t− tI) mod π).434

A UPI I is a state dependent interpretation s.t. each time point’s valuation in final(I) is replicated435

periodically. Given a UPI, π = card(range(I)) denotes the length of the period and the interval436

[tI , tI + π[ is the first period which is replicated periodically throughout the final part. It is worth437

pointing out that for every t ∈ final(I), we have V (t) ∈ {V (t′) | t′ ∈ [tI , tI + π[}, which is one438

of the consequences of the definition above. Thanks to Lemma 15, we can prove the following439

proposition.440

I Proposition 35. Let P be a set of atomic propositions, I = (V. g ) ∈ Isd, i = length(init(I))441

and π = card(range(I)). There exists an ultimately periodic interpretation I ′ = (V ′, g ′) ∈ Isd s.t.442

I, I ′ are faithful interpretations over P (Definition 14), init(I ′) .= init(I), range(I ′) = range(I)443

and V ′(0) = V (0). Moreover, for all α ∈ L?, we have I, 0 |= α iff I ′, 0 |= α.444

It is worth to point out that the size of an interpretation and that of its UPI counterparts are equal. It445

can easily be seen that these interpretations have the same initial part and the same range of valuations446

in the final part. I ′ from the aforementioned proposition is obtained from I by keeping the same initial447

part, and placing each distinct valuation of range(I) in the interval [tI , tI + π[ and replicating this448

interval infinitely many times. Moreover, the preference relation g ′ arranges valuations in the same449

way as g . We can see that I and I ′ are faithful and that init(I ′) .= init(I), range(I ′) = range(I)450

and V ′(0) = V (0). Therefore, I and I ′ satisfy the same sentences.451

I Definition 36 (UPPI). A model structure is a tuple M = (i, π, VM , g M ) where: i, π are two452

integers such that i ≥ 0 and π > 0 (where i is intended to be the starting point of the period, π is the453

length of the period); VM : [0, i+ π[−→ 2P , and g M ⊆ 2P × 2P is a strict partial order. Moreover,454

(I) for all t ∈ [i, i + π[, we have VM (t) 6= VM (i − 1); and (II) for all distinct t, t′ ∈ [i, i + π[, we455

have VM (t) 6= VM (t′).456

The reason behind setting properties (I) and (II) is that we can build a UPPI from a UPI, and back.457

Given a UPPI M = (i, π, VM , g M ), we define the size of M by size(M) def= i+ π. From a UPPI458

we define a UPI in the following way:459

I Definition 37. Given a UPPI M = (i, π, VM , g M ), let I(M) def= (V, g ), where for every t ≥ 0,460

V (t) def= VM (t), if t < i, and V (t) def= VM (i + (t − i) mod π), otherwise, and g def= {(t, t′) |461

(V (t), V (t′)) ∈ g M}.462

Given a UPPI M = (i, π, VM , g M ), the interval [0, i[ of a UPPI corresponds to the initial463

temporal part of the underlying interpretation I(M) and [i, i+ π[ represents a temporal period that is464

infinitely replicated in order to determine the final temporal part of the interpretation.465

It is worth to point out that given a UPPI M , I(M) = (V, g ) is a UPI. Moreover, we have466

size(I(M)) = size(M).467

Now we extend the notion of preferred time points w.r.t a time point for a UPPI :468
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I Definition 38 (UPPI’s preferred time points). Let M = (i, π, VM , g M ) be a UPPI and a469

time point t ∈ [0, i + π[. The set of preferred time points of t w.r.t. M , denoted by min g M
(t),470

is defined as follows: min g M
(t) def= {t′ ∈ [min<{t, i}, i + π[ | there is no t′′ ∈ [min<{t, i}, i +471

π[ with (VM (t′′), VM (t′)) ∈ g M}.472

IProposition 39. Let M = (i, π, VM , g M ) be a UPPI, I(M) = (V, g ) and t, t′, tM , t′M ∈ N s.t.:473

tM =
{

t, if t < i;

i+ (t− i) mod π, otherwise.
t′M =

{
t′, if t′ < i;

i+ (t′ − i) mod π, otherwise.
474

We have the following: t′ ∈ min g (t) iff t′M ∈ min g M
(tM ).475

Now that UPPI is defined, we can move to the task of checking the satisfiability of a sentence476

α. We define for a UPPI M = (i, π, VM , g M ) and a sentence α ∈ L? a labelling function labMα (·)477

which associates a set of sub-sentences of α to each t ∈ [0, i+ π[.478

I Definition 40 (Labelling function). Let M = (i, π, VM , g M ) be a UPPI, α ∈ L?. The set of479

sub-sentences of α for t ∈ [0, i+ π[, denoted by labMα (t), is defined as follows:480

p ∈ labMα (t) iff p ∈ VM (t); ¬α1 ∈ labMα (t) iff α1 6∈ labMα (t);481

α1∧α2 ∈ labMα (t) iff α1, α2 ∈ labMα (t); α1∨α2 ∈ labMα (t) iff α1 ∈ labMα (t) or α2 ∈ labMα (t);482

♦α1 ∈ labMα (t) iff α1 ∈ labMα (t′) for some t′ ∈ [min<{t, i}, i+ π[;483

�α1 ∈ labMα (t) iff α1 ∈ labMα (t′) for all t′ ∈ [min<{t, i}, i+ π[;484

♦∼α1 ∈ labMα (t) iff α1 ∈ labMα (t′) for some t′ ∈ min g M
(t);485

�∼α1 ∈ labMα (t) iff α1 ∈ labMα (t′) for all t′ ∈ min g M
(t).486

I Lemma 41. Let a UPPI M = (i, π, VM , g M ), α ∈ L? and t ∈ N, I(M), 0 |= α iff α ∈ labMα (0).487

We accept a UPPI M as a model for α ∈ L? iff α ∈ labMα (0). Otherwise, M is rejected.488

I Proposition 42. Let α ∈ L?. We have that α is Isd-satisfiable iff there exists a UPPI M such489

that I(M), 0 |= α and size(I(M)) ≤ |α| × 2|P|.490

Hence, to decide the satisfiability of a sentence α ∈ L?, we can first guess a UPPI M bounded by491

|α| × 2|P|. Next, using the labelling function of M , we check the satisfiability of α by the UPI I(M).492

I Theorem 43. Isd-satisfiability problem for L? sentences is decidable.493

7 Concluding remarks494

The contributions of this paper are as follows: we introduced the formalism of LTL˜ with its495

expressive syntax and intuitive semantics. We defined also the class of state-dependent interpretations496

Isd and the fragment L?. We then showed that Isd-satisfiability in L? is a decidable problem.497

It is worth pointing out that it is hard to define a tableaux method for our logic similar to498

Wolper’s [19]. The main reason is that we do not have defeasible versions of the axioms (T) and (4),499

and therefore nested defeasible modalities cannot be reduced as in the classical case. Furthermore, at500

present we have 6|= �∼α↔ α∧©�∼α and 6|= ♦∼α↔ α ∨© ♦∼α. That is why we decided to tackle the501

satisfiability problem of our logic before establishing a semantic tableaux for LTL˜.502

Among the immediate next steps is the introduction of defeasible counterparts to © and U . We503

shall also investigate the addition of |∼ -statementes to our logic.504
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8 The fragment L1505

In this section, we prove that we have another fragment whose satisfiability is a decidable problem.506

The vocabulary of the fragment L1 consists of a finite set of literals P (l ∈ P can be an atomic507

proposition or its negation) and we limit the set of operators to the following: (∧,∨,♦, ♦∼,©).508

Sentences in L1 can be recursevily defined as such:509

α ::= > | ⊥ | l | α ∧ α | α ∨ α | ♦α | ©α | ♦∼α510

Notice that the negation can only be on the literal level.511

I Definition 44 (Sub-sequence). Let N,N ′ be two ordered sequences of natural numbers, N ′ is512

a subsequence of N iff N ′ ⊆ N .513

I Definition 45 ( Pseudo-interpretation over N ). Let I = (V, g ) ∈ I and N be a sequence of514

N. The pseudo-interpretation over N is the pair IN def= (V N , g N ) where:515

V N : N −→ 2P is a valuation function over N , where for all i ∈ N , we have V N (i) = V (i),516

g N⊆ N ×N , where for all (i, j) ∈ N2, we have (i, j) ∈ g N iff (i, j) ∈ g .517

The size of a pseudo interpretation is the number of time points in N . Namely, the size of IN is518

size(I,N) def= length(N).519

The truth values of L? sentences in pseudo-interpretations are defined in a similar fashion as520

for preferential temporal interpretations. With |= we denote the truth values of sentences in a521

pseudo-interpretation. Let t ∈ N :522

IN , t |= l if I, t |= l;523

IN , t |= ♦α if IN , t′ |= α for some t′ ∈ N s.t. t′ ≥ t;524

IN , t |= ©α if we have t+ 1 ∈ N and IN , t+ 1 |= α;525

IN , t |= ♦∼α if IN , t′ |= α for some t′ ∈ N s.t. t′ ∈ min g N (t).526

Proof. αbool := p. Since IN , i |= p, we know that p ∈ V N (i) and therefore p ∈ V (i). On the527

other hand, since we have i ∈ N ′ and p ∈ V (i), then we have p ∈ V N ′(i). Therefore, we have528

IN
′
, i |= p.529

αbool := ¬p. Since IN , i |= ¬p, we know that p 6∈ V N (i) and therefore p 6∈ V (i). On the530

other hand, since we have i ∈ N ′ and p 6∈ V (i), then we have p ∈ V N ′(i). Therefore, we have531

IN
′
, i |= ¬p.532

αbool := α1 ∧ α2. We have IN , i |= α1 ∧ α2, that means IN , i |= α1 and IN , i |= α2. Since N ′533

is a subsequence of N containing i, and using the induction hypothesis on α1 and α2, we have534

IN
′
, i |= α1 and IN

′
, i |= α2. Therefore, we have IN

′
, i |= α1 ∧ α2.535

αbool := α1 ∨ α2. We have IN , i |= α1 ∨ α2, that means either IN , i |= α1 or IN , i |= α2. We536

suppose that IN , i |= α1. Since N ′ is a subsequence of N containing i, and using the induction537

hypothesis on α1, we have IN
′
, i |= α1. Therefore, we have IN

′
, i |= α1 ∨ α2. Same reasoning538

applies when IN , i |= α2.539

J540

I Lemma 46. Let α ∈ L1, I = (V, g ) ∈ I and N ⊆ N s.t. IN , t |= α; there exists a finite541

sequence M containing t such that:542

I M ⊆ N ;543

II size(I,M) ≤ |α|;544

III for all sequences Q where M ⊆ Q ⊆ N , we have IQ, t |= α.545
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Proof. Let α ∈ L1, I = (V, g ) ∈ I and N ⊆ N s.t. IN , t |= α; we use structural induction on the546

length of α.547

Base case: α := l where L is a literal. Let M := (t) be sequence containing only t, then M is a548

finite sequence such that:549

I Since t ∈ N , then M ⊆ N ;550

II size(I,M) = 1 ≤ |l|;551

III Since IN , t |= l, then we have I, t |= l. Let Q b a sequence s.t. M ⊆ Q ⊆ N , we have t ∈ Q.552

Therefore, we have IQ, t |= l.553

α := α1 ∧ α2. Since IN , t |= α1 ∧ α2, we then have IN , t |= α1 and IN , t |= α2. Using the554

induction hypothesis on α1, there exists a finite sequence M1 containing t such that:555

I M1 ⊆ N ;556

II size(I,M1) ≤ |α1|;557

III for all sequences Q where M1 ⊆ Q ⊆ N , we have IQ, t |= α1.558

Similarly, using the induction hypothesis on α2, there exists a finite sequence M2 such that:559

I M2 ⊆ N ;560

II size(I,M2) ≤ |α2|;561

III for all sequences Q where M2 ⊆ Q ⊆ N , we have IQ, t |= α2.562

Let M := M1 ∪M2. Since M1 and M2 contain t, then M is a finite sequence that contains t. We563

also have:564

I Since M1 ⊆ N and M2 ⊆ N , then we have M1 ∪M2 ⊆ N ;565

II size(I,M) = size(M1 ∪M2) ≤ size(I,M1) + size(I,M2) ≤ |α1|+ |α2| ≤ |α1 ∧ α2|;566

III Let M ⊆ Q ⊆ N . Since M1 ⊆ Q ⊆ N , then we have IQ, t |= α1. Similarly, Since567

M2 ⊆ Q ⊆ N , then we have IQ, t |= α2. Therefore, we have IQ, t |= α1 ∧ α2.568

α := α1 ∨ α2. We have either IN , t |= α1 or IN , t |= α2. Using the induction hypothesis on α1,569

there exists a finite sequence M1 containing t such that:570

I M1 ⊆ N ;571

II size(I,M1) ≤ |α1|;572

III for all sequences Q where M1 ⊆ Q ⊆ N , we have IQ, t |= α1.573

Let M := M1. Since M1 contains t, then M is a finite sequence that contains t. We also have:574

I Since M = M1 ⊆ N ;575

II size(I,M) = size(M1) ≤ |α1| ≤ |α1 ∨ α2|;576

III for all sequences Q where M1 ⊆ Q ⊆ N , we have IQ, t |= α1. Therefore, I, t |= α1 ∨ α2.577

The reasoning is the same when IN , t |= α2.578

α := ©α1. Since IN , t |= ©α1, then t + 1 ∈ N and IN , t + 1 |= α1. Using the induction579

hypothesis on α1, there exists a finite sequence sequence containing t+ 1 such that:580
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I M1 ⊆ N ;581

II size(I,M1) ≤ |α1|;582

III for all sequences Q where M1 ⊆ Q ⊆ N , we have IQ, t+ 1 |= α1.583

Let M := (t) ∪M1; then M is a finite sequence containing t such that:584

I Since M1 ⊆ N and t ∈ N , then we have M ⊆ N ;585

II size(I,M) = 1 + size(I,M1) ≤ |©α1|;586

III Let Q be a sequence such that M ⊆ Q ⊆ N , we have t, t + 1 ∈ M . Since M1 ⊆ Q ⊆ N ,587

then IQ, t+ 1 |= α1. Therefore, we have IQ, t |= ©α1.588

α := ♦α1. Since IN , t |= ♦α1, then t′ ∈ N and IN , t′ |= α1. Using the induction hypothesis on589

α1, there exists a finite sequence sequence containing t′ such that:590

I M1 ⊆ N ;591

II size(I,M1) ≤ |α1|;592

III for all sequences Q where M1 ⊆ Q ⊆ N , we have IQ, t′ |= α1.593

Let M := (t) ∪M1; then M is a finite sequence containing t such that:594

I Since M1 ⊆ N and t ∈ N , then we have M ⊆ N ;595

II size(I,M) = 1 + size(I,M1) ≤ |♦α1|;596

III Let Q be a sequence such that M ⊆ Q ⊆ N , we have t, t′ ∈ M . Since M1 ⊆ Q ⊆ N , then597

IQ, t′ |= α1. Therefore, we have IQ, t |= ♦α1.598

α := ♦∼α1. Since IN , t |= ♦∼α1, there exists t′ ∈ N s.t. t′ ∈ min g N (t). Using the induction599

hypothesis on α1, there exists a finite sequence M1 containing t′ such that:600

I M1 ⊆ N ;601

II size(I,M1) ≤ |α1|;602

III for all sequences Q where M1 ⊆ Q ⊆ N , we have IQ, t′ |= α1.603

Let M := (t) ∪M1; then M is a finite sequence containing t such that:604

I Since M1 ⊆ N and t ∈ N , then we have M ⊆ N ;605

II size(I,M) = 1 + size(I,M1) ≤ | ♦∼α1|;606

III Let Q be a sequence such that M ⊆ Q ⊆ N , we have t, t′ ∈ M . Since M1 ⊆ Q ⊆ N , then607

(i) IQ, t′ |= α1.608

We suppose that t′ ∈ min g Q(t), there exists t′′ ∈ Q s.t. (t′′, t′) ∈ g Q. Following this sup-609

position, we have (t′′, t′) ∈ g . Since t′, t′′ ∈ N , we have (t′′, t′) ∈ g N , thus t′ 6∈ min g N (t).610

This supposition conflicts with our assumption that t′ ∈ min g N (t). Therefore we have (ii)611

t′ ∈ min g Q(t). From (i) and (ii), we conclude that IQ, t |= ♦∼α1.612

613

J614
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I Definition 47 (Pseudo-interpretation transformation). Let I = (V, g ) ∈ I, let N =615

(t0, t1, t2, . . . , tn−1) be a finite sequence. The pseudo-interpretation IN = (V N , g N ) can be trans-616

formed into a preferential interpretation I ′ def= (V ′, g ′) ∈ I as follows:617

V ′ :
{

V ′(i) := V N (ti), if 0 ≤ i < n;

V ′(i) := >, otherwise.
618

And for all 0 ≤ i, j < n s.t. (ti, tj) ∈ g N , we have (i, j) ∈ g ′.619

I Theorem 48 (Bounded Model property). Let α ∈ L1 be I-satisfiable, there exists I = (V, g620

) ∈ I s.t. size(I) ≤ |α|+ 1.621

Let IN := (V N , g N ) be a pseudo-interpretation and let I = (V ′, g ′) be its transformed inter-622

pretation. We can see that size(I ′) = size(I,M) + 1. The size of the initial part of I ′ is the sequence623

N and the final part has one distinct valuation which is >.624

Proof. Let α be a I-satisfiable sentence and let I = (V, g ) ∈ I where I, 0 |= α be an interpretation625

that satisfies α. Thanks to Lemma 46, since N is a sequence and 0 ∈ N s.t. I, 0 |= α, then there is a626

sequence M ⊆ N containing 0 where size(I,M) ≤ |α| and IM , 0 |= α. We can transform it then627

to I ′ = (V ′, g ) by changing the labels of M into a sequence of natural numbers and looping the628

valuation > after the transformed sequence M . We can see that I ′, 0 |= α and size(I) ≤ |α|+ 1.629

J630
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A Proofs of results in Section 3 and Section 4678

I Proposition 8. Let I = (V, g ) ∈ Isd and let i, i′, j, j′ ∈ N s.t. i ≤ i′, i′ ≤ j′ and j ∈ min g (i).679

If V (j) = V (j′), then j′ ∈ min g (i
′).680

Proof. Let I = (V, g ) ∈ Isd and let i, j, i′, j′ be four time points s.t. i ≤ i′, i′ ≤ j′ and j ∈681

min g (i). We assume that V (j) = V (j′) and we suppose that j′ 6∈ min g (i′). Following our682

supposition, j′ 6∈ min g (i
′) means that there exists k ∈ [i′,+∞[ where (k, j′) ∈ g . From Definition683

7, if (k, j′) ∈ g and V (j) = V (j′), then (k, j) ∈ g . Since (k, j) ∈ g , we have j 6∈ min g (i).684

This conflicts with our assumption of j ∈ min g (i). We conclude that if V (j) = V (j′) then685

j′ ∈ min g (i
′). J686

I Proposition 9. Let I = (V, g ) ∈ I and let i, j ∈ N s.t. j ∈ min g (i). For all i ≤ i′ ≤ j, we687

have j ∈ min g (i
′).688

Proof. Let I = (V, g ) ∈ I and let i, i′, j ∈ N s.t. j ∈ min g (i) and i ≤ i′ ≤ j. Since j ∈ min g (i),689

there is no j′ ∈ [i,+∞[ s.t. (j′, j) ∈ g . Moreover, we have i ≤ i′, we conclude that there is no690

j′ ∈ [i′,+∞[ s.t. (j′, j) ∈ g . Therefore, we have j ∈ min g (i
′). J691

I Proposition 12. Let I = (V, g ) ∈ Isd and let i ≤ j ≤ i′ ≤ j′ be time points in final(I) s.t.692

V (j) = V (j′). Then we have j ∈ min g (i) iff j′ ∈ min g (i
′).693

Proof. Let I = (V, g ) ∈ Isd. We have four time points i ≤ j ≤ i′ ≤ j′ ∈ final(I), this proof is694

divided in two parts:695

For the only-if part, we suppose that j ∈ min g (i) and we prove that j′ ∈ min g (i
′). We have696

i ≤ i′, i′ ≤ j′, V (j) = V (j′) and j ∈ min g (i). Thanks to Proposition 8, j′ ∈ min g (i
′).697

For the if part, we suppose that j′ ∈ min g (i
′) and we prove that j ∈ min g (i). We use a proof698

by contradiction. We assume that j′ ∈ min g (i
′) and we suppose that j 6∈ min g (i). This implies699

that there exists k ∈ [i,+∞[ such that (k, j) ∈ g .700
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Case 1: k ∈ [i′,+∞[. From Definition 7, since V (j) = V (j′) and (k, j) ∈ g , then (k, j′) ∈ g701

thus j′ 6∈ min g (i
′). This conflicts with our assumption that j′ ∈ min g (i

′).702

Case 2: k ∈ [i, i′[. From Lemma 10, since k ∈ final(I), then there exists k′ ∈ [i′,+∞[703

such that V (k′) = V (k). From Definition 7, since we have V (j′) = V (j), V (k′) = V (k)704

and (k, j) ∈ g , then (k′, j′) ∈ g , thus j′ 6∈ min g (i′). This conflicts with our assumption that705

j′ ∈ min g (i
′).706

J707

I Lemma 13. Let I = (V, g ) ∈ Isd and i ≤ i′ be time points of final(I) where V (i) = V (i′).708

Then for every α ∈ L?, we have I, i |= α iff I, i′ |= α.709

Proof. Let I = (V, g ) ∈ Isd and i ≤ i′ in final(I) such that V (i) = V (i′). We prove that I, i |= α710

iff I, i′ |= α using structural induction on α.711

Base: α is an atomic proposition p. For the only-if part, we know that I, i |= p iff p ∈ V (i).712

Since V (i) = V (i′), we have p ∈ V (i′), thus I, i′ |= p. Same reasoning applies for the if part.713

α = ¬α1. For the only-if part, we assume that I, i |= ¬α1 and suppose that I, i′ 6|= ¬α1.714

I, i′ 6|= ¬α1 implies I, i′ |= α1. Since the Lemma holds on α1 and I, i′ |= α1, we conclude that715

I, i |= α1, conflicting with our assumption. We follow the same reasoning for the if part.716

α = α1 ∧ α2. For the only-if part, I, i |= α1 ∧ α2 means that I, i |= α1 and I, i |= α2. Since the717

Lemma holds on both α1 and α2, we have I, i′ |= α1 and I, i′ |= α2. Thus I, i′ |= α1 ∧ α2. The718

same reasoning applies for the if part.719

α = ♦α1. For the only-if part, we assume that I, i |= ♦α1. Following our assumption, it means720

that there exists j ∈ [i,+∞[ s.t. I, j |= α1. Thanks to Lemma 10. Since j ∈ final(I), there721

exists j′ ∈ [i′,+∞[ where V (j′) = V (j). Thanks to the induction hypothesis, if V (j) = V (j′)722

and I, j |= α1 then I, j′ |= α1 , we conclude that I, i′ |= ♦α1.723

For the if part, we assume that I, i′ |= ♦α1. I, i′ |= ♦α1 means that there exists j′ ∈ [i′,+∞[ s.t.724

I, j′ |= α1. We know that [i′,+∞[⊆ [i,+∞[, we conclude that I, i |= ♦α1.725

α = ♦∼α1. For the only-if part, we assume that I, i |= ♦∼α1. Following our assumption, I, i |= ♦∼α1726

means that there exists j ∈ [i,+∞[ s.t. j ∈ min g (i) and I, j |= α1. Thanks to Lemma 10.727

Since j ∈ final(I), there exists j′ ∈ [i′,+∞[ such that V (j′) = V (j). Thanks to the induction728

hypothesis, if V (j) = V (j′) and I, j |= α1 then (I) I, j′ |= α1. Thanks to Proposition 8,729

V (j) = V (j′), i ≤ i′, i′ ≤ j′ and j ∈ min g (i) means that (II) j′ ∈ min g (i
′). From (I) and (II),730

we conclude that I, i′ |= ♦∼α1.731

For the if part, we assume that I, i′ |= ♦∼α1. I, i′ |= ♦∼α1 means that there is a j′ ∈ [i′,+∞[732

such that j′ ∈ min g (i
′) and (I) I, j′ |= α1. We need to prove that j′ ∈ min g (i) . We suppose733

that j′ 6∈ min g (i). It means that there exists k ∈ [i,+∞[ such that (k, j′) ∈ g . From Lemma734

10, since k ∈ final(I), that means there is k′ ∈ [i′,+∞[ such that V (k) = V (k′). Following735

the condition set in Definition 7, since (k, j′) ∈ g and V (k′) = V (k), then (k′, j′) ∈ g and thus736

j′ 6∈ min g (i
′), conflicting with our assumption of j′ ∈ min g (i

′), thus (II) j′ ∈ min g (i) .737

From (I) and (II), we conclude that I, i |= ♦∼α.738

J739

The result of Lemma 15 can be found in Section D.740

I Proposition 19. Let I = (V, g ) ∈ I,N1, N2 be two acceptable sequences w.r.t. I . ThenN1∪N2741

is an acceptable sequence w.r.t. I s.t. size(I,N1 ∪N2) ≤ size(I,N1) + size(I,N2).742

Proof. Let I = (V, g ) ∈ I, N1, N2 be two acceptable sequences w.r.t. I and let IN1 = (V N1 , g N1),743

IN2 = (V N1 , g N2) be two pseudo interpretations over N1 and N2 respectively. We assume that744

N = N1 ∪N2.745
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We suppose that N is not an acceptable sequence w.r.t. I . It means that there exist two time points746

t, t′ ∈ final(I) s.t. V (t) = V (t′) where t ∈ N and t′ 6∈ N . Since t ∈ N , t is either an element of N1747

or N2. We consider that t ∈ N1. By Definition 16, since t ∈ N1 and N1 is an acceptable sequence748

w.r.t. I , all time points of final(I) that have the same valuation as t are in N1. Since t′ ∈ final(I)749

and V (t′) = V (t), then t′ ∈ N1, and therefore t′ ∈ N . This conflicts with the supposition of t′ 6∈ N .750

Same reasoning applies if we take t ∈ N2. We conclude that for all t ∈ N s.t. t ∈ final(I), all751

t′ ∈ final(I) s.t. V (t′) = V (t) are also in N . Thus, N is an acceptable sequence w.r.t. I .752

In order to prove that size(I,N) ≤ size(I,N1)+size(I,N2), we need to prove that init(I,N) ⊆753

init(I,N1) ∪ init(I,N2) and range(I,N) ⊆ range(I,N1) ∪ range(I,N2). Let t ∈ N be a time754

point s.t. t ∈ init(I,N). By the definition of init(I,N), we know that t ∈ init(I). Since N is a755

sequence containing only elements of N1 or N2, the time point t is either in N1 or N2. By definition756

of init(I,N1), if t ∈ N1 and t ∈ init(I), then t ∈ init(I,N1). The same goes in the case of t ∈ N2.757

We conclude that if t ∈ init(I,N), then t ∈ init(I,N1) ∪ init(I,N2).758

Following the same line of thought, we can prove that final(I,N) ⊆ final(I,N1) ∪ final(I,N2)759

and consequently we can prove that range(I,N) ⊆ range(I,N1) ∪ range(I,N2).760

Since init(IN ) ⊆ init(IN1)∪ init(IN2), then length(init(IN )) ≤ length(init(IN1))+length(init(IN2)).761

Similarly, if range(IN ) ⊆ range(IN1)∪ range(IN2), then card(range(IN )) ≤ card(range(IN1))+762

card(range(IN2)). Therefore, we conclude that size(IN ) ≤ size(IN1) + size(IN2). J763

I Proposition 20. Let I = (V, g ) ∈ I and N be an acceptable sequence w.r.t. I . If for all distinct764

t, t′ ∈ N , we have V (t′) = V (t) only when both t, t′ ∈ final(I,N), then size(I,N) ≤ 2|P|.765

Proof. Let I = (V, g ) ∈ I and N be an acceptable sequence w.r.t. I . We assume that for all766

t, t′ ∈ N s.t. we have V (t′) = V (t) only when both t, t′ ∈ final(N). Two cases are possible:767

init(I,N) is empty. Since card(range(I,N)) ≤ 2|P|, we conclude that size(I,N) ≤ 2|P|.768

init(I,N) is not empty. Going back to our assumption, we can see that for all t ∈ init(I,N) and769

t′ ∈ N s.t. t′ 6= twe have V (t′) 6= V (t). If init(I,N) has n time points having distinct valuations,770

then range(final(I,N)) has at most 2|P| − n valuations. Therefore, we have size(I,N) ≤ 2|P|.771

J772

B Proofs of results in Section 5773

I Lemma 27. Let α1 ∈ L? be a sentence starting with a temporal operator, I = (V, g ) ∈774

Isd and let T be a non-empty acceptable sequence w.r.t. I where for all t ∈ T we have I, t |=775

♦∼α1. Then for all t, t′ ∈ Anchors(I, T, ♦∼α1) s.t. V (t) = V (t′) and t 6= t′, we have t, t′ ∈776

final(I,Anchors(I, T, ♦∼α1)).777

Proof. Let α1 ∈ L?, let T be a non-empty acceptable sequence w.r.t. I ∈ Isd where for all t ∈ T we778

have I, t |= ♦∼α1. Just as a reminder, we have Anchors(I, T, ♦∼α1) =
⋃
ti∈T ST (I,AS(I,min g (ti)), α1).779

Thus, there exists ti ∈ T such that t ∈ ST (I,AS(I,min g (ti)), α1). Suppose that there ex-780

ist t, t′ ∈ Anchors(I, T, ♦∼α1) with t 6= t′ such that t is in init(I,Anchors(I, T, ♦∼α1)) and781

V (t) = V (t′). Notice that t ∈ init(I), since t ∈ init(I,Anchors(I, T, ♦∼α1)). Without loss of782

generality, we assume that t < t′. From Definition 24, we have t ∈ AS(I, (t
I,AS(I,min g (ti))
α1 )).783

Thanks to Definition 22 and Definition 23, the fact that t′ ∈ init(I), we can see that : (1) there is no784

t′′ ∈ final(I, AS(I,min g (ti))) s.t. I, t′′ |= α1 and (2) t = t
I,AS(I,min g (ti))
α1 = max<{t′′ ∈785

init(I, AS(I,min g (ti))) | I, t
′′ |= α1}. On the other hand, thanks to Proposition 8, since786

t′ < t′′ and t′ ∈ min g (ti), we have t′′ ∈ min g (ti). Hence t′′ ∈ AS(I,min g (ti)). Since t′′ ∈787

Anchors(I, T, ♦∼α1), we also have I, t′′ |= α1. From this and the property (1) we can assert that t′788

does not belong to final(I, AS(I,min g (ti))). It follows that t′ ∈ init(I, AS(I,min g (ti))). From789
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the property (2) we can assert that t ≥ t′, which leads to a contradiction since t < t′. Therefore, for all790

t, t′ ∈ Anchors(I, T, ♦∼α1) s.t. V (t) = V (t′), we must have t, t′ ∈ final(Anchors(I, T, ♦∼α1)). J791

I Proposition 28. Let α ∈ L? be a sentence starting with a temporal operator, I = (V, g ) ∈ Isd.792

Let T be a non-empty acceptable sequence w.r.t. I where for all t ∈ T we have I, t |= α. Then, we793

have size(I,Anchors(I, T, α)) ≤ 2|P|.794

Proof. Let I = (V, g ) ∈ Isd, and let T be a non-empty acceptable sequence w.r.t. I s.t. for all t ∈ T795

we have I, t |= α. . We show that is the case for our temporal operators:796

Since size(I,Anchors(I, T,�α1)) = size(I, ∅) = 0, we conclude that size(I,Anchors(I, T,�α1)) ≤ 2|P|.797

Since size(I,Anchors(I, T,♦α1)) = size(I,ST (I,N, α1)) = 1, we conclude that size(I,Anchors(I, T,♦α1)) ≤798

2|P|.799

T is an acceptable sequence w.r.t. I s.t. for all t ∈ T we have I, t |= ♦∼α1. From Proposition 27, for800

all t′i, t
′
j ∈ Anchors(I, T,♦∼α1) s.t. V (t′i) = V (t′j) we have t′i, t

′
j ∈ final(I,Anchors(I, T,♦∼α1)).801

From Proposition 20, we can conclude that size(Anchors(I, T, ♦∼α1)) ≤ 2|P|.802

Going back to Definition 26, we have Anchors(I, T, �∼α1) = DR(I,
⋃
ti∈T AS(I,min g (ti))).803

We denote the acceptable sequence
⋃
ti∈T AS(I,min g (ti)) by N . From Definition 25 we804

have Anchors(I, T, �∼α1) = DR(I,N) =
⋃
v∈val(I,N) ST (I,N, αv). Moreover, we know that805

size(ST (I,N, αv)) = 1 for all v ∈ val(I,N). Consequently, thanks to Proposition 19, we have806

size(
⋃
v∈val(I,N) ST (I,N, αv)) ≤ card(val(I,N)). We can see that card(val(I,N)) ≤ 2|P|,807

we can conclude that size(Anchors(I, T, �∼α1)) = size(
⋃
v∈val(I,N) ST (I,N, αv)) ≤ 2|P|.808

J809

I Proposition 29. Let α1 ∈ L?, I = (V, g ) ∈ Isd, let T be a non-empty acceptable sequence810

w.r.t. I s.t. for all t ∈ T we have I, t |= �∼α1, with α1 ∈ L?. For all acceptable sequences N w.r.t. I811

s.t. Anchors(I, T, �∼α1) ⊆ N and for all ti ∈ N ∩ T , we have the following: Let IN = (V N , g N )812

be the pseudo-interpretation over N and t′ ∈ N , if t′ 6∈ min g (ti), then t′ 6∈ min g N (ti).813

Proof. Let I = (V, g ) ∈ Isd, let T be a non-empty acceptable sequence w.r.t. I s.t. for all t ∈ T we814

have I, t |= �∼α1, with α1 ∈ L?. LetN be an acceptable sequence w.r.t. I s.t. Anchors(I, T, �∼α1) ⊆815

N . Let ti ∈ N ∩ T . Let t′ ∈ N be a time point s.t. t′ 6∈ min g (ti), we discuss these two cases:816

t′ 6∈ [ti,+∞[: Since t′ 6∈ [ti,+∞[, then t′ 6∈ [ti,+∞[∩N . Therefore, we conclude that817

t′ 6∈ min g N (ti).818

t′ ∈ [ti,+∞[: Since g satisfies the well-foundedness condition, t′ 6∈ min g (ti) implies that there819

exists a time point t′′ ∈ min g (ti) s.t. (t′′, t′) ∈ g . Let αt′′ be the representative sentence of820

V (t′′). For the sake of readability, we shall denote the sequence
⋃
t∈T AS(I,min g (t)) with M .821

Notice that there exists V ∈ val(I,M) such that V = V (t′′) since ti ∈ T and t′′ ∈ min g (ti).822

Thanks to Definition 25, since DR(I,M) =
⋃
v∈val(I,M) ST (I,M,αv) and V (t′′) ∈ val(I,M),823

we can find t′′′ ∈ ST (I,M,αt′′) where t′′′ ∈ DR(I,M) ⊆ N , V (t′′′) = V and t′′′ ≥ t′′. Since824

(t′′, t′) ∈ g , I ∈ Isd and V (t′′′) = V (t′′), we have (t′′′, t′) ∈ g . Moreover, we have t′′′, t′ ∈ N ,825

and therefore (t′′′, t′) ∈ g N . Since t′′′ ∈ [ti,+∞[∩N and (t′′′, t′) ∈ g N , we conclude that826

t′ 6∈ min g N (ti).827

J828

I Proposition 31. Let α ∈ L? be in NNF, I = (V, g ) ∈ Isd, and let T be a non-empty acceptable829

sequence w.r.t. I s.t. for all t ∈ T we have I, t |= α. Then, we have size(I,Keep(I, T, α)) ≤830

µ(α)× 2|P|.831
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Proof. Let I = (V, g ) ∈ Isd, and let T be a non-empty acceptable sequence w.r.t. I s.t. for all t ∈ T832

we have I, t |= α which α ∈ L?.833

We use structural induction on T and α in order to prove this property.834

Base α = p or α = ¬p. Keep(I, T, α) = ∅. Since size(I, ∅) = 0 ≤ µ(α)× 2|P| = 0, then the835

property holds on atomic propositions.836

α = α1 ∧ α2. Since I, t |= α1 ∧ α2 for all t ∈ T , we can assert that I, t |= α1 and I, t |= α2. By837

applying the induction hypothesis on T , α1 and α2, we have size(I,Keep(I, T, α1)) ≤ µ(α1)×838

2|P| and size(I,Keep(I, T, α2)) ≤ µ(α2)×2|P|. Thanks to Proposition 19, size(Keep(I, T, α1∧839

α2)) ≤ (µ(α1) + µ(α2)) × 2|P|. We conclude that size(I,Keep(I, T, α1 ∧ α2)) ≤ (µ(α1 ∧840

α2))× 2|P|.841

α = α1 ∨ α2. Since I, t |= α1 ∨ α2 for all t ∈ T then I, t |= α1 or I, t |= α2. Consider the842

sequence T1 (resp. T2) containing all t1 ∈ T (resp.t2 ∈ T ) s.t. I, t1 |= α1 (resp. I, t2 |= α2).843

Using induction hypothesis on T1, T2, α1 and α2, we have size(I,Keep(I, T1, α1)) ≤ µ(α1)×844

2|P| and size(I,Keep(I, T2, α2)) ≤ µ(α2)× 2|P|. We conclude in the same way as the last case845

that size(I,Keep(I, T, α1 ∨ α2)) ≤ (µ(α1 ∨ α2))× 2|P|.846

α = ♦α1. First of all, we proved in Proposition 28 that (I) size(I,Anchors(I, T,♦α1)) ≤ 2|P|.847

On the other hand, thanks to Definition 26 it is easy to see that size(I,Anchors(I, T,♦α1)) is a848

non-empty acceptable sequence w.r.t. I s.t. for all t′ ∈ Anchors(I, T,♦α1) we have I, t′ |= α1.849

By the induction hypothesis on Anchors(I, T,♦α1) andα1, we have (II) size(I,Keep(I,Anchors(I, T,♦α1), α1)) ≤850

µ(α1)×2|P|. Thanks to Proposition 19, from (I) and (II) we conclude that size(I,Keep(I, T,♦α1)) ≤851

(1 + µ(α1))× 2|P| = µ(♦α1)× 2|P|.852

α = �α1. As a result of semantics of the� operator, we can see that for all t ∈ T we have I, t |=853

α1. By the induction hypothesis on T and α1, we have size(I,Keep(I, T, α1)) ≤ µ(α1)× 2|P|.854

Since Keep(I, T, α1) = Keep(I, T,�α1) then size(I,Keep(I, T,�α1)) ≤ µ(α1) × 2|P|. We855

conclude that size(I,Keep(I, T,�α1)) ≤ µ(�α1)× 2|P|.856

α = ♦∼α1. First of all, we proved in Proposition 28 that (I) size(I,Anchors(I, T, ♦∼α1)) ≤ 2|P|.857

On the other hand, thanks to Definition 26 it is easy to see that Anchors(I, T, ♦∼α1) is a non-empty858

acceptable sequence w.r.t. I s.t. for all t′ ∈ Anchors(I, T, ♦∼α1) we have I, t′ |= α1. By the induc-859

tion hypothesis on Anchors(I, T,♦∼α1) andα1, we have (II) size(I,Keep(I,Anchors(I, T,♦∼α1), α1)) ≤860

µ(α1)×2|P|. Thanks to Proposition 19, from (I) and (II), we conclude that size(I,Keep(I, T,♦∼α1)) ≤861

(1 + µ(α1))× 2|P| = µ( ♦∼α1)× 2|P|.862

α = �∼α1. First of all, we proved in Proposition 28 that (I) size(I,Anchors(I, T, �∼α1)) ≤ 2|P|.863

On the other hand, from definition30, we have T ′ =
⋃
ti∈T AS(I,min g (ti)). It is easy to see864

that for all t′ ∈ T ′ we have I, t′ |= α1 and that T ′ is a non-empty acceptable sequence w.r.t. I .865

By the induction hypothesis on T ′ and α1, we have (II) size(I,Keep(I, T ′, α1)) ≤ µ(α1)× 2|P|.866

Thanks to Proposition 19, form (I) and (II) we conclude that size(I,Keep(I, T, �∼α1)) ≤ (1 +867

µ(α1))× 2|P| = µ(�∼α1)× 2|P|.868

J869

I Lemma 32. Let α ∈ L? be in NNF, I = (V, g ) ∈ Isd, and let T be a non-empty acceptable870

sequence w.r.t. I s.t. for all t ∈ T we have I, t |= α. For all acceptable sequences N w.r.t. I , if871

Keep(I, T, α) ⊆ N , then for every t ∈ N ∩ T , we have IN , t |=P α.872

Proof. Let α ∈ L? be in NNF, I = (V, g ) ∈ Isd, and let T be a non-empty acceptable sequence873

w.r.t. I s.t. for all t ∈ T we have I, t |= α. We consider N to be an acceptable sequence w.r.t. I s.t.874

Keep(I, T, α) ⊆ N and t ∈ N ∩ T . Let IN = (N,V N , g N ) be the pseudo-interpretation over N .875

We use structural induction on T and α in order to prove this property.876

α = p or α = ¬p. Since I, t |= p (resp. ¬p), it means that p ∈ V (t) (resp. p 6∈ V (t)). We know877

that V N (t) = V (t). We conclude that IN , t |=P p (resp. ¬p).878
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α = α1 ∧ α2. Since I, t |= α1 ∧ α2 for all t ∈ T , we can assert that I, t |= α1 and I, t |=879

α2. By applying the induction hypothesis on T , α1 and α2, since Keep(I, T, α1) ⊆ N and880

Keep(I, T, α2) ⊆ N , therefore we have IN , t |=P α1 and IN , t |=P α2. Thus, we have881

IN , t |=P α1 ∧ α2.882

α = α1 ∨ α2. Suppose that I, t |= α1 (the case I, t |= α2 can be treated in a similar way) and883

consider the sequence T1 containing all t1 ∈ T s.t. I, t1 |= α1 . Here, since t ∈ T1, therefore T1 is884

non-empty and t ∈ T1∩N . We know that Keep(I, T1, α1)∪Keep(I, T2, α2) ⊆ N . Consequently885

Keep(I, T1, α1) ⊆ N . From the induction hypothesis, we have IN , t |=P α1. Therefore, we886

have IN , t |= α1 ∨ α2.887

α = ♦α1. We have I, t |= ♦α1 and we need to prove that IN , t |=P ♦α1. I, t |= ♦α1 means888

that there exists t′ ∈ [t,∞[ such that I, t′ |= α1, therefore Anchors(I, T,♦α1) is non-empty889

(see Definition 26). We know that Anchors(I, T,♦α1) ⊆ Keep(I, T,♦α1) ⊆ N , consequently890

Anchors(I, T,♦α1) ∩N is non-empty. Thanks to Definition 26 it is easy to see that for all t1 ∈891

Anchors(I, T,♦α1) we have I, t1 |= α1. By the induction hypothesis on Anchors(I, T,♦α1)892

and α1, since Keep(I,Anchors(I, T,♦α1), α1) ⊆ N , t′ ∈ Anchors(I, T,♦α1) (a non-empty893

acceptable sequence w.r.t I) and I, t′ |= α1, thus IN , t′ |= α1. Therefore, we have IN , t |=P894

♦α1.895

α = �α1. We have I, t |= �α1 and we need to prove that IN , t |=P �α1. We know that for896

all t′ ≥ t we have I, t′ |= α1. We can assert that for all t′ ∈ N ∩ T such that t′ ≥ t, we have897

IN , t′ |=P α1. By the induction hypothesis on T and α1, Keep(I, T, α1) = Keep(I, T,�α1).898

Consequently Keep(I, T, α1) ⊆ N since for all t′ ∈ N ∩ T , we have IN , t′ |=P α1. We899

conclude that IN , t |=P �α1.900

α = ♦∼α1. We have I, t |= ♦∼α1 and we need to prove that IN , t |=P ♦∼α1. I, t |= ♦∼α1901

means that there exists t′ ∈ min g (t) such that I, t′ |= α1, therefore Anchors(I, T, ♦∼α1) is902

non-empty (see Definition 26). We know that Anchors(I, T, ♦∼α1) ⊆ Keep(I, T, ♦∼α1) ⊆ N ,903

consequently Anchors(I, T, ♦∼α1) ∩N is non-empty. Thanks to Definition 26 it is easy to see904

that for all t1 ∈ Anchors(I, T, ♦∼α1) we have I, t1 |= α1. By the induction hypothesis on905

Anchors(I, T, ♦∼α1) and α1, since Keep(I, T1, α1) ⊆ N with T1 = Anchors(I, T, ♦∼α1), and906

T1 is an acceptable sequence where I, t′ |= α1 for all t′ ∈ T1, we conclude that IN , t′ |=P α1907

(I). Thanks to the construction of the pseudo-interpretation IN , since t′ ∈ min g N (t), therefore908

t′ ∈ min g (t) (II). From (I) and (II), we conclude that IN , t |=P ♦∼α1.909

α = �∼α1. We have I, t |= �∼α1 and we need to prove that IN , t |=P �∼α1. I, t |= �∼α1 means910

that for all t′ ∈ min g (t) we have I, t′ |= α1, therefore for all t′ ∈ T ′ =
⋃
ti∈T AS(I,min g (ti))911

we have I, t′ |= α1. In addition, thanks to the well-foundedness condition on g , T ′ is non-empty.912

We know that Anchors(I, T, �∼α1) ⊆ Keep(I, T, �∼α1) ⊆ N and that Anchors(I, T, �∼α1) =913

DR(I, T ′) consequently T ′ ∩ N is non-empty. We use proof by contradiction. Suppose that914

IN , t 6|=P �∼α1, which means there exists t′ ∈ min g N (ti) s.t. IN , t′ 6|=P α1. Thanks to915

Proposition 29, if t′ ∈ min g N (ti), then t′ ∈ min g (ti). Just a reminder, we have T ′ =916 ⋃
ti∈T AS(I,min g (ti)) where for all t′′ ∈ T ′ we have I, t′′ |= α1 (Note that T ′ is a non-empty917

acceptable sequence w.r.t. I). By the induction hypothesis on T ′ and α1, since Keep(I, T ′, α1) ⊆918

N , and t′ ∈ AS(I,min g (t)) ⊆ T
′, therefore IN , t′ |=P α1. This conflicts with our supposition.919

We conclude that there is no t′ ∈ min g N (t) s.t. IN , t′ 6|=P α1, and therefore IN , t |=P �∼α1.920

J921

C Proof of results in Section 6922

NB: The results marked (∗) are introduced here, while they are omitted in the main text.923
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IProposition 39. Let M = (i, π, VM , g M ) be a UPPI, I(M) = (V, g ) and t, t′, tM , t′M ∈ N s.t.:924

tM =
{

t, if t < i;

i+ (t− i) mod π, otherwise.
t′M =

{
t′, if t′ < i;

i+ (t′ − i) mod π, otherwise.
925

We have the following: t′ ∈ min g (t) iff t′M ∈ min g M
(tM ).926

Proof. Let M = (i, π, VM , g M ) be a UPPI, I(M) = (V, g ) and t, t′ ∈ N.927

For the only-if part, we assume that t′ ∈ min g (t). Following our assumption, there is no928

t′′ ∈ [t,+∞[ s.t. (t′′, t′) ∈ g . We use a proof by contradiction. Suppose that t′M 6∈ min g M
(tM ),929

which means there exists t′′M ∈ [min<{tM , i}, i + π[ with (VM (t′′M ), VM (t′M )) ∈ g M . Going930

back to Definition 37, VM (t′M ) = V (t′) and . Consequently, (V (t′′M ), VM (t′)) ∈ g M . Thanks931

to Definition 37, (I) (t′′M , t′) ∈ g . There are two possible cases for t, . If t ∈ [0, i[ then tM = t932

and (II) t′′M ∈ [t, i + π[. From (I) and (II), there exists t′′M > t such that (t′′M , t′) ∈ g . This933

conflicts with our supposition. If t ∈ [i,+∞[, then t′′M ∈ [i, i+π[ and t, t′, t′′ are in final(I(M)).934

Thanks to proposition 10, there exists t′′ > t such that V (t′′) = V (tM ). Since I(M) ∈ Isd935

and (t′′M , t′) ∈ g then (t′′, t) ∈ g . Consequently, there exists t′′ > t such that (t′′, t) ∈ g . This936

conflicts with our supposition.937

For the if part, we assume that t′M ∈ min g M
(tM ). Following our assumption, there is no938

t′′M ∈ [min<{tM , i}, i + π[ with (VM (t′′M ), VM (t′M )) ∈ g M . We use proof by contradiction.939

Suppose that t′ 6∈ min g (t), which means there exists t′′′ > t such that (t′′′, t′) ∈ g . Let t′′′M be940

defined as follows:941

t′′′M =
{

t′′′, if t′′′ < i;

i+ (t′′′ − i) mod π, otherwise.
942

Thanks to definition 37, V (t′′′) = VM (t′′′M ), V (t′) = VM (t′M ) and since (t′′′, t′) ∈ g then943

(V (t′′′), V (t′)) ∈ g M . Consequently, (I) (V (t′′′M ), V (t′M )) ∈ g M . . From (I) and (II), we have944

t′M 6∈ min g M
(tM ). This conflicts with our supposition.945

J946

I Definition 49 (∗). Given a UPI I = (V, g ), we define the UPPI M(I) = (i, π, VM , g M ) by:947

i = length(init(I)), π = card(range(I));948

VM (t) = V (t) for all t ∈ [0, i+ π[;949

for all t, t′ ∈ [0, i+ π[, (V (t), V (t′)) ∈ g M iff (t, t′) ∈ g .950

I Proposition 42. Let α ∈ L?. We have that α is Isd-satisfiable iff there exists a UPPI M such951

that I(M), 0 |= α and size(I(M)) ≤ |α| × 2|P|.952

Proof. Let α ∈ L?.953

For the only if part, let α be Isd-satisfiable. Thanks to Theorem 21 and Proposition 35, there954

exists a UPI I = (V, g ) ∈ Isd s.t. I, 0 |= α and size(I) ≤ |α| × 2|P|. We define the UPPI M(I)955

from I . It can be checked that I(M(I)) = I . Therefore, from Isd-satisfiable sentence α, we can956

find a UPPI M such that I(M), 0 |= α and size(I(M)) ≤ |α| × 2|P|.957

For the if part, let M = (i, π, VM , g M ) be a UPPI s.t. I(M), 0 |= α. Since I(M) ∈ Isd, therefore958

α is Isd-satisfiable.959

J960

Lemma 41 is a particular case of the following Lemma.961
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I Lemma 50 (∗). Let a UPPI M = (i, π, VM , g M ), α ∈ L?, α1 ∈ SF(α) and t, t′ ∈ N such that:962

t′ =
{

t, if t < i;
i+ (t− i) mod π, otherwise.

963

We have I(M), t′ |= α iff α1 ∈ labMα (t).964

Proof. Let a UPPI M = (i, π, VM , g M ), α ∈ L?, t ∈ N and I(M) = (V, g ). We use structural965

induction to prove the Lemma. Let t′ be a time point s.t. t′ = t if t ∈ [0, i[, and t′ = i+(t−i) mod π if966

t ∈ [i,+∞[.967

α = p. If t ∈ [0, i[, then we have VM (t′) = V (t) , thus we have p ∈ VM (t) iff p ∈ V (t), and968

therefore I(M), t |= p iff p ∈ labMα (t). If t ∈ [i,+∞[, we have VM (t′) = V (t) . Following the969

same reasoning as the previous case, I(M), t |= p iff p ∈ labMα (t′).970

α = ¬α1. By the induction hypothesis, we have I(M), t |= α1 iff α1 ∈ labMα (t′), and therefore971

I(M), t 6|= α1 iff α1 6∈ labMα (t′). We conclude that I(M), t |= ¬α1 iff ¬α1 ∈ labMα (t′).972

α = α1 ∧ α2. By the induction hypothesis, we have I(M), t |= α1 iff α1 ∈ labMα (t′) and973

I(M), t |= α2 iff α2 ∈ labMα (t′), and therefore I(M), t |= α1 ∧ α2 iff α1 ∧ α2 ∈ labMα (t′).974

α = ♦α1.975

For the only-if part, let I(M), t |= ♦α1. There exists t1 ∈ [t,+∞[ s.t. I(M), t1 |= α1. For all976

t1 ∈ N, there is a t′1 s.t. t′1 = t1 if t1 ∈ [0, i[ and t′1 = i + (t1 − i) mod π if t1 ∈ [i,+∞[.977

By the induction hypothesis, we have α1 ∈ labMα (t′1). If t ∈ [0, i[, there exists t′1 ≥ t s.t.978

α1 ∈ labMα (t′1), and therefore ♦α1 ∈ labMα (t). If t ∈ [i,+∞[, there exists t′1 ∈ [i, i+ π[ s.t.979

α1 ∈ labMα (t′1), and therefore ♦α1 ∈ labMα (t).980

For the if part, let I(M), t 6|= ♦α1. Following our assumption, I(M), t |= ¬♦α1 for all981

t1 ≥ t we have I(M), t1 |= ¬α1. By the induction hypothesis, for all t1 ≥ t, we have982

¬α1 ∈ labMα (t′1) where t′1 = t1 if t1 ∈ [0, i[ and t′1 = i+ (t1 − i) mod π if t1 ∈ [i,+∞[. It983

is also worth to point out that for all , we have ¬α1 ∈ labMα (t′1). By Definition of labMα (·),984

we have ¬♦α1 ∈ labMα (t′), and therefore ♦α1 6∈ labMα (t′).985

α = ♦∼α1.986

For the only-if part, let I(M), t |= ♦∼α1. There exists t1 ∈ min g (t) s.t. I(M), t1 |= α1. For987

all t1 ∈ N, there is a t′1 s.t. t′1 = t1 if t1 ∈ [0, i[ and t′1 = i+ (t1 − i) mod π if t1 ∈ [i,+∞[.988

By the induction hypothesis, we have (I) α1 ∈ labMα (t′1). From Proposition 39, we can see989

that (II) t1 ∈ min g (t) iff t′1 ∈ min g M
(t′). From (I) and (II), since there is t′1 ∈ min g M

(t′)990

where α1 ∈ labMα (t′1), we conclude that ♦∼α1 ∈ labMα (t′).991

For the if part, let I(M), t 6|= ♦∼α1. Following our assumption, I(M), t |= ¬ ♦∼α1 for all992

t1 ∈ min g (t) we have I(M), t1 |= ¬α1. By the induction hypothesis, for all t1 ∈ min g (t),993

we have (I) ¬α1 ∈ labMα (t′1) where t′1 = t1 if t1 ∈ [0, i[ and t′1 = i + (t1 − i) mod π if994

t1 ∈ [i,+∞[. From Proposition 39, we can see that (II) t1 ∈ min g (t) iff t′1 ∈ min g M
(t′).995

From (I) and (II), since there is no t′1 ∈ min g M
(t′) s.t. α1 ∈ labMα (t′1), we conclude that996

♦∼α1 6∈ labMα (t′).997

J998

D Proofs of results for Lemma 15999

I Proposition 51 (∗). Let I = (V, g ) ∈ I and i ∈ final(I). For all j ∈ final(I), there exists1000

j′ ≥ j such that V (j′) = V (i).1001
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Proof. Let I = (V, g ) ∈ I and i, j ∈ final(I). Let E be the set defined by E = {i′ ∈ final(I) :1002

V (i′) = V (i)}. Since i ∈ final(I), we have E 6= ∅. Suppose now that there does not exist j′ ≥ j1003

such that V (j′) = V (i). We have E is a non empty finite set of integers included in [0, . . . , j − 1].1004

Let k be the integer defined by k = max{k′ ∈ E}. From the definitions of E and k, we have1005

k ∈ final(I) and there does not exist k′ > k such that V (k′) = V (k). This contradicts Lemma 10.1006

We can conclude that there exists j′ ≥ j such that V (j′) = V (i). J1007

I Proposition 52 (∗). Let I = (V, g ) ∈ Isd and I ′ = (V ′, g ′) ∈ Isd be two faithful interpreta-1008

tions over the same set of atomic propositions P s.t. range(I) = range(I ′). For all i ∈ final(I) and1009

i′ ∈ final(I ′) such that V (i) = V ′(i′), we have :1010

(1) for all j ∈ [i,+∞[ there exists j′ ∈ [i′,+∞[ such that V ′(j′) = V (j).1011

(2) for all j ∈ min g (i) there exists j′ ∈ min g ′(i′) such that V (j) = V ′(j′).1012

Proof. Let I = (V, g ) ∈ Isd, I ′ = (V ′, g ′) ∈ Isd be two faithful interpretations over P s.t.1013

range(I) = range(I ′) and i, i′ ∈ final(I) such that V (i) = V ′(i′).1014

(1) Let j belonging to [i,+∞[. Since i ∈ final(I), we have j ∈ final(I). Moreover, from the equality1015

range(I) = range(I ′), we can assert that there exists k ∈ final(I ′) such that V ′(k) = V (j).1016

Hence, from Proposition 51, there exists j′ ≥ i′ such that V ′(j′) = V ′(k) = V (j).1017

(2) Let j ∈ min g (i). We have j ∈ final(I). From Property (1), there exists j′ ≥ i′ such that1018

V ′(j′) = V (j). Suppose that j′ 6∈ min g ′(i′). Since j′ ≥ i′, there exists k′ ≥ i′ such1019

that (k′, j′) ∈ g ′. From Property (1), there exists k ≥ i such that V (k) = V ′(k′). Since1020

V (k) = V ′(k′), V ′(j′) = V (j), (k′, j′) ∈ g ′ and, I and I ′ are two faithful interpretations, we1021

can assert that (k, j) ∈ g . Consequently, since k ≥ i and (k, j) g , we have j 6∈ min g (i). There1022

is a contradiction. We can conclude that j′ ∈ min g ′(i′).1023

J1024

I Proposition 53 (∗). Let α ∈ L?, I = (V, g ) ∈ Isd and I ′ = (V ′, g ′) ∈ Isd be two faithful1025

interpretations over the same set of atomic propositions P s.t. range(I) = range(I ′). For α ∈ L?1026

i ∈ final(I) and i′ ∈ final(I ′) s.t. V (i) = V ′(i′), we have :1027

I, i |= α iff I ′, i′ |= α.1028

Proof. Let I = (V, g ), I ′ = (V ′, g ′) be two faithful interpretations belonging to Isd. over the same1029

set of atomic propositions P s.t. range(I) = range(I ′). Let α ∈ L?, i ∈ final(I) and i′ ∈ final(I ′)1030

such that V (i) = V ′(i′). Without loss of generality we suppose that α does not contain ∨, � and �∼.1031

This proposition can be proven by induction on the structure of the sentence α.1032

Base case : α = p with p ∈ P . Since V (i) = V ′(i′), we have p ∈ V (i) iff p ∈ V ′(i′), thus1033

I, i |= p iff I ′, i′ |= p.1034

α = ♦∼α1. First we prove that I, i |= ♦∼α1 implies I ′, i′ |= ♦∼α1. We assume that I, i |= ♦∼α1.1035

Hence, there exists j ∈ [i,+∞[ s.t. j ∈ min g (i) and I, j |= α1. From Proposition 52 (2), there1036

exists j′ ∈ min g ′(i′) such that V ′(j′) = V (j). By induction hypothesis, we have I ′, j′ |= α1.1037

We can conclude that I ′, i′ |= ♦∼α1. The if part can be proved with a similar reasoning.1038

J1039

I Corollary 54 (∗). Let I = (V, g ) ∈ Isd and I ′ = (V ′, g ′) ∈ Isd be two faithful interpretations1040

over the same set of atomic propositions P s.t. range(I) = range(I ′). For i ∈ final(I) and α ∈ L?,1041

we have : if I, i |= α then there exists i′ ∈ final(I ′) such that I ′, i′ |= α.1042

I Proposition 55 (∗). Let I = (V, g ) ∈ Isd and I ′ = (V ′, g ′) ∈ Isd be two faithful interpreta-1043

tions over P such that init(I) .= init(I ′) and range(I) = range(I ′). Then we have :1044
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For all t, t′ ∈ init(I), t′ ∈ min g (t) iff t′ ∈ min g ′(t).1045

Proof. Let I = (V, g ) ∈ Isd and I ′ = (V ′, g ′) ∈ Isd be two faithful interpretations over P such1046

that init(I) .= init(I ′) and range(I) = range(I ′) and, t, t′ ∈ init(I) such that t′ ∈ min g (t).1047

Suppose that t′ 6∈ min g ′(t). Since t′ ≥ t, there exists t′′ ≥ t such that (t′′, t′) ∈ g ′. There are two1048

possible cases.1049

t′′ ∈ init(I ′). Since init(I) .= init(I ′), we have V ′(t′′) = V (t′′). Moreover, since I and I ′ are1050

two faithful interpretations and V ′(t′) = V (t′), we have (t′′, t′) ∈ g . Since t′′ ≥ t, it follows that1051

t′ 6∈ min g (t). There is a contradiction. We can conclude that t′ ∈ min g ′(t).1052

t′′ ∈ final(I ′). Since range(I) = range(I ′), there exists t′′′ ∈ final(I) such that V ′(t′′) =1053

V (t′′′). Moreover, since I and I ′ are two faithful interpretations and V ′(t′) = V (t′), we have1054

(t′′′, t′) ∈ g . Since t′′′ ≥ t, It follows that t′ 6∈ min g (t). There is a contradiction. We can1055

conclude that t′ ∈ min g ′(t).1056

Same reasoning can be applied to prove the if part. J1057

I Proposition 56 (∗). Let I = (V, g ) ∈ Isd and I ′ = (V ′, g ′) ∈ Isd be two faithful interpret-1058

ations over P such that init(I) .= init(I ′) and range(I) = range(I ′). For all t ∈ init(I) and1059

t′ ∈ final(I) such that t′ ∈ min g (t) we have {t′′ ∈ final(I ′) : V ′(t′′) = V (t′)} ⊆ min g ′(t).1060

Proof. Let I = (V, g ) ∈ Isd and I ′ = (V ′, g ′) ∈ Isd be two faithful interpretations over P such1061

that init(I) .= init(I ′) and range(I) = range(I ′) and, t ∈ init(I), t′ ∈ final(I), t′′ ∈ final(I ′)1062

such that t′ ∈ min g (t) and V ′(t′′) = V (t′). We will prove that t′′ ∈ min g ′(t).1063

Suppose that t′′ 6∈ min g ′(t). Since t′′ ≥ t, there exists t′′′ ≥ t such that (t′′′, t′′) ∈ g ′. There are1064

two possible cases.1065

t′′′ ∈ init(I ′). Since init(I) .= init(I ′), we have V ′(t′′′) = V (t′′′). Moreover, since I and I ′ are1066

two faithful interpretations and V ′(t′′) = V (t′), we have (t′′′, t′) ∈ g . Since t′′′ ≥ t, it follows1067

that t′ 6∈ min g (t). There is a contradiction. We can conclude that t′′ ∈ min g ′(t).1068

t′′′ ∈ final(I ′). Since range(I) = range(I ′), there exists u ∈ final(I) such that V ′(t′′′) = V (u).1069

Moreover, since I and I ′ are two faithful interpretations and V ′(t′′) = V (t′), we have (u, t′) ∈ g .1070

Since u ≥ t, it follows that t′ 6∈ min g (t). There is a contradiction. We can conclude that1071

t′′ ∈ min g ′(t).1072

J1073

I Lemma 57 (∗). Let I = (V, g ) ∈ Isd and I ′ = (V ′, g ′) ∈ Isd be two faithful interpretations1074

over P such that V ′(0) = V (0), init(I) .= init(I ′), and range(I) = range(I ′). Then for all α ∈ L?,1075

we have :1076

For all t ∈ init(I) ∪ {0}, I, t |= α iff I ′, t |= α.1077

Proof. Let I = (V, g ) ∈ Isd, I ′ = (V ′, g ′) ∈ Isd be two faithful interpretations over P such that1078

V ′(0) = V (0), init(I) .= init(I ′), and range(I) = range(I ′). Let α ∈ L? and t ∈ init(I) ∪ {0}.1079

Without loss of generality we suppose that α does not contain ∨, � and �∼.1080

First, notice that in the case where init(I) and init(I ′) are empty intervals, we necessarily have1081

t = 0. Moreover, since t ∈ final(I) and t ∈ final(I ′) and V (0) = V ′(0), from Proposition 53,1082

we can assert that I, t |= α iff I ′, t |= α. Consequently, the property to be proved is true. Now,1083

we will suppose that init(I) and init(I ′) are non empty intervals. Hence, we have t ∈ init(I) and1084

t ∈ init(I ′). We will prove that I, t |= α iff I ′, t |= α by structural induction on α.1085

Base case : α = p. Since t ∈ init(I), we have V (t) = V ′(t). Hence, p ∈ V (t) iff p ∈ V ′(t).1086

Thus I, t |= p iff I ′, t |= p.1087

α = ¬α1. By induction hypothesis, we have I, t |= α1 iff I ′, t |= α1. Hence, it is not the case that1088

I, t |= α1 iff it is not the case that I ′, t |= α1. We can conclude that, I, t |= ¬α1 iff I ′, t |= ¬α1.1089
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α = α1∧α2. We have I, t |= α1∧α2 iff I, t |= α1 and I, t |= α2. Using the induction hypothesis,1090

it follows that I, t |= α1 and I, t |= α2 iff I ′, t |= α1 and I ′, t |= α2. We can conclude that1091

I, t |= α1 ∧ α2 iff I ′, t |= α1 ∧ α2.1092

α = ♦α1. Suppose that I, t |= ♦α1. There exists a t′ ∈ [t,+∞[ s.t. I, t′ |= α1. Two cases are1093

possible w.r.t. t′.1094

t′ ∈ init(I). By induction hypothesis, we have I ′, t′ |= α1. Hence, we can conclude that1095

I ′, t |= ♦α1.1096

t′ ∈ final(I). Since range(I) = range(I ′), there exists t′′ ∈ final(I ′) such that V ′(t′′) =1097

V (t′). From Proposition 53, we have I ′, t′′ |= α1. Since, t′′ > t we have I ′, t |= ♦α1.1098

Same reasoning can be applied to prove the if part.1099

α = ♦∼α1. Suppose that I, t |= ♦∼α1. There exists t′ ∈ min g (t) s.t. I, t′ |= α1. Two cases are1100

possible w.r.t. t′.1101

t′ ∈ init(I). By induction hypothesis, we have I ′, t′ |= α1. Moreover, from Proposition 55,1102

we have t′ ∈ min g ′(t). Hence, we can conclude that I ′, t |= ♦∼α1.1103

t′ ∈ final(I). Since range(I) = range(I ′), there exists t′′ ∈ final(I ′) such that V ′(t′′) =1104

V (t′). From Proposition 53, we have I ′, t′′ |= α1. From Proposition 56, we have t′′ ∈1105

min g ′(t). Hence, we can conclude that I ′, t |= ♦∼α1.1106

Same reasoning can be applied to prove the if part.1107

J1108

Lemma 15 is a direct result of result of Lemma 57.1109
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