
HAL Id: hal-03300268
https://univ-artois.hal.science/hal-03300268

Submitted on 28 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neighborhood-Based Variable Ordering Heuristics for
the Constraint Satisfaction Problem
Christian Bessiere, Assef Chmeiss, Lakhdar Saïs

To cite this version:
Christian Bessiere, Assef Chmeiss, Lakhdar Saïs. Neighborhood-Based Variable Ordering Heuristics
for the Constraint Satisfaction Problem. 7th International Conference on Principles and Practice of
Constraint Programming (CP 2001), Nov 2001, Paphos, Cyprus. pp.565-569, �10.1007/3-540-45578-
7_40�. �hal-03300268�

https://univ-artois.hal.science/hal-03300268
https://hal.archives-ouvertes.fr

Neighborhood-Based Variable Ordering
Heuristics for the Constraint Satisfaction

Problem�

Christian Bessière1, Assef Chmeiss2, and Lakhdar Säıs2

1 Member of the Coconut group
LIRMM-CNRS (UMR 5506), 161, rue Ada, 34392 Montpellier Cedex 5, France

bessiere@lirmm.fr
2 CRIL - Université d’Artois - IUT de Lens

Rue de l’université - SP 16, 62307 LENS Cedex, France
{chmeiss, sais}@cril.univ-artois.fr

Abstract. One of the key factors in the efficiency of backtracking algo-
rithms is the rule they use to decide on which variable to branch next
(namely, the variable ordering heuristics). In this paper, we give a for-
mulation of dynamic variable ordering heuristics that takes into account
the properties of the neighborhood of the variable.

1 Introduction

Constraint satisfaction problems (CSPs) are widely used to solve combinatorial
problems appearing in a variety of application domains. They involve finding
solution in a constraint network, i.e., finding values for network variables subject
to constraints on which combinations are acceptable.

The usual technique to solve CSPs is systematic backtracking. But if we
want to tackle highly combinatorial problems, we need to enhance this basic
search procedure with clever improvements. An improvement that has shown to
be of major importance is the ordering of the variables, namely, the criterion
under which we decide which variable will be the next to be instantiated. Many
variable ordering heuristics for solving CSPs have been proposed over the years.
However, the criteria used in those heuristics to order the variables are often
quite simple, and concentrate on characteristics inherent to the variable to be
ordered, and not too much on the influence its neighborhood could have. Those
that use more complex criteria, essentially based on the constrainedness or the
solution density of the remaining subproblem, need to evaluate the tightness of
the constraints, and so, need to perform many constraint checks.

The goal of this paper is to propose heuristics that take into account proper-
ties of the neighborhood in the criterion of choice of a variable, while remaining
free of any constraint check.
� This work was partially supported by the IUT of Lens, the Nord/PasdeCalais region,
and the European community.

2 Preamble

Numerous criteria have been proposed to find good variable orderings for back-
track search procedures. Among them, dynamic1 variable orderings (DVOs) have
always shown better average performances than static ones. In [4], Haralick and
Elliott introduced dom, the DVO choosing as next variable the one with the
smallest remaining domain.

Since dom can be completely fooled by the structure, especially at the begin-
ning of the search, when domains have more chances to be of equal size, other
heuristics have been proposed. dom+futdeg is the one derived from the Brélaz
heuristic (proposed for graph coloring) [3]. It breaks ties in dom by preferring
the variable with highest future degree [6]. Smith also improved dom+futdeg by
adding to it a second and a third tie breakers, namely, the size of the small-
est neighbor, and the number of triangles in which the first chosen variable is
involved. She called this DVO BZ3.

However, both dom+futdeg and BZ3 use the domain size as the main criterion.
The degree of the variables is considered only in case of ties, which can again
fool the heuristic. Combined heuristics [2] do not give priority to the domain size
or degree of variables, but use them equally in the criterion. DD chooses as the
next variable, the variable Xi minimizing the ratio “size of domain/degree”. DD
has extensively been studied in [5].

To give an insight into the state of the art, we performed experiments with
some of these well-known heuristics: dom, the oldest and most well known DVO,
DD and BZ3, the best current VOs for CSPs [5,6]. On random problems with
10 values per domain, an average degree of 5 (i.e., 5/2 times more constraints
than variables), and the tightness fixed at the cross-over point (which is stable
at 55 forbidden tuples per constraint), we increased the number N of variables
by steps of 10, and could see the following:2

– when N = 110, DD needs less than 1 sec., BZ3 less than 10 sec., and dom less
than 100 sec.,

– when N = 120, dom goes above 100 sec.,
– when N = 150, DD needs less than 10 sec., and BZ3 less than 100 sec.,
– when N = 160, BZ3 goes above 100 sec.,
– when N = 210, DD goes above 100 sec.

3 Multi-level DVOs

One of the key features for the efficiency of a backtrack search method lies
in its branching strategy. At each step of the search process, a problem P is
reduced into a finite number of sub-problems (P1, P2, . . . , P|D(Xi)|), where Xi is
1 A variable ordering is dynamic when it can change the order of the variables from
one branch to the other.

2 These experiments have been run on a PC Pentium III 667 MHz under Linux. 100
instances for each value of the parameters.

the chosen variable. Following ideas developed for the DP procedure on SAT,
we think that a good DVO should reduce both the number and the difficulty of
such subproblems.

We propose a general formulation of DVOs which integrates in the selection
function a measure of the constrainedness of the given variable. The constrained-
ness of a variable can be defined as a function of the constraints involving the
variable. One could choose semantical constraints-based measures (e.g., number
of allowed tuples) or syntactical ones (e.g., size of the Cartesian product of the
domains). Choosing the most constrained variable should have a great impact
on the search space, leading the search to the most constrained parts of the CSP,
and thus provoking early detection of local inconsistencies.

3.1 A General Criterion Free of Constraint Checks

From now on, we will denote by Γ (Xi) the set of variables sharing a constraint
with the variable Xi. Let us first define W (Rij) as the weight of the constraint
Rij and,

(1) W (Xi) =
∑
Xj∈Γ (Xi)

W (Rij)

|Γ (Xi)|

as the mean weight of the constraints involving Xi. In order to maximize the
number of constraints involving a given variable and to minimize the mean weight
of such constraints, the next variable to branch on should be chosen according
to the minimum value of

(2) H(Xi) =
W (Xi)
|Γ (Xi)|

over all uninstantiated variables (numerator to minimize the weight, and denom-
inator to maximize the number of constraints).

For reasons of efficiency of computation, the weight we will associate to a
constraint must be something cheap to compute (e.g., free of constraint checks).
It can be defined by W (Rij) = α(Xi) � α(Xj), where α(Xi) is instantiated to
a simple syntactical property of the variable such as |D(Xi)| or |D(Xi)|

|Γ (Xi)| , and
� ∈ {+,×}. For α(Xi) = |D(Xi)|, and � = ×, the weight associated to a given
constraint Rij represents an upper bound of the number of tuples allowed by
Rij .

We obtain the new formulation of (2):

(3) H�
α (Xi) =

∑
Xj∈Γ (Xi)

(α(Xi) � α(Xj))

|Γ (Xi)|2

3.2 Multi-level Generalization

In the formulation of the DVOs presented above, the evaluation function H(Xi)
considers only the variables at distance one fromXi (first level or neighborhood).
However, when arc consistency is maintained (MAC), the instantiation of a value

to a given variable Xi could have an immediate effect not only on the variables
of the first level, but also on those at distance greater than one.

To maximize the effect of such a propagation process on the CSP, and con-
sequently to reduce the difficulty of the subproblems, we propose a generaliza-
tion of the DVO H�

α such that variables at distance k from Xi are taken into
account. This gives what we call a “multi-level DVO”, H�

(k,α). To obtain this
multi-level DVO, we simply replace α(Xj) in formula (3) by a recursive call to
H�

(k−1,α)(Xj). This means that to compute H�
(k,α) on a given variable, we need

to compute H�
(k−1,α) on all its neighbors, and so on. The recursion terminates

with H�
(0,α), equal to α. This is formally stated as follows:

(4) H�
(0,α)(Xi) = α(Xi)

(5) H�
(k,α)(Xi) =

∑
Xj∈Γ (Xi)

(α(Xi) �H�
(k−1,α)(Xj))

|Γ (Xi)|2

In the following, H�
(0,dom) and H

�
(0,DD) are denoted by their classical name,

dom and DD, respectively. H�
(k,dom) and H

�
(k,DD) are denoted by H k dom � and

H k DD � respectively.

4 Experiments

We have compared experimentally the behavior of the new DVOs defined above
(and others) on several classes of random CSPs and on real instances from the
FullRLFAP archive3. We give here a brief snapshot of the results. Extensive
experiments can be found in [1]. In all our experiments, we stopped search after
the first solution is found. The search procedure used maintains arc consistency
(MAC).

We ran the H 1 DD � (� ∈ {+,×}) on the experiment described in Section
2. The gap between H 1 DD � and DD grows with N . At N = 230, H 1 DD ×
is more than 5 times faster than DD, which was by far the best DVO known
so far. We performed other experiments, fixing the number of variables to 100,
and increasing the number of constraints in the network. H 1 DD × becomes
better and better when density grows. (As opposed to H 1 DD + which was even
better than H 1 DD × on sparse problems, but which becomes slower on denser
problems.)

If we increase the number of variables or the domain size, the gain of the
H�

(1,α) heuristics continues to grow compared to DD.
As a synthesis of the results on different classes of random CSPs, we can say

that, except H 1 dom ×, the first level DVOs improve significantly DD. Further-
more, in general, H 1 DD � are better than H 1 dom �. This is not surprising
because the former take into account the connectivity of the neighborhood of
the chosen variable.
3 We thank the Centre d’Electronique de l’Armement (France).

We also compared the behavior of these DVOs on the real instances of the
FullRLFAP archive. Since these are optimization problems, we built a series of
satisfaction problems for each instance of optimization problem. In the table
below, we report results for all instances on which a significant difference has
been observed among the DVOs tested. The cpu time limit was put to one hour
on a PC Pentium II 300MHz.

scen11-01234 (sat) scen06-012 (unsat) scen02-24 (sat) scen02-25 (unsat)
#nodes time (sec.) #nodes time (sec.) #nodes time (sec.) #nodes time (sec.)

DD 6,019 8.43 —– > 1 h. 31,308,876 2,296.61 —– > 1 h.
H 1 dom + 21,156 29.68 41 0.40 663 0.32 —– > 1 h.
H 1 DD + —– > 1 h. 41 0.41 —– > 1 h. 11,668 10.18
H 1 dom × 12,517 16.99 —– > 1 h. 677 0.32 —– > 1 h.
H 1 DD × 226,011 337.55 41 0.41 —– > 1 h. 8,529 6.99

No conclusion can be drawn on a so small number of pertinent instances.
However, it seems that H 1 DD � are better on inconsistent problems, and
H 1 dom � on satisfiable ones. But, more extensive tests should be run to draw
definite conclusions.

5 Conclusion

In this paper, a general formulation of dynamic variable ordering heuristics has
been proposed. It admits numerous advantages,

– the constrainedness of a given variable is computed without any constraint
check, thanks to simple syntactical properties,

– it takes advantage of the neighborhood of the variable, with the notion of
distance as a parameter,

– it can be instantiated to different known variable ordering heuristics,
– it is possible to use other functions to measure the weight of a given con-

straint.

References

1. C. Bessière, A. Chmeiss, and L. Säıs. Neighborhood-based variable ordering heuris-
tics for the constraint satisfaction problem. Technical Report 01002, LIRMM –
University of Montpelllier II, Montpellier, France, January 2001. (available at
http://www.lirmm.fr/˜bessiere/).

2. C. Bessière and J.C. Régin. MAC and combined heuristics: two reasons to forsake
FC (and CBJ?) on hard problems. In Proceedings CP’96, pages 61–75, Cambridge
MA, 1996.

3. D. Brélaz. New methods to color the vertices of a graph. Communications of the
ACM, 22:251–256, 1979.

4. R.M. Haralick and G.L. Elliott. Increasing tree seach efficiency for constraint satis-
faction problems. Artificial Intelligence, 14:263–313, 1980.

5. B. Smith and S.A. Grant. Trying harder to fail first. In Proceedings ECAI’98, pages
249–253, Brighton, UK, 1998.

6. B.M. Smith. The Brélaz heuristic and optimal static orderings. In Proceedings
CP’99, pages 405–418, Alexandria VA, 1999.

	Neighborhood-Based Variable Ordering Heuristics for the Constraint Satisfaction Problem
	Introduction
	Preamble
	Multi-level DVOs
	A General Criterion Free of Constraint Checks
	Multi-level Generalization

	Experiments
	Conclusion
	References

