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Consolidating Modal Knowledge Bases
Zied Bouraoui1 and Jean-Marie Lagniez2 and Pierre Marquis3 and Valentin Montmirail4

Abstract. This paper introduces a novel approach to the consoli-
dation of knowledge bases represented as modal logic formulae. The
objective is to turn the given knowledge base into another knowledge
base such that the latter is consistent even when the former is not. Our
approach follows a strategy that locally spots and iteratively consoli-
dates inconsistent subformulae of the input knowledge base. Existing
methods for consolidating a knowledge base typically consist in se-
lecting some of its maximal consistent subbases. Such methods are
suited to the case the input is a (conjunctively-interpreted) set of for-
mulae. However, they are inadequate when the input consists of a
single inconsistent modal formula since, in the modal case, a for-
mula cannot always be turned into a conjunction of simpler formu-
lae. Furthermore, such methods consolidate any base consisting of a
single inconsistent formula into the empty base. Our approach does
not suffer from such limitations and preserves more information in
the general case. From a computational point of view, it ensures that
the size of the consolidated base is bounded by the size of the input
knowledge base. We present some empirical results demonstrating
the practical feasibility of our approach.

1 INTRODUCTION

Logical deduction is the key inference mechanism to draw sound
conclusions from a knowledge base (a conjunctively-interpreted set
of formulae). It provides natural explanations for the consequences
that can be derived. However, when the knowledge base under con-
sideration is inconsistent, logical deduction is no longer appropriate,
because it trivializes: every formula can be derived from an inconsis-
tent base, including the conflicting information causing the inconsis-
tency (ex falso quodlibet sequitur).

The problem of inconsistency management has received consid-
erable attention in a wide variety of areas, including databases (e.g.,
[2, 26, 6]), ontology-based query answering (e.g., [11, 3]), multi-
agent systems (e.g., [19]), description logics (e.g., [17, 36]), belief
merging and revision (e.g., [16, 33]).

Many approaches have been designed so far to avoid the trivial-
ization of inference when the knowledge base is inconsistent (e.g.,
[21, 13, 5]). Some of them, based on paraconsistent logics, either
consider weakened proof systems, or non-classical semantical set-
tings to ensure that an inconsistent formula has some models even if
none of them is classical (e.g., [32, 30, 8, 18, 9]). Such approaches
lead to inference relations that are not necessarily explosive when
the input is an inconsistent formula, but they suffer from a couple of
drawbacks: in general, they do not preserve the set of logical con-
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sequences of the input even when it is consistent and they do not
guarantee that the set of consequences of the input is classically con-
sistent. This prevents from reasoning classically from it.

Another family of approaches for reasoning under inconsistency
gather approaches that weaken the input base instead of weakening
the deduction relation. Several weakening mechanisms can be con-
sidered, the simplest one being formula inhibition (i.e., the removal
of some formulae from the knowledge base when it is inconsistent).
Such approaches also have some pros and some cons. From the posi-
tive side, they lead to knowledge bases that are classically consistent.
As such, they can be used for the consolidation purpose. However,
they do not avoid the trivialization problem when the knowledge base
consists of a single formula. Indeed, if this formula is inconsistent,
removing it from the base leads to a consolidated base, which is con-
sistent, but empty. Accordingly, every piece of information contained
in the input base is lost and the set of consequences of the consoli-
dated base consists only of the valid formulae. It must be noted that
the single formula situation cannot always be avoided, for two main
reasons. On the one hand, though in classical logic settings, a for-
mula can be decomposed into the conjunction of simpler formulae
(especially, a conjunction of clauses), this is not the case in every
logic, especially in modal logics [10]. On the other hand, replacing
in a knowledge base the conjunction of two subformulae by the sub-
formulae themselves is not neutral from the inference point of view
[20]. Formulae that “come together” (i.e., that are linked by a con-
junction in the knowledge base) may come from the same source of
information so that they should not always be split into independent
pieces of information (in some cases, they must be kept or removed
as a whole).

A simple approach from this family consists in keeping only in the
consolidated base the “free formulae” of the input base, i.e., those
formulae that are not involved in any conflict. Said differently, this
approach consists in removing all formulae participating in an in-
consistency. Doing so, the loss of information could be consider-
able (which has a direct impact on the set of conclusions that can be
drawn from the consolidated base), but from a computational point of
view the size of the consolidated base remains bounded by the size
of the input base, which is a desirable feature. More sophisticated
approaches, used for instance in default reasoning [31], consist in fo-
cusing on maximal consistent subsets (i.e., maximal with respect to
set inclusion) of the input base, and in taking advantage of all / some
of them (the preferred ones, often characterized using a plausibility
ordering over formulae) to draw conclusions. In this case, the consol-
idated base is equivalent to the disjunction of all preferred maximal
consistent subsets). Compared to the “free formulae” approach, such
approaches lead to preserve more information from the input base,
but do not offer any polynomial guarantee on the size of the consol-
idated base. Indeed, a knowledge base can have exponentially many
maximal consistent subsets.



Figure 1: ϕ = �(∧(∧(^(p),�(∧(∧(q,¬q),¬p))),^(¬(∧(p, q)))))
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In this paper, we present an approach to the consolidation of an
inconsistent modal knowledge base. We focus on single-agent nor-
mal modal logics (e.g., [12]), the family of logics based on modal
logic K. In this setting, a formula ϕ cannot always be turned into a
conjunctively-interpreted set S of subformulae of ϕ such that S is
equivalent to ϕ (even though some existing works exist in this direc-
tion [28]). As a consequence, in the case when the knowledge base
consists of a single inconsistent modal formula, approaches to con-
solidation based on free formulae or maximal consistent subsets (as
mentioned above) will lead to an empty consolidated base.

Our approach to consolidation is parametrized by a weakening
mechanism (the simplest one consisting in replacing subformulae by
the Boolean constant always true) and it outputs a knowledge base
that is not empty even when its input consists of a single, inconsis-
tent formula. In a nutshell, our approach consists in consolidating
subformulae of the input formula in an iterative fashion until recov-
ering consistency. When the weakening mechanism that is exploited
outputs a weakened formula that is of smaller size than the size of
its input, our approach guarantees that the size of the consolidated
knowledge base to be generated is bounded by the size of the input
formula.

Example 1. As a matter of illustration, consider the
formula ϕ represented in functional notation by ϕ =

�(∧(∧(^(p),�(∧(∧(q,¬q),¬p))),^(¬(∧(p, q))))) and depicted
hereafter (p and q are propositional symbols).

When interpreted as a formula from K (the basic modal logic
[12]), ϕ is inconsistent. It can be observed that the subformula
∧(^(p),�(∧(∧(q,¬q),¬p))) is inconsistent since at the same time
p is possible and ∧(∧(q,¬q),¬p) ≡ ⊥ is necessary, which cannot
hold. Actually, this inconsistency impacts the whole formula ϕ, ren-
dering it inconsistent as well. On the other hand, the subformula
^(¬(∧(p, q))) is not involved in any inconsistency. If the free for-
mula approach or the maximal consistent subsets approach is used
for consolidating the knowledge base K = {ϕ}, then every piece of
information will be lost (ϕ is not a free formula of K, hence the con-
solidated base will be the empty set of formulae).

An alternative, yet more desirable result would consist in replac-
ing ϕ by its “free subformula” ^(¬(∧(p, q))). Doing so, more in-
formation would be preserved by the consolidation process though
avoiding the size of the consolidated base to blow up.

2 BACKGROUND
In this section, we give some background on normal modal logics
(for more details see [12]). We use here the standard modal logic syn-
tax and Kripke semantics [15]. In particular, the languageL of modal
logic is based on P a countably infinite set of propositional variables
(p, q, . . . ) and the logical symbols (connectives and modalities) from

{¬,∧,∨,�,^,>,⊥}. We use Greek letters α, β, . . . to denote modal
logic formulae. We also use the standard abbreviation ⊥ def

= ¬> and
^ϕ

def
= ¬�¬ϕ. The size of a formula ϕ, denoted size(ϕ), is defined

inductively as follows:

size(>) = size(p) = 1

size(ϕ1 ∧ ϕ2) = size(ϕ1 ∨ ϕ2) = 1 + size(ϕ1) + size(ϕ2)

size(�ϕ1) = size(^ϕ1) = size(¬ϕ1) = 1 + size(ϕ1)

The satisfiability/unsatisfiability of a modal formula is defined in
terms of “model” and “satisfaction relation”. A “model” of a modal
logic formula is a Kripke structure that satisfies the formula [22]. A
Kripke structure is a triple K = 〈W,R,V〉, where W is a non-empty
set of possible worlds, R ⊆ W × W is a binary accessibility relation
and V : P → 2W is a valuation function which associates, with each
p ∈ P, the set of possible worlds from W where p is true. A pointed
Kripke structure is a pair 〈K , ω〉, where K is a Kripke structure and
ω is a possible world in W. Throughout the paper, in order to alleviate
the phrasing, one uses the term “Kripke structure” to refer to “pointed
Kripke structure”.

The satisfaction relation |= between Kripke structures and formu-
lae in L is defined inductively as follows:

〈K , ω〉 |= >

〈K , ω〉 |= p iff ω ∈ V(p)

〈K , ω〉 |= ¬ϕ iff 〈K , ω〉 6|= ϕ

〈K , ω〉 |= ϕ1 ∧ ϕ2 iff 〈K , ω〉 |= ϕ1 and 〈K , ω〉 |= ϕ2

〈K , ω〉 |= ϕ1 ∨ ϕ2 iff 〈K , ω〉 |= ϕ1 or 〈K , ω〉 |= ϕ2

〈K , ω〉 |= �ϕ iff ∀ω′s.t(ω,ω′) ∈ R implies 〈K , ω′〉 |= ϕ

〈K , ω〉 |= ^ϕ iff ∃ω′s.t(ω,ω′) ∈ R and 〈K , ω′〉 |= ϕ

A formula ϕ ∈ L is valid (denoted by |= ϕ) iff it is satisfied by all
Kripke structures 〈K , ω〉. A formula ϕ ∈ L is satisfiable iff ¬ϕ is not
valid (denoted 6|= ¬ϕ). A Kripke structure that satisfies ϕ is called a
model of ϕ. A formula ϕ ∈ L is unsatisfiable iff ϕ is not satisfiable.

We assume the reader familiar with the different schemata of
modal logic (see [34, Table 25.2]). Let ? be any of the 15 types
of structures given in [34, Table 25.2]. A formula ϕ ∈ L is K?-
valid (noted |=K? ϕ) iff it is satisfied by all K?-structures 〈K , ω〉. A
formula ϕ ∈ L is K?-satisfiable iff 6|=K? ¬ϕ. A K?-structure that
satisfies a formula ϕ is called a K?-model of ϕ.

We are now ready to introduce a number of definitions needed to
present our consolidation approach, which is based on the notion of
subformula. Let us first recall that a formula ϕ from L can be repre-
sented as a tree, where each node is labelled by a symbol (that can be
a modality, a connective among {∧,∨,¬}, > or a propositional vari-
able). Each node N of the tree is characterized by a (unique) path to
be followed to reach it. This path is given by a word defined over
the alphabet IN∗ of positive integers. In this paper, we consider the
alphabet {1, 2}, which is enough given the arities of the connectives
under consideration. A word is used to make precise the path fol-
lowed from the root of the tree in order to reach a node. · denotes the
concatenation of words.

Definition 1 (Occurrence). Let ϕ be a formula from L. The occur-
rence of node N in the tree associated with ϕ is the word oN over IN∗

given by:

• the root of the tree has occurrence ε (the empty word)
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• if N is not the root of the tree, then N has a father node M with
occurrence oM , and oN is defined by

– if the label of M is ^, �, or ¬, then oN = oM .1,

– if the label of M is ∧ or ∨, then oN = oM .1 if N corresponds to
the first argument of the connective and oN = oM .2 otherwise.

Oϕ denotes the set of occurrences in the tree-based representation
of ϕ. If o ∈ Oϕ, then l(o, ϕ) denotes the label of the node at occurrence
o in ϕ, and ϕo denotes the subformula of ϕ rooted in ϕ at occurrence
o (when o , ε, ϕo is said to be a strict subformula of ϕ).

Example 2 (cont’ed). Fig.2 depicts ϕ with its occurrence informa-
tion represented as an ordered pair associating with each node its la-
bel and its occurrence. We have Oϕ = {ε, 1, 11, 111, 1111, 112, 1121,
11211, 112111, 112112, 11212, 12, 121, 1211, 12111, 12112}. The
label l(112, ϕ) of the node of ϕ at occurrence 112 is �. The root
node of the subformula ^(p) of ϕ is at occurrence 111 in ϕ, and the
root node of the subformula ∧(p, q) in ϕ is at occurrence 1211. Stated
otherwise, we have ϕ111 = ^(p) and ϕ1211 = ∧(p, q).

Figure 2: ϕ with its occurrences.

〈�, ε〉

〈∧, 1〉

〈∧, 11〉

〈^, 111〉

〈p, 1111〉

〈�, 112〉

〈∧, 1121〉

〈∧, 11211〉

〈q, 112111〉 〈¬q, 112112〉

〈¬p, 11212〉

〈^, 12〉

〈¬, 121〉

〈∧, 1211〉

〈p, 12111〉 〈q, 12112〉

We will also need the following notation. If o is any word over IN∗

and {o1, o2, . . . , ok} is a set of such words, then o × {o1, o2, . . . , ok}

denotes the set of words {o.o1, o.o2, . . . , o.ok}.

3 AN APPROACH TO CONSOLIDATION
In this section, we present our approach to the consolidation of a
modal formula. Consider a formula ϕ, the set Oϕ of occurrences
can thus be partitioned into two subsets: i) I(Oϕ) = {o ∈ Oϕ | ϕo

inconsistent}, the subsets of occurrence of the nodes of ϕ which are
roots of inconsistent subformulae, and I(Oϕ)c = Oϕ \ I(Oϕ) the com-
plementary set of I(Oϕ). The set of inconsistent subformulae of ϕ is
then defined by IS(ϕ) = {ϕo | o ∈ I(Oϕ)}.

Example 3 (cont’ed). We have I(Oϕ) = {ε, 1, 11, 112, 1121, 11211}.
Thus ϕ has six inconsistent subformulae: ϕ = ϕε (the formula itself),
ϕ1, ϕ11, ϕ112, ϕ1121 and ϕ11211. The other subformulae of ϕ are con-
sistent.

Notice that in some cases, IS(ϕ) may be not empty even though ϕ
is consistent. Consider for instance the formula ϕ = ∨(∧(p,¬p), q).
Clearly, ϕ is consistent, but we have IS(ϕ) = ∧(p,¬p). In this case, ϕ
can be simplified by replacing every inconsistent subformula by its
equivalent formula ¬> while preserving logical equivalence. How-
ever, in this work, we are not primarily interested in formulae ϕ from
which inference does not trivialize, we rather focus on the case ϕ is
inconsistent.

Let us now explain how the input formula ϕ can be consoli-
dated by “partially removing” inconsistent subformulae. To do so,

we assume that a weakening mechanism wm is available. Given
any formula ϕ, wm(ϕ) returns a logical consequence of ϕ such that
size(wm(ϕ)) ≤ size(ϕ). Defining wm1(ϕ) as wm(ϕ) and inductively
wmk+1(ϕ) as wm(wmk(ϕ)) for any integer k ≥ 0, wm is supposed to
be such that for any formula ϕ there exists an integer nϕ such that
wmnϕ (ϕ) is valid.

Many such weakening mechanisms can be defined. For the sake
of simplicity, in the following, we consider the drastic weakening
mechanism dwm such that for any formula ϕ, we have dwm(ϕ) = >.

Clearly enough, the inconsistent subformulae of the input formula
that need to “removed” should be chosen with care. Thus, on the run-
ning example, if ϕ itself is first replaced by >, then the inconsistent
subformulae ϕ1 and ϕ11 of ϕ are not any longer subformulae of the
result, hence the other replacement operations cannot take place. On
the other hand, replacing ϕ by > is often too drastic since it leads to
lose all the information from ϕ: replacing ϕ11 = ∧(�(p),^(¬(p))) in
ϕ leads to the consolidated formula �(∧(>,^(¬(∧(p, q)))) which is
consistent and contains more information than >.

We now formally present our approach. Let us first recall that a
prefix of a word o is any word o′ such that there exists a word o′′

satisfying o = o′ ·o′′, denoted o′ v o. A strict prefix o′ of o is a prefix
of o such that o′′ , ε, denoted o′ @ o. Clearly, v is a pre-order over
IN∗ (i.e.,, a reflexive and transitive relation).

Definition 2 (Prefix-Closed Set). Let ϕ be a formula from L. A sub-
set S of Oϕ is prefix-closed iff for every o ∈ S every prefix of o also
belongs to S .

For instance, ∅ and Oϕ itself are prefix-closed. Given any subset S
of IN∗, PC(S ) = {o ∈ S | every prefix of o belongs to S } denotes the
subset of S containing occurrences such that all their prefixes belong
to S . By construction, PC(S ) is prefix-closed.

Example 4 (cont’ed). {ε, 1, 11, 111} is prefix-closed but
{ε, 1, 11, 121} is not. We have PC({ε, 1, 11, 121}) = {ε, 1, 11}.

We are now ready to define a notion of partial consolidation of a
modal formula ϕ:

Definition 3 (Partial Consolidation). Let ϕ be a formula from L. Let

R(ϕ) = max(PC(I(Oϕ)),v)

be the set of occurrences to be ”repaired”. The partial consolidation
of ϕ for the weakening mechanism wm is the formula Cp(ϕ) of L
obtained by replacing in ϕ every subformula ϕo occurring at some
o ∈ R(ϕ) by wm(ϕo).

Example 5 (cont’ed). Suppose that the weakening mechanism
that is used is dwm. We have PC(I(Oϕ)) = {ε, 1, 11, 112,
1121, 11211}, hence R(ϕ) = {11211}. Accordingly, the par-
tial consolidation of ϕ for dwm is the formula Cp(ϕ) =

�(∧(∧(^(p),�(∧(>,¬p))),^(¬(∧(p, q)))). Indeed, the only incon-
sistency pointed out by R(ϕ) is ∧(q,¬q), thus it is the only subformula
of ϕ replaced by > to keep as much information as possible.

Intuitively, by only looking at the prefix-closed subset of I(Oϕ),
we ensure that only the inconsistent subformulae of ϕ that can be re-
sponsible for the inconsistency of ϕ, are considered. For instance,
if ϕ = ∧(∨(p,∧(q,¬(q))),∧(r,¬(r))), the inconsistent subformula
∧(q,¬(q)) is harmless, unlike the inconsistent subformula ∧(r,¬(r)),
which makes ϕ inconsistent. Replacing both inconsistent subformu-
lae by>would lead to a valid formula, while the partial consolidation
of ϕ for dwm is equivalent to p.

3



Considering in PC(I(Oϕ)) only those occurrences which are max-
imal w.r.t. the prefix pre-order amounts to focusing in priority on the
“deepest” inconsistent subformulae. The rationale for it is to keep as
much information as possible in the partial consolidation.

Clearly enough, whenever ϕ is consistent, we have I(Oϕ) = ∅

so that Cp(ϕ) = ϕ. Now, in the general case when ϕ is inconsis-
tent, it is not always the case that the partial consolidation of a for-
mula is a consolidation of ϕ simply because it is not necessarily
consistent. Indeed, repairing the ”deepest” inconsistent subformu-
lae of ϕ is not always enough to get a consistent formula. Stepping
back to our running example, it is clear that the partial consolida-
tion �(∧(∧(^(p),�(∧(>,¬p))),^(¬(∧(p, q))))) is still inconsistent.
Thus, the partial consolidation process of ϕ must be pursued until a
consistent formula is reached. Formally:

Definition 4 (Consolidation). Let ϕ be a formula from L. The con-
solidation of ϕ for a weakening mechanism wm is the formula C(ϕ)
of L defined as Cmin

p (ϕ), where min is the least integer i such that
Ci

p(ϕ) = Ci+1
p (ϕ), and the sequence (Ci

p(ϕ))i∈N is defined by

• C0
p(ϕ) = ϕ,

• Ci+1
p (ϕ) = Cp(Ci

p(ϕ)).

where Cp(.) computes the partial consolidation of its argument for
wm.

The following proposition holds.

Proposition 1. Let ϕ be a formula from L. The consolidation C(ϕ)
of ϕ for any weakening mechanism wm is a consistent formula.

Proof. Given the condition imposed on wm, the fact that any valid
is consistent and that the repair process achieved by Cp consists in
replacing some inconsistent subformulae of the input formula by a
weakening of them, the termination condition Ci

p(ϕ) = Ci+1
p (ϕ) is

obtained when no replacement needs to be done in Ci
p(ϕ), which im-

plies that I(OCi
p(ϕ)) = ∅. In this case, Ci

p(ϕ) is consistent hence so is
C(ϕ). �

Another important concept to be taken into account in a partial
consolidation process is monotonicity. Monotone modal formulae
from L are those not involving any occurrence of the negation con-
nective. In the following, one needs a notion of monotone subset of
occurrences of a formula:

Definition 5 (Monotonicity). Let ϕ be a formula from L. A prefix-
closed subset S of Oϕ is monotone iff no element o of S is such that
l(o, ϕ) = ¬.

Example 6 (cont’ed). {ε, 1, 11, 111} is prefix-closed but
{11, 111, 112} is not. {ε, 1, 11, 111} is monotone, while the
prefix-closed subset of Oϕ given by {ε, 1, 12, 121} is not.

It can be observed that weakening any strict subformula ϕ′ occur-
ring at o , ε in a formula ϕ such that l(ε, ϕ) = ¬ does not ensure that
the consistency of the overall formula has been restored when there
exists a strict prefix o′ of o such that o′ < I(Oϕ). This is the case what-
ever the weakening mechanism at hand, especially when it is dwm.
For instance, consider the inconsistent formula ϕ = ¬(∨(¬>,>): ϕ is
inconsistent, I(Oϕ) = {ε, 11}, but the formula ¬(∨(>,>) obtained by
replacing ϕ11 by > in ϕ still is inconsistent.

However, we can demonstrate that applying partial consolidation
cannot produce such a spurious situation since a replacement can
occur only at an occurrence belonging to a prefix-closed subset of the
set of occurrences where inconsistent subformulae of ϕ are rooted.
Hence:

Proposition 2. ∀o ∈ max(PC(I(Oϕ)),v), o has no strict prefix o′

such that l(ϕ, o′) = ¬.

Proof. By definition R(ϕ) is a subset of PC(I(Oϕ)). Let us show that
@o ∈ PC(I(Oϕ)) such that o′ @ o and l(ϕ, o′) = ¬. Towards a contra-
diction: let us suppose that such a word o′ exists. From the definition
of a prefix-closed set, PC(I(Oϕ)) is closed iff each strict prefix of o is
included in PC(I(Oϕ)). Thus, o′.1 belongs to PC(I(Oϕ)) and then to
I(Oϕ). Consequently, ϕo′ .1 is inconsistent, so that ¬ϕo′ .1 is valid. This
contradicts our assumption that o′ ∈ PC(I(Oϕ)). �

4 A CONSOLIDATION ALGORITHM
In this section, we present a two-step algorithm to consolidate an
inconsistent modal formula ϕ. The first step consists in computing
the set of occurrences R(ϕ) that need to be repaired. A naive way
to generate this set would consist in first computing I(Oϕ), then fil-
tering out from it the set PC(I(Oϕ)), and the set of occurrences of
PC(I(Oϕ)) which are maximal w.r.t. the prefix-order. However, in
practice, checking the consistency of a modal formula is often com-
putationally expensive, hence it makes sense to avoid testing the
consistency of every subformula of ϕ. Especially, from the previous
sections, one knows that testing the consistency of any subformula
rooted at an occurrence not belonging to a prefix-closed subset of
I(Oϕ) is useless.

These observations allow us to design a depth-first search proce-
dure (Algorithm 1) to recursively computing the set of occurrences
that need to be repaired (i.e., those corresponding to the subformu-
lae to be weakened). The following proposition states that RS returns
precisely the set of all the inconsistent prefix-closed occurrences of
its input formula.

Proposition 3. Let ϕ ∈ L. RS(ϕ) = R(ϕ).

Proof. Let us prove that RS(ϕ) computes R(ϕ) by induction on ϕ.

Base case: Suppose that ϕ is consistent. In this case, I(Oϕ) = ∅

and then R(ϕ) is empty. In the case when ϕ is consistent, RS(ϕ) also
returns an empty set (line 1) so that RS(ϕ) = R(ϕ).

Induction step: Now let us reason on the structure of an inconsis-
tent ϕ and let us consider the different cases:

1. If ϕ = ¬(ϕ1) is inconsistent, then R(ϕ) = {ε}. Indeed, ¬(ϕ1) is in-
consistent iff ϕ1 is valid. In such a case, the occurrence 1 does not
belong to I(Oϕ) and then PC(I(Oϕ)) cannot contain an occurrence
that starts by 1 (otherwise, it would not be closed). Since all oc-
currences of ϕ start by 1, the only remaining occurrence is {ε}. As
we can see RS(ϕ) also returns {ε} (line 2) and then RS(ϕ) = R(ϕ);

2. If ϕ = �(ϕ1) or ϕ = ^(ϕ1) are inconsistent, then two cases have
to be considered:

(a) The first case is quite similar to the previous one: if ϕ1 is con-
sistent then 1 does not belong to I(Oϕ) so R(ϕ) = {ε} (by con-
struction all occurrences of ϕ start by 1). Now, if we observe
the algorithm we can see that RS(ϕ) also equals {ε} (line 4);

(b) Now, if ϕ1 is inconsistent, then we have to show that R(ϕ) can
be generated as the set of occurrences 1.o where o belongs to
R(ϕ1). First, by construction of I, we have that if o′ ∈ I(Oϕ1 ),
then 1.o′ ∈ I(Oϕ). Conversely, ∀o ∈ I(Oϕ) \ {ε}, we have that
o = 1.o′ and o′ ∈ I(Oϕ1 ). Indeed, any inconsistent sub-formula
of ϕ1 rooted at o′ also is a sub-formula of ϕ rooted at 1.o′. Since
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1 ∈ I(Oϕ), if o′ ∈ PC(I(Oϕ1 )), then 1.o′ ∈ PC(I(Oϕ)). Towards
a contradiction: if 1.o′ < PC(I(Oϕ)), then ∃1.o′′ v 1.o′ such
that 1.o′′ < I(Oϕ). Then, we have shown that o′′ ∈ I(Oϕ1 ) if
and only if 1.o′′ ∈ I(Oϕ), thus o′′ < I(Oϕ). Because o′′ v o′,
by definition of a prefix-closed set, we get that o′ < PC(I(Oϕ1 ),
that contradicts our assumption. Similarly, we can show that
∀o′ ∈ R(ϕ1) we have 1.o′ ∈ R(ϕ). Indeed, if two occurrences o1

and o2 are such that o1 v o2, then 1.o1 v 1.o2. Consequently,
if o′ is a maximal element in PC(I(Oϕ1 )) w.r.t. v, then 1.o′ is
a maximal element of PC(I(Oϕ)) w.r.t. v. If we consider again
the algorithm we can see that RS(ϕ) = 1×RS(ϕ1) (line 5), then
by induction hypothesis RS(ϕ1) = R(ϕ1) and then RS(ϕ) = 1 ×
R(ϕ1) = R(ϕ) which is the expected result;

3. If ϕ = ∨(ϕ1, ϕ2) is inconsistent, then at least one of the two
sub-formulae ϕ1 and ϕ2 must be repaired. To avoid making an
arbitrary choice, we have decided to repair both of them.5 Us-
ing a similar reasoning process as the one considered for modal-
ities, we can show that ∀o′ ∈ R(ϕ1) we have 1.o′ ∈ R(ϕ) and
∀o′ ∈ R(ϕ2) we have 2.o′ ∈ R(ϕ). First, ∀o′ ∈ I(Oϕ1 ) we have
1.o′ ∈ I(Oϕ) and ∀o′ ∈ I(Oϕ2 ) we have 2.o′ ∈ I(Oϕ). Then, since
{1, 2} ⊆ I(Oϕ), ∀o′ ∈ PC(I(Oϕ1 )) we have 1.o′ ∈ PC(I(Oϕ))
and ∀o′ ∈ PC(I(Oϕ2 )) we have 2.o′ ∈ PC(I(Oϕ)). Because
((1 × PC(I(ϕ1)))) ∩ ((2 × PC(I(ϕ2)))) = ∅, the maximal occur-
rences w.r.t. v are the union of those taken in each set indepen-
dently. Thus,

R(ϕ) = max((1 × PC(I(Oϕ1 ))) ∪ (2 × PC(I(Oϕ2 ))),v)
= max((1 × PC(I(Oϕ1 ))),v) ∪ max((2 × PC(I(Oϕ2 ))),v)
= (1 × R(ϕ1)) ∪ (2 × R(ϕ2));

If we consider the algorithm we have RS(ϕ) = (1×RS(ϕ1))∪ (2×
RS(ϕ2)) (line 7). By induction hypothesis RS(ϕi) = R(ϕi) and then
RS(ϕ) = R(ϕ);

4. If ϕ = ∧(ϕ1, ϕ2) is inconsistent, then three cases have to be con-
sidered:

(a) The first case is when both subformulae ϕ1 and ϕ2 are con-
sistent. In this case, we have ({1, 2} ∩ I(Oϕ)) = ∅ so that
PC(I(Oϕ)) = {ε}. Thus PC(I(Oϕ)) = {ε} necessary implies that
R(ϕ) = {ε}. Now, let us consider the algorithm. If both sub-
formulae are satisfiable, then both conditions line 10 and line
11 are not satisfied. Consequently, since w is initially set to ∅
and it does not change, then w = ∅ and the condition line 12 is
satisfied. Thus RS(ϕ) = {ε} = R(ϕ);

(b) The second case is when only one of the two subformulae ϕ1

and ϕ2 is inconsistent. Without loss of generality, let us suppose
that ϕ1 is inconsistent. If ϕ1 is inconsistent, then ∀o′ ∈ I(Oϕ1 )
we have 1.o′ ∈ I(Oϕ). Similarly to what we did for the modal-
ities, since 1 ∈ IOϕ , it is the case that ∀o′ ∈ PC(I(Oϕ1 )) we
have 1.o′ ∈ PC(I(Oϕ)) (see case 3). We can conclude that
o = 1.o′ ∈ R(ϕ) if and only if o′ ∈ R(ϕ1). If we consider
the value returned by the algorithm RS we can see that, since
the condition line 10 (ϕ2 is inconsistent) is satisfied and the
condition line 11 (ϕ2 is consistent) and line 12 (w cannot be
empty since it is set to 1 × RS(ϕ1) line 10) are not satisfied,
then RS = 1 × RS(ϕ1). By induction hypothesis, we have
RS(ϕ1) = R(ϕ1). Thus, RS(ϕ) = 1×RS(ϕ1) = 1×R(ϕ1) = R(ϕ).
A similar reasoning can be done for the case when ϕ2 is the sole
subformula that is inconsistent.

(c) Finally, let us consider the case when both subformu-

5 Other repair strategies can be considered, for instance, by first repairing ϕ1,
and then ϕ2 only if needed, or vice-versa.

lae ϕ1 and ϕ2 are inconsistent. As for the previous case,
because both subformulae correspond to occurrences
that start with different initials, we can conclude that:

R(ϕ) = max((1 × PC(I(Oϕ1 ))),v) ∪ max((2 × PC(I(Oϕ2 )))
= (1 × R(ϕ1)) ∪ (2 × R(ϕ2))

Again, if we consider the algorithm, since both subformu-
lae are consistent the conditions line 10 and line 11 are
satisfied ϕ and condition line 12 is not satisfied (w is
set to something different to ∅ line 10 and line 11), then
RS = (1 × RS(ϕ1)) ∪ (2 × RS(ϕ2)). By induction hypothesis,
we have RS(ϕ1) = R(ϕ1) and RS(ϕ2) = R(ϕ2). Consequently,
RS(ϕ) = (1×RS(ϕ1))∪(2×RS(ϕ2)) = (1×R(ϕ1))∪(2×R(ϕ2)) =

R(ϕ).

�

Algorithm 1: Inconsistent prefix-closed set extraction
RS(ϕ a formula from L): a set of words

1 if ϕ is satisfiable then return ∅;
2 if ϕ = ¬(ϕ1) then return {ε};
3 if ϕ = �(ϕ1) or ϕ = ^(ϕ1) then
4 if ϕ1 is consistent then return {ε};
5 return 1 × RS (ϕ1)

6 if ϕ = ∨(ϕ1, ϕ2) then
7 return (1 × RS (ϕ1)) ∪ (2 × RS (ϕ2))

8 if ϕ = ∧(ϕ1, ϕ2) then
9 ω←∅;

10 if ϕ1 ≡ ⊥ then ω← 1 × RS (ϕ1);
11 if ϕ2 ≡ ⊥ then ω← ω ∪ (2 × RS (ϕ2));
12 if ω = ∅ then return {ε};
13 return ω;

Algorithm 2: Consolidation
Repair(ϕ a formula from L, wm a weakening mechanism): a
formula from L
1 ϕ′←ϕ;
2 while ϕ′ is inconsistent do
3 ω← RS (ϕ′);
4 foreach o ∈ ω do
5 ϕ′← ϕ′ where ϕ′o has been replaced by wm(ϕ′o);

6 return ϕ′;

Once the set of occurrences that need to be repaired has been com-
puted, it is easy to design an iterative method that computes a consol-
idated formula. This method, given by Algorithm 2, starts by copying
the formula ϕ in ϕ′ (line 1). Then, while ϕ is inconsistent, a repairing
set ω is computed using the Repair-Set function (line 3) and each
subformula ϕ′o, with o ∈ ω, is weakened using wm (lines 4–5). Fi-
nally, the consolidated formula ϕ′ is returned (line 6) after a finite
number of calls to RS. The following proposition shows that the al-
gorithm terminates and returns the consolidation C(ϕ).

Proposition 4. Repair(ϕ,wm) terminates and returns the consolida-
tion C(ϕ) of ϕ for wm.

Sketch. Let us show that Repair(ϕ,wm) terminates after a finite num-
ber of steps and returns a consolidation of ϕ. The algorithm termi-
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nates once the condition at line 2 is false, that is ϕ′ is no more incon-
sistent. Because Prop.3, the operations done at lines 4–5 exactly con-
sist in computing Cp(ϕ′) for the weakening mechanism wm. Then, at
each step Cp(ϕ′) is stored in ϕ′ and the process is repeated. Conse-
quently, if we consider Ci

p(ϕ′) the formula obtained at the ith iteration
of the while loop, then the next iteration will compute Cp(Ci

p(ϕ′)).
Because, ϕ′ is set to ϕ (C0

p(ϕ′) in Def.4), after min steps we exactly
compute the partial consolidation of ϕ for wm (Cmin

p (ϕ′) in Def.4).
Prop.1 ensures that the resulting formula will be consistent and then
the algorithm will terminate after a finite number of steps and it will
return the consolidation of ϕ for the weakening mechanism wm. �

Let us now present some properties offered by the consolidated
base computed using Repair.

Proposition 5. Let ψ = Repair(ϕ,wm).

1. If ϕ is consistent, then ψ = ϕ

2. Repair(α ∧ β,wm) ≡ Repair(β ∧ α,wm)
3. Repair(α ∨ β,wm) ≡ Repair(β ∨ α,wm)

Proof. Let us consider each point separately:

1. Since ϕ′ = ϕ (line 1), if ϕ is consistent then Repair does not con-
sider the while loop (lines 2–5). In such a case, the function returns
ϕ′ = ϕ = ψ (line 6);

2. Given S an non-empty prefix-closed subset of I(Oϕ), let CS (ϕ) be
the formula obtained by replacing in ϕ every subformula occurring
at some o ∈ S by >. To prove the statement, it is enough to show
that CRS(ϕ1∧ϕ2)(ϕ1 ∧ ϕ2) ≡ CRS(ϕ2∧ϕ1)(ϕ2 ∧ ϕ1). Five cases have to
be considered:

(a) ϕ1∧ϕ2 is consistent: in this case, RS(ϕ1∧ϕ2) = ∅ = RS(ϕ2∧ϕ1).
Consequently, CRS(ϕ1∧ϕ2)(ϕ1 ∧ ϕ2) ≡ CRS(ϕ2∧ϕ1)(ϕ2 ∧ ϕ1) holds;

(b) ϕ1 is consistent and ϕ2 is consistent. In such a case, RS(ϕ1 ∧

ϕ2) = {ε} = RS(ϕ2 ∧ ϕ1). Consequently, CRS(ϕ1∧ϕ2)(ϕ1 ∧ ϕ2) ≡
CRS(ϕ2∧ϕ1)(ϕ2 ∧ ϕ1) holds;

(c) ϕ1 is consistent and ϕ2 is not consistent. In such a case,
RS(ϕ1 ∧ϕ2) = 2×RS(ϕ2) and RS(ϕ2 ∧ϕ1) = 1×RS(ϕ2). Thus,
CRS(ϕ1∧ϕ2)(ϕ1∧ϕ2) = ϕ1∧CRS(ϕ2)(ϕ2) since RS(ϕ1∧ϕ2) does not
contain occurrences of sub-formulae of ϕ1. Similarly, we have
CRS(ϕ2∧ϕ1)(ϕ2 ∧ ϕ1) = CRS(ϕ2)(ϕ2) ∧ ϕ1. Consequently, since ∧
is commutative then CRS(ϕ1∧ϕ2)(ϕ1 ∧ ϕ2) ≡ ϕ1 ∧ CRS(ϕ2)(ϕ2) ≡
CRS(ϕ2)(ϕ2) ∧ ϕ1 ≡ CRS(ϕ2∧ϕ1)(ϕ2 ∧ ϕ1);

(d) ϕ1 is not consistent and ϕ2 is consistent: similar to the previous
case;

(e) ϕ1 and ϕ2 are inconsistent: in this case, RS(ϕ1 ∧ ϕ2) = (1 ×
RS(ϕ1)) ∪ (2 × RS(ϕ2)) and RS(ϕ2 ∧ ϕ1) = (1 × RS(ϕ2)) ∪
(2×RS(ϕ1)). Consequently, CRS(ϕ1∧ϕ2)(ϕ1 ∧ϕ2) ≡ CRS(ϕ1)(ϕ1)∧
CRS(ϕ2)(ϕ2) ≡ CRS(ϕ2)(ϕ2) ∧CRS(ϕ1)(ϕ1) ≡ CRS(ϕ2∧ϕ1)(ϕ2 ∧ ϕ1).

The previous result shows that at each iteration in the while loop,
whatever ϕ1 ∧ ϕ2 or ϕ2 ∧ ϕ1 is considered as input, an equivalent
ϕ′ is obtained as an output. Consequently, we can conclude that
Repair(α ∧ β, dwm) ≡ Repair(β ∧ α, dwm) holds;

3. Similarly to the previous point, to prove this statement it is enough
to show that CRS(ϕ1∨ϕ2)(ϕ1 ∨ ϕ2) ≡ CRS(ϕ2∨ϕ1)(ϕ2 ∨ ϕ1). Here only
two cases have to be considered:

(a) if ϕ1 ∨ ϕ2 is consistent then RS(ϕ1 ∨ ϕ2) = ∅ = RS(ϕ2 ∨ ϕ1).
Consequently, CRS(ϕ1∨ϕ2)(ϕ1 ∨ ϕ2) ≡ CRS(ϕ2∨ϕ1)(ϕ2 ∨ ϕ1) holds;

(b) if ϕ1 ∨ ϕ2 is not consistent then RS(ϕ1 ∨ ϕ2) = (1 × RS (ϕ1)) ∪
(2 × RS (ϕ2)) and RS(ϕ2 ∨ ϕ1) = (1 × RS (ϕ2)) ∪ (2 × RS (ϕ1)).

Figure 3: Runtime of Comté and MoSaiC
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Consequently, since ∨ is commutative then CRS(ϕ1∨ϕ2)(ϕ1 ∨

ϕ2) ≡ CRS(ϕ1)(ϕ1) ∨ CRS(ϕ2)(ϕ2) ≡ CRS(ϕ2)(ϕ2) ∨ CRS(ϕ1)(ϕ1) ≡
CRS(ϕ2∨ϕ1)(ϕ2 ∨ ϕ1).

Consequently, we can conclude that Repair(α ∨ β, dwm) ≡
Repair(β ∨ α, dwm) holds.

�

Let us now present some additional properties offered by the con-
solidated base computed using Repair when the drastic weakening
mechanism dwm is used.

Proposition 6. Let ψ = Repair(ϕ, dwm).

1. Oψ ⊆ Oϕ

2. If o ∈ Oϕ \ Oψ, then o ∈ I(Oϕ), o has not strict prefix o′ such that
l(ϕ, o′) = ¬ and o has not strict prefix o′′ such that l(ψ, o′′) = >

Proof. 1. As stated by Prop.3, RS(ϕ) = R(ϕ) = max(PC(I(Oϕ)),v)
which is an inconsistent prefix-closed set ϕ. Since the function
Repair only replaces subformulae from ϕ′ occurring at some
o ∈ R(ϕ′), then we can only remove occurrences from ϕ′. Con-
sequently, since ϕ′ is set to ϕ (line 1) and ψ = ϕ′ at the end of the
procedure, Oψ ⊆ Oϕ holds;

2. Because RS compute a partial consolidation (see Prop.3) and
Prop.2, it is clear that if o ∈ Oϕ \ Oψ, then o ∈ I(Oϕ), o has not
strict prefix o′ such that l(ϕ, o′) = ¬ and o has not strict prefix o′′

such that l(ψ, o′′) = >;
�

It must be kept in mind here that no full syntax independence can
be obtained whatever the approach when one wants to avoid the triv-
ialization of inference; otherwise, any inconsistent ϕ could be re-
placed by the equivalent formula ⊥ from which, obviously, no rele-
vant conclusion can be drawn).

5 EXPERIMENTAL EVALUATION
In this section, we report and comment some empirical results about
the performance of our consolidation method. The datasets we con-
sidered in our experiments are the benchmarks reported in [24, 25].
They consist of modal logic formulae, that are inconsistent when in-
terpreted in K, KT, or S4. These benchmarks are known in the com-
munity under the names: Logic WorkBench (LWB) [4], MQBF [27],
and 3CNF [29]. They have already been split into consistent/incon-
sistent formulae. Furthermore, it is known that inconsistency in K
implies inconsistency in KT and S4 and that inconsistency in KT
implies inconsistency in S4. In total, 2454 benchmarks consisting of
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Figure 4: Size of the consolidation vs. size of the input formula
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inconsistent formulae in modal logic have been considered in our em-
pirical study. The hardness of a consistency test does not only lie in
the number of variables involved, but the way modalities are nested
has a huge impact. For example, the MQBF family consists of for-
mulae with only one variable, while the minimum (resp. maximum,
average±std) modal depth in the family is 19 (resp. 225, 69.2±47.5).

We have developed a C++ tool, called Comté (COnsolidation
Modal Tool), that implements our consolidation method. 6 Comté
can deal with any normal modal logic as long as a modal logic K?
oracle for deciding the consistency of any formula is provided. We
have chosen to take advantage of MoSaiC [25, 23] as a modal logic
K? oracle. The experiments have been carried out on a Xeon 4-core,
3.3 GHz, running CentOS 7.0, with a memory limit set to 32GiB.
The runtime limit was set to 900 seconds per benchmark.

Figures 3 is about the computation time required to test the K-
consistency (resp. KT-consistency, S4-consistency) of a formula us-
ing MoSaiC and to consolidate it using Comté. For each task, the
number of instances (on the x-axis) that have been “solved” given an
amount of time (reported on the y-axis) is reported. In general, the
time needed to consolidate a formula is significantly larger than the
time needed to decide the consistency of the instance.

Each dot in Figure 4 represents an instance where the x-coordinate
indicates the size of the initial formula and the y-coordinate gives
the size of the resulting consolidated formula. Logarithmic scales are
used here for both coordinates. A dot on the diagonal means that the
consolidation process did not change the formula. It can be observed
that all dots are extremely close to the diagonal. This shows that in
the input instances, only few inconsistencies occur and they are ”far
from the root” (they correspond to subformulae which occur deeply
in the input). Once these subformulae are spotted and repaired, the
formula becomes consistent.

The ratio between the the size of the input formula and the con-
solidated formulae can be viewed as an inconsistency measure, i.e., a
quantity which is meant to tell how inconsistent the formula is, sim-
ilarly to what has been done in [7] in the case of propositional logic
(see [1, 14, 35] for more information about inconsistency measures).

The minimal ratio (consolidated−size)
(input−size) is equal to 0.4491%. This means

that after consolidation, recovering consistency may require the loss
of much information from the input formula. However, the instances
for which this minimal ratio is obtained are rare, namely the first
quartile, the median value and the third quartile are respectively equal
to 98.74%, 98.21% and 99.99%. This confirms the intuition that the
inconsistency of the formulae considered in the experiments is typ-
ically caused by few and very small inconsistent subformulae. For

6 Comté is available on http://www.cril.fr/∼montmirail/modal-consolidation/.

Figure 5: Number of oracle calls
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these cases, our consolidation approach permits to preserve a lot of
information from the input. Obviously, there is no formula leading to
a ratio equal to 100%, because only inconsistent formulae have been
considered in the experiments.

#Oracle #Repairs Runtime (s)

3CNF 58.32 42.39 52.61
MQBF 71.41 45.09 53.25
LWB-K 41.26 18.88 84.07
LWB-KT 38.74 21.03 81.54
LWB-S4 39.95 25.20 41.09

Table 1: Number of calls to the consistency oracle, number of repairs
and runtime for computing the consolidation (average values).

Figure 5 reports a scatter plot that gives the number of oracle calls
performed by Comté (y-axis) against the number of calls that would
be performed by a naive procedure that would have considered all
the subformulae (x-axis). Logarithmic scales are used for both coor-
dinates. It can be observed that all dots are way below the diagonal,
which means that the computation of the consolidated formula re-
quires with very few calls to MoSaiC. Table 1 gives additional statis-
tics regarding the experiments.

6 CONCLUSION
We have presented a new approach for consolidating modal logic
formulae. This approach consists in weakening some of the incon-
sistent subformulae of the input formula in an iterative fashion. It
ensures that the the consolidated base is classically consistent. It also
guarantees this base to coincide with the input when the latter is con-
sistent. Large-scale experiments have been conducted, showing that
the approach is practical for instances of reasonable sizes.

In our approach, many weakening mechanisms can be used.
Though we focused on the drastic one in the experiments (for the
sake of simplicity), other choices, preserving more information,
could have been considered instead. For instance, a weakening mech-
anism suited to KT and to S4 consists in replacing in an inconsistent
formula ϕ the connective occurring at ε by ∨ when l(ε, ϕ) = ∧, the
modality occurring at ε by ^ when l(ε, ϕ) = �, and the formula ϕ
by > otherwise. Clearly enough, this weakening mechanism is less
drastic than dwm. A perspective for further research consists in ex-
perimenting our approach to consolidation when equipped with such
weakening mechanisms in order to determine the extent to which
they lead to preserve more information in practice than our approach
equipped with dwm.

7



REFERENCES

[1] Meriem Ammoura, Badran Raddaoui, Yakoub Salhi, and Brahim
Oukacha, ‘On measuring inconsistency using maximal consistent sets’,
in Symbolic and Quantitative Approaches to Reasoning with Uncer-
tainty - 13th European Conference, ECSQARU 2015, Compiègne,
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