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Abstract. This paper investigates an approach for reasoning under
inconsistency in a "local" way,  in prioritized knowledge bases. In such
bases, the higher the layer, the more certain, the more reliable are the
formulas stored in this layer. The proposed approach is based on the notion
of (consistent) argument whose strength depends on the layer of the least
certain formulas involved in the argument. Each formula in the base is also
associated with a "level of paraconsistency" which reflect to what extent
there exists arguments that support both a formula and its negation. Three
consequence relations are presented and compared. Two of them aim at
maximizing the certainty degree and/or at minimizing the level of para-
consistency of the conclusion. The third one produces consequences that
are safely supported in the sense that there exists an undefeated argument
for them (whose certainty is  greater than its paraconsistency).

1. Introduction

Inconsistency may appear when a plausible consequence, obtained under incomplete
information, has to be revised because further information is available. This issue has
been extensively investigated in the nonmonotonic reasoning literature. In this paper
we rather view inconsistency as being caused by the use (and the fusion) of multiple
sources of information. Even if each source i of information provides a consistent
knowledge base Ki, it may often happen in practice that the result of concatenating the

Ki will be inconsistent. In such a situation, we further assume that the knowledge

bases Ki store "regular" pieces of information rather than default rules liable to have

explicit exceptions. In this paper, we will only deal with one inconsistent and
prioritized (or if we prefer, stratified) knowledge base, denoted by ∑, which can be seen
as the result of putting together several consistent knowledge bases. In this context,
the introduction of priorities between pieces of information in ∑ can be explained by
the two following scenarios:

- Each consistent knowledge base Ki, issued from a source of information, is "flat"

(i.e., without any priority between their elements). But there is a total pre-ordering
between the sources of information according to their reliability. In this case merging
different sources of information leads to a prioritized knowledge base ∑, where the
certainty level of each formula reflects the reliability of the (best) source which
provides it. A particular case is when each piece of information in ∑ is supported by a
different source.

- All sources of information are equally reliable (and thus have the same level of
reliability), but inside each consistent knowledge base Ki there exists a preference

relation between pieces of information given by an expert, which rank-orders them
according to their level of certainty. Here again, the combination of the different
sources of information gives an uncertain knowledge base, provided that the scales of
uncertainty used in each knowledge base Ki are commensurate.

In this paper, we only consider a finite propositional language denoted by L. The

symbol ; represents the classical consequence relation, Greek letters α,β,δ,…,φ,



ψ ,χ,… represent formulas. Let ∑ be a set of propositional formulas, possibly
inconsistent but not deductively closed. This paper deals with layered knowledge bases
of the form ∑=S1∪…∪Sn.

Possibilistic logic (e.g., [6]) offers a way of deriving non-trivial conclusions from
an inconsistent knowledge base by taking advantage of the stratification of the base
∑= S1∪…∪Sn where formulas in Si are considered as strictly more certain than the

ones in Sj if j>i. This stratification is modelled in possibilistic logic [6] by attaching

a weight a∈[0,1] to each formula with the convention that (φ ai)∈Si, ∀i and a1=1>

a2>…>an>0; for instance take aj=1/j. From now on, we will use a possibilistic

representation of prioritized knowledge bases. A level of (partial) inconsistency for the
base is computed as the level aj+1 such that S1∪…∪Sj is consistent but S1∪…

∪Sj+1 is not (consistency of ∑ corresponds to inconsistency of level 0). The

conclusions derived from S1∪… ∪Si with ai strictly greater than the level of

inconsistency are considered as well-grounded, since they are above the inconsistency
level of ∑ where inconsistency occurs, and more precisely since they can be logically
deduced (in a non trivial way) using the most reliable part of ∑ only. Although
possibilistic reasoning can be successfully used for handling default information [1], it
has two limitations for reasoning under inconsistency. Namely, formulas which do
not take part to the inconsistency of the base but which have a level of certainty
smaller or equal to the level of inconsistency of the base are not used in the inference
process. Moreover, the user receives no information on the levels of certainty (smaller
or equal to the level of inconsistency) of the formulas (if any) which contradict some
of the formulas used for deriving the conclusion under consideration. The approach
presented in this paper remedies these limitations. More precisely, the paper
investigates three consequence relations capable of inferring non-trivial conclusions
from an inconsistent knowledge base. In each case a level of paraconsistency is
computed for each conclusion, which assesses to what extent there exists formulas
which are somewhat certain in the base and which contradict some of the formulas
used in the proof of the conclusion. These consequence relations treat inconsistency in
a local way, by contrast with most of the approaches developed in the literature which
work in a global way. See, e.g., Rescher & Manor[7]; Brewka[4]; Benferhat et al.[2].

The paper is organized as follows. Section 2 gives the background needed for the
reading of this paper. Section 3 introduces the three proposed inconsistency-tolerant
consequence relations which treat inconsistency in a local way. A comparative study
between these consequence relations is given in Section 4.

2. Background

Throughout this paper, we denote sub-bases by capital letters A,B,C… and they are
also represented in a stratified way. For the sake of simplicity, we will use the

notation A;ψ to denote that ψ is a logical consequence of the formulas of A when we
forget their weights. A sub-base A of ∑ is said to be consistent if it is not possible to

deduce a contradiction from A, i.e., Aq⊥.

Def. 1: A sub-base A of ∑ is said to be minimal inconsistent if and only if it

satisfies the two following requirements: i) A;⊥, and ii) ∀(φ a)∈A, A–{(φ a)}q⊥.

From now on, we denote by Inc(∑) the set of formulas belonging to at least one
minimal inconsistent sub-base of ∑, namely:

Inc(∑)={(φ a), ∃A⊆∑, such that (φ a) ∈ A and A is minimal inconsistent}.



When we remove from ∑ all elements of Inc(∑), the resulting base is called the free
base of ∑, denoted by Free(∑) [1]. In other words, the set Free(∑) contains all the
formulae, called free formulas, which are not involved in any inconsistency of the
knowledge base ∑. Clearly Free(∑) may be empty; Inc(∑)=Ø when ∑ is consistent.
We now give the notion of free-consequence:

Def. 2: A formula φ is said to be a free consequence of ∑, denoted by ∑;

 

Freeφ , if

and only if φ is logically entailed from Free(∑), namely: ∑ ;

 

Free φ iff Free(∑) ; φ .

It is not hard to see that the Free-inference relation is very conservative, since it
corresponds to a maximal revision of ∑, deleting all formulas involved in a conflict.
We finish this section by defining the notion of argument:

Def. 3: A consistent sub-base A of ∑ is said to be an argument to a degree a for a

formula φ  if it satisfies the following conditions: (i) A;φ, (ii) ∀ (ψ b)∈ A ,

A−{(ψ b)}qφ, and (iii) a=min {ai / (φi ai)∈A}.

An argument for φ is then a minimal consistent sub-base of ∑ which entails logically
φ (in the sense of possibilistic logic, which requires condition (iii)). Note that this
notion of argument is an extension of the one proposed by Simari and Loui [8]. These
authors apply the notion of arguments to default reasoning (arguments are used to
determine the relation of specificity between pieces of default information).

3. Local inconsistency-tolerant consequence relations

This section presents an approach to deal with inconsistent prioritized knowledge
bases in a "local" way and studies three consequence relations in this framework. As in
possibilistic logic, levels of priority or of certainty attached to formulas are used to
distinguish between strong and less strong arguments in favour of a proposition or of
its contrary. However it is possible to go one step further in the use of the certainty or
priority levels by i) attaching to each proposition φ in the knowledge base not only
its certainty weight a (obtained by computing the strongest argument in favour of φ in
the sense of possibilistic logic), but also the weight b attached to the strongest
argument in favour of ¬φ if any, and by ii) inferring from weighted premises such as
(φ a b) by propagating the weights a and b. It will enable us to distinguish between
consequences obtained only from "free" propositions in the knowledge base ∑ for
which b=0 (i.e., propositions for which there is no argument in ∑ in favour of their
negation), and consequences obtained using also propositions which are not free (for
which there exists also a weighted argument in favour of their negation even if the

latter has a smaller weight)1.
More formally, the idea is first to attach to any formula in the stratified knowledge

base ∑ two numbers a and b reflecting respectively the extent to which we have some
certainty that the formula is true and the extent to which we have some certainty that
the formula is false. When b=0 then φ is free since φ  is not involved in the
inconsistency of ∑ (otherwise there would exist an argument in favour of ¬φ). When
a≠0 and b≠0, φ is said to be paraconsistent. In the general case, we shall say that the
pair (φ ¬φ) has a level of "paraconsistency" equal to min(a,b). Classically and roughly
speaking, the idea of paraconsistency is to say that φ is paraconsistent if there is a
reason for stating both φ and ¬φ. It corresponds to the situation where we have
conflicting information about φ. This is why we speak here of paraconsistent

1 [5] already includes a brief suggestion of this approach by proposing an extension of the
possibilistic resolution principle, handling paraconsistency degrees.



information when min(a,b)>0, although the approaches presented in the following
depart from classical paraconsistent logics (see [3] for their extension of these logics
to the possibilistic framework). From now on, we denote by ∑' the set of triples (φ a

b) such that (φ ai) belongs to ∑, a is the weight attached to the strongest2 argument

in favour of φ and b is the weight attached to the strongest2 argument in favour of its
contrary ¬φ. When b≥a then φ is said to be defeated by some argument. In the other
case (a>b) φ is said to be an argumentative consequence of ∑ [2].

To see if a formula ψ is a plausible consequence of ∑, we first check if there is an
argument in favour of ψ in ∑. It is clear that if there is no argument in favour of ψ in
∑ then ψ cannot be a plausible consequence of ∑, since we have no reason to believe
ψ in ∑. Assume that we have an argument A in favour of ψ where all elements of A
are free formulas, then ψ can be considered as a plausible consequence of ∑ (i.e., ψ is
a free consequence of ∑). The situation differs if some elements of A are not free, and
here we must be more careful in our inference. Indeed, let φ be a formula in A (the
argument for ψ) such that there exists an argument in ∑ which supports ¬φ with a
certainty degree b higher than the one, a, of φ (namely φ is defeated), then the
conclusion ψ must not be longer considered as a plausible consequence of ∑, as soon
as, due to a<b, we do not consider φ as a plausible consequence of ∑ (although (φ a b)
is in ∑').

Once ∑' is constructed, we are going to associate two degrees to a conclusion ψ
derived from an argument A in ∑: Cert(A), called the certainty degree of ψ using A,
which just evaluates to what extent ψ is supported by an argument A, and Para(A),
called the paraconsistency degree of ψ using A, which evaluates our degree of doubt to
conclude ψ using A. These two measures are computed in the following way:

Cert(A)=min{ai|(φi ai bi)∈∑' and (φi a)∈A},

Para(A)=max{bi|(φi ai bi)∈∑' and (φi a)∈A}.

Cert(A) estimates the strength of argument A, and Para(A) its brittleness. In general,
we can have several arguments which support ψ and we denote the set of all pairs thus
obtained for ψ by:

 Label(ψ) = {(Cert(Ai), Para(Ai))| Ai is an argument for ψ}

From Label(ψ), we may think of two criteria to select the best argument for ψ: the
certainty degree and the paraconsistency degree induced by the argument. It is clear that
the best argument for ψ  is the one which allows to deduce ψ  with the highest
certainty degree and the lowest paraconsistency degree. But in general, such argument
does not always exist. Namely, we can have an argument for ψ with a high certainty
degree, but also with a high paraconsistency degree, and another for ψ with low
certainty and low paraconsistency. Then it is less obvious how to choose the best
argument. We may: first either minimize the paraconsistency degree of a conclusion,
or first maximize the certainty degree. These two possibilities lead to two definitions
of inconsistency-tolerant consequence relations that we examine now.

Minimizing paraconsistency: One way to select the best argument among those
which support ψ  is to give a preference to arguments which minimize the
paraconsistency degree of ψ. The knowledge base ∑ can be viewed as decomposed into
two sub-parts: the consistent (or free) sub-part, represented by Free(∑), and the
paraconsistent sub-part, represented by Inc(∑). In this approach, the best argument for
ψ is the one (if it exists) obtained from Free(∑) even if the certainty degree of ψ
induced by this argument is very low. If such argument does not exist in Free(∑), then

2 If there is an argument in favour of φ (resp. ¬φ) to a degree c (resp. d) then a≥c (resp. b≥d).



the best argument for ψ is obtained by i) using formulas from Free(∑) as much as
possible, ii) when necessary, using formulas from Inc(∑) with the lowest
paraconsistency degrees. More formally:

Def. 4: Let LabelPara(ψ) be the subset of Label(ψ) obtained by choosing the pairs

with the lowest paraconsistency value. Let (Cert(A), Para(A)) be a pair of
LabelPara(ψ) such that Cert(A) has the highest certainty value. Then ψ is said to be

PC-consequence of ∑ (PC: short for "first paraconsistency then certainty"), denoted by

∑;PCψ, iff Cert(A) > Para(A).

Maximizing certainty: There is another view to selecting the best argument for
ψ, where we prefer the argument which maximizes the certainty of ψ. This approach
agrees with the principle that the lower is the certainty degree of formulas in a given
argument, the lower is our degree of acceptation of the conclusion given by this
argument.

Def. 5: Let LabelCert(ψ) be the subset of Label(ψ) obtained by choosing pairs with

the highest certainty value. Let (Cert(A), Para(A)) be a pair in LabelCert(ψ) such that

Para(A) has the lowest paraconsistency degree. Then ψ is said to be a CP-consequence

of ∑ (CP: short for "first certainty then paraconsistency"), denoted by ∑;CPψ, iff
Cert(A)>Para(A).

Definition 5 can be explained in a simpler way: to check if a conclusion ψ is a CP-
consequence of ∑, first compute the greatest weight attached to the strongest
argument, say A, for ψ. Next, compute the paraconsistency degree b of ψ with respect
to A. Finally, if a>b then conclude that ψ is a CP-consequence of ∑. If the strongest
argument A is not unique, take the one with the smallest paraconsistency degree.

Proceeding level by level: In this sub-section, we present a third local inference
relation. We suggest that a formula ψ is a plausible consequence of ∑, if there exists a
degree a such that ψ is a free-consequence of a sub-base of ∑ composed of all formulas
of ∑ having a certainty degree higher or equal to a. It means that all formulas which
are involved in the entailment of ψ must be either free formulas or have a level of
paraconsistency less than a and thus less than the degree of certainty of ψ. More
formally, let ∑a={(φ b) | (φ b)∈∑ and b≥a} be the set of formulas of ∑ having a

certainty degree higher or equal to a, and Free(∑a) denotes the set of free formulas in

∑a. It is clear that Free(∑a) is different from (Free(∑))a, and more precisely we have

the following relation: (Free(∑))a ⊆ Free(∑a). Note also that there is no inclusion

relation between Free(∑a) and Free(∑b) where a>b. Indeed, since ∑a⊂∑b, ∑b may

include new free formulas but also some which contradict formulas which were free in
∑a. We define the inference relation that generates plausible results of ∑:

Def. 6: A formula ψ is said to be a safely supported consequence of ∑, denoted by

∑;SS ψ, if and only if there exists a positive number a such that ∑a ;Free ψ.

The degree of certainty of ψ is the greatest number a such that Free(∑a);ψ, namely

Cert(ψ)=max{a, ∑a;Free ψ}.

Thus, ∀b>Cert(ψ), ∑bq Free ψ. The paraconsistency degree of ψ is the lowest

paraconsistency degree induced by arguments supporting ψ in ∑Cert(ψ), namely:

Para(ψ) = min {Para(A)/ A⊆∑Cert(ψ) and A is an argument for ψ}.

Notice that if for a given degree c<Cert(ψ) we have ∑cqFree ψ, then there is no

longer a proof of ψ in ∑c made only of free formulas and that at least one of the



formulas, say φ, used in the free proof of ψ from ∑a is paraconsistent. However, this

does not mean that we have an argument for ¬ψ in ∑c, although there is an argument

for ψ in ∑c obviously. Indeed, consider the following counter-example: ∑={(φ a),(¬φ
a),(¬φ∨ψ a)}. It is clear that we have an argument for ψ in the knowledge base ∑, and
ψ is not a free-consequence of ∑, but we have no argument which supports ¬ψ.

The safely supported consequences can be described in terms of degrees Cert(A) and
Para(A) for arguments A:

Proposition 1: ∑;SS ψ iff there exists an argument A for ψ s.t. Cert(A)>Para(A).

Proof

Assume ∑ ;SS ψ , then let a=Cert(ψ) such that ∑a ;Free ψ . There is an

argument A for ψ in Free(∑a), and Cert(A)=a. Assume Para(A)>Cert(A). Then it

means that ∃(φ,a',b')∈∑', (φ,a')∈A, and b'>a. This means that there is in ∑ an
argument B of certainty b'>a that refutes φ . But this fact contradicts the
assumption that A⊂Free(∑a). Conversely suppose A is an argument for ψ and

Cert(A)>Para(A). It means that a=Cert(A)>max{bi,(φ,ai)∈A, (φ,ai,bi)∈∑'}. Hence

if B is an argument for ¬φ, B is not a subset of ∑a, and φ is free in ∑a. Hence

A⊆Free(∑a), and ∑a;Free ψ. y
Moreover the set of safely supported consequences of ∑ is consistent:

Proposition 2: Let K={ψ|∑ ;SS ψ}. Then the set of formulas K is consistent.

Lemma: The set of formulas ª i=1,n Free(∑ai
) is consistent.

Proof
Free(∑an

)=Free(∑) is consistent. Then Free(∑an-1
) ∪ Free(∑an

) is also consistent.

Indeed assume it is not the case, it means that ∃A⊆Free(∑an-1
), A∪Free(∑an

);⊥

where both A and Free(∑an
) are consistent. This contradicts the fact that Free(∑an

)

only contains free formulas in ∑an
 (since A⊂∑an

). More generally, assume

Free(∑ai
)∪…∪Free(∑an

)=F is consistent; let A⊆Free(∑ai-1
), and assume

A∪F;⊥. Let j be the smallest rank such that A∪Free(∑ai
)∪…∪ Free(∑aj

) is

inconsistent. This contradicts the fact that Free(∑aj
) only contains free formulas in

∑aj
 (since A⊆∑aj

 as well as Free(∑ai
)⊆∑aj

 for i≤j). y
Proof of Proposition 2

We use the previous lemma. Clearly for each φ in K, there exists an argument say

A(φ), in ª i=1,n Free(∑ai
). Therefore ªφ∈K A(φ)⊆ª i=1,n Free(∑an

) and hence

ªφ∈K A(φ) is consistent as well as its deductive closure. y
Notice that when the knowledge base is flat (i.e., without any priority between their
elements) the safely supported consequence relation as well as CP-consequence and
PC-consequence relations are equivalent to the free-consequence relation defined in
Section 2. Moreover, we can show that even if β  and δ are safely supported
consequences of ∑, their conjunction is not necessarily a safely supported consequence
of ∑. Indeed, let us consider the following counter-example where our knowledge base
is ∑={(α 1), (¬α∨β .9), (¬ρ∨δ .8), (ρ .7), (¬α .7)}. It is clear that β and δ are both

safely supported consequences of ∑ (since ∑.9;Freeβ and ∑.7;Freeδ), while β∧δ is

not since there is no a>0 such that ∑a;Freeβ∧δ. Indeed, a part of the argument



{(¬ρ∨δ .8), (ρ .7)} for δ (namely ρ) has a certainty not greater than the level of
paraconsistency of a part of the argument for β (namely α). This remark also holds for
PC-consequence and CP-consequence (we can use the same counter-example). The
failure of the "AND" property should not be a surprise when dealing with multi-source
inconsistent information.

4. Comparative study and discussion

We first start this section by comparing the three above-mentioned inconsistency-
tolerant consequence relations. To this aim we use the following example where the
knowledge base is: ∑ = {(φ a), (¬φ b), (¬φ∨ψ c), (χ d), (¬χ∨ψ e), (¬χ f)}.

Then: ∑'={(φ a b),(¬φ b a),(¬φ∨ψ max(b,c) 0),(χ d f),(¬χ∨ψ max(e,f) 0),(¬χ f d)}.

Notice that only the formulas ¬φ∨ψ and ¬χ∨ψ are free in ∑, all the others are
paraconsistent. We are interested in knowing if ψ can be deduced from ∑. We have:

Label(ψ) = {(min(a,c) b), (min(d,e) f))}
obtained using the following arguments respectively: A={(φ a), (¬φ∨ψ c)}, and B=
{(χ d), (¬χ∨ψ e)}. Then:

- Assume that a>c>b>f>d>e. Then minimizing the paraconsistency degree of the
conclusion ψ will lead to select B as the best argument for ψ, and since min(d,e)<f
then ψ  will not be PC-inferred. This result is somewhat debatable since in the
argument A, ψ is inferred from the two most certain formulas in ∑. In contrast, A is
the strongest argument for ψ  and hence ψ is a CP-consequence of ∑ (since
min(a,max(b,c))>b). More generally, if we have a pair (x y) with y>x and y is the
lowest paraconsistency degree in Label(ψ) then ψ is completely inhibited by PC-
consequence even if we have (1 z) in Label(ψ) with z slightly greater than y. Notice
from the example, that the PC-consequence relation does not recover all the
possibilistic consequences of the knowledge base (e.g., here ψ is a possibilistic
consequence of the knowledge base). In contrast, CP-consequences do recover all the
possibilistic consequences of the knowledge base.

- Assume that a>b>c>d>e>f then we obtain ψ as a plausible consequence of ∑ if
we first minimize the paraconsistency degree of ψ. In contrast, if we first maximize
the certainty degree, A is selected since A is the best argument of ψ in this case, but
ψ is no longer inferred since b>min(a,max(c,b)). This result is somewhat debatable
especially if the certainty degree of ¬χ is very low. And more generally, if we have a
pair (x y) with y>x and x is the highest certainty degree in Label(ψ) then ψ  is
completely inhibited by CP-consequence even if we have (z 0) in Label(ψ) (namely a
free proof for ψ with z<x).

- Notice that in the two above cases, ψ is a safely supported consequence of ∑
when we apply the third approach. Indeed, ∑c={(φ a), (¬φ∨ψ c)};Free ψ in the first

case, and ∑e={(φ a), (¬φ b), (¬φ∨ψ c), (χ d), (¬χ∨ψ e)};Free ψ in the second case.

Indeed Cert(A)>Para(A) in the first case and Cert(B)>Para(B) in the second case. The

following proposition generalizes this remark and shows that ;SS produces more

results than ;PC and ;CP.

Proposition 3: If ∑ ;PCψ (resp. ∑ ;CPψ) then ∑ ;SS ψ.

Proof

Indeed, if ψ is a PC-consequence (or a CP-consequence) of ∑ then there exists an

argument A for ψ in ∑ such that a=Cert(A)>Para(A). Then use Proposition 1. y
Furthermore, in [2] we have shown that ;SS recovers all the possibilistic

consequences of ∑. Using Proposition 1 we can show that if there is in Label(ψ) a



pair (a b) with a>b then ∑ ;SS ψ. This means that it cannot be that both ψ and ¬ψ
are PC-consequence or CP-consequence of ∑. Indeed, assume that both ψ and ¬ψ are
PC-consequences of ∑, namely there is a pair (a b)∈Label(ψ) with a>b, and a pair (c
d)∈Label(¬ψ) with c>d, therefore using the remark above both ψ  and ¬ψ are
paraconsistent consequences of ∑, and this is not possible using Proposition 2.
Moreover, as suggested by the previous examples, we may have (a b)∈Label(ψ) with
a>b (in this case ψ is a safely supported consequence), while ψ is neither a CP-
consequence nor a PC-consequence of the knowledge base. Indeed, it is sufficient to
imagine a situation where Label(ψ)={(a+ε,1),(a,b),(ε',b-ε")} with 1>a>b>b-ε"≥ε'.

5. Conclusion

This paper has investigated a local approach to deal with inconsistency. Three
consequence relations have been proposed and all are safe, namely we cannot have
inconsistent sets of consequences of the knowledge base. Moreover, we have shown
that only two of the consequence relations (CP-consequence and safely supported
consequence relations) recover all the possibilistic results. On the other hand, the
safely supported consequence relation generates more results than the CP-consequence,

and hence ;SS seems to be a better approach to deal with inconsistency in a local

way. Besides, in [2] we have shown that the so-called preferred sub-theories approach
[4] generates more results than the safely supported consequence relation. However,
some results given by preferred sub-theories may be debatable in a multi-source
inconsistency reasoning perspective, as we can see in the following example: ∑={(φ
1.), (¬φ .9), (¬φ∨ψ .8)}. Here ψ is a plausible consequence of ∑ using the preferred
sub-theories approach (since we remove simply ¬φ from the knowledge base)
although the paraconsistency degree of ψ is greater than its certainty. The consequence

relation ;SS which is based on undefeated arguments (since the inference requires the

existence of a "free" argument) seems to be more satisfactory for reasoning with
(possibly inconsistent) information coming from different sources. Lastly in [2] it is
established that if the set of safely supported consequences of ∑ is completed by
deductive closure, then the obtained closed set is the set of possibilistic consequences
of the intersection of all preferred sub-bases in the sense of Brewka [4].
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