N

N

Independence in Qualitative Uncertainty Frameworks
Nahla Benamor, Salem Benferhat, Didier Dubois, Hector Geffner, Henri Prade

» To cite this version:

Nahla Benamor, Salem Benferhat, Didier Dubois, Hector Geffner, Henri Prade. Independence in
Qualitative Uncertainty Frameworks. 7th International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR 2000), Apr 2000, Breckenridge, Colorado, United States. pp.235-246.
hal-03299822

HAL Id: hal-03299822
https://univ-artois.hal.science/hal-03299822

Submitted on 7 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://univ-artois.hal.science/hal-03299822
https://hal.archives-ouvertes.fr

nahla.benamor@ihec.rnu.tn

Independence in Qualitative Uncertainty Frameworks

N. Ben Amor
ISG Tunis*

S. Benferhat
ILRITt
benferhat@irit.fr

Abstract

The notion of independence is central in
many information processing areas, such as
multiple criteria decision making, databases
organization, or uncertain reasoning. This is
especially true in the later case where the suc-
cess of Bayesian networks is basically due to
the graphical representation of independence
they provide. This paper first studies qualita-
tive independence relations when uncertainty
is encoded by a complete pre-order between
states of the world. While a lot of work has
focused on the formulation of suitable defi-
nitions of independence in different qualita-
tive uncertainty frameworks, our interest in
this paper is rather to formulate a general
definition of independence based on pure or-
dering considerations, and that applies to all
qualitative uncertainty frameworks. The sec-
ond part of the paper investigates the impact
of the embedding of qualitative independence
relations into qualitative uncertainty frame-
works such as possibility theory, or Spohn
functions. The absolute scale used for grad-
ing uncertainty in these settings enforces the
commensurateness between local pre-orders
(since they share the same scale). This leads
to an easy decomposability property of the
joint distributions into more elementary re-
lations on the basis of the independence rela-
tions.
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1 Introduction

Independence relations between variables play an im-
portant role in the handling of uncertain information.
Indeed various notions of (in)dependence are central
in multiple criteria analysis, in data decomposition,
or in uncertain reasoning based on Bayesian networks
or logical reasoning. There has been a considerable
interest in artificial intelligence in the last few years
for discussing independence in various representation
frameworks.

Bayesian independence and database functional de-
pendencies have been formally related (Wong et al.
1995). Independence in the logical setting has received
a lot of attention, e.g., (Darwiche 1997), (Lakemeyer
1997), (Lang and Marquis 1998). In this paper we
rather investigate possible definitions of independence
in qualitative settings, using qualitative uncertainty
relations, or their graded counterparts such as possi-
bility measures for instance.

(From an operational point of view, two forms of in-
dependence can be distinguished:

e decomposition independence which allows the de-
composition of a joint distribution pertaining to
tuples of variables into local distributions on
smaller subsets of variables, in order to have a rea-
soning machinery working at a local level without
losing any information.

e causal independence for expressing the absence of
causality. This form of independence is always
characterized in semantic terms, e.g. two vari-
ables (or sets of variables) are said to be inde-
pendent if our belief in the value of one of them
does not change when learning something about
the value of the other.



These two kinds of independence are not necessarily
mutually exclusive. Ideally, a good definition of inde-
pendence both expresses the lack of causality and is
useful for computations.

In Section 2, we first present a general qualitative un-
certainty framework where uncertainty is represented
by total pre-orders on different subsets of situations.
Then, in Section 3, we study several definitions of qual-
itative independence (causal and decomposition ones).
A noticeable causal qualitative independence is pro-
posed. This definition extends the one proposed by
Darwiche (Darwiche 1997) to qualitative uncertainty
frameworks. Finally, we discuss the advantages of
representing a total pre-order with ranking functions.
In Section 5 after providing a background on rank-
ing functions frameworks, we show that this is cru-
cial for decomposing joint distributions on the basis of
independence relations. Indeed, some qualitative un-
certainty relations ordered with respect to well-known
principles (like leximin or leximax ordering) cannot be
decomposable in the qualitative setting while they be-
come decomposable with the help of ranking functions
which make these relations commensurable. Lastly, in
Section 6, we provide a comparative study between
existing possibilistic independence and the qualitative
independence relations proposed in this paper.

2 Qualitative uncertainty framework

2.1 Notations

Let U = {A, B,C, ...} be the set of variables. We de-
note by Dy = {a4, ..., a,} the supposedly finite domain
associated to the variable A. By a we denote any in-
stance of A. X,Y, Z, ... denote disjoint subsets of vari-
ables in U, and Dx = {z1,22, ..., 2} represents the
Cartesian product of variable domains in X. By = we
denote any instance of X. Q2 denotes the universe of dis-
course, which is the Cartesian product of all variable
domains in U. Each element of () is called interpreta-
tion, situation or state of the world. ¢, 1) denote the
subsets of 2, called formula (or event) and —¢ denotes
the complementary set of ¢ i.e. =¢p = Q — ¢.

2.2 Representation of uncertain information

In the following, we give a formal description of the
qualitative representation of uncertainty we are using.
The basic idea is to represent the available incomplete
information of the real world by a total pre-order !,

a relation >q on € is a total pre-order if >gq is reflexive,
transitive and complete, i.e., for all w;, w2, we have:
w1 >q w2 Or W2 >Q Wi.

on ). This total pre-order called a qualitative plau-
sibility relation, will be denoted by >q. The relation
w1 > wo means that wy is more plausible than w,.
We denote =q and >q respectively the equality and
the strict inequality relations associated with >¢.

Given a relation >q on 2, we can lift it to another
plausibility relation defined on the subsets of Q (for
the sake of simplicity, we use the same notation >q)
by (e.g., (Dubois 1986)): ¢ >q 9 iff Vw € ¢,3u’ €
¢ such that w' >q w. Namely, ¢ >q 1 holds if the
best element in ¢ is preferred to the best element(s) in

.

This qualitative representation of uncertainty is used
in several non-monotonic formalisms like Lehmann’s
ranked model (Lehmann 1989), plausibility relations
(Halpern 1997), Spohn’s ordinal conditional func-
tions (Spohn 1988) and possibility theory (Dubois and
Prade 1988).

2.3 Qualitative conditioning

Conditioning is a crucial notion in studying indepen-
dence relations. In the qualitative setting, it consists
in transforming a plausibility relation >q on the basis
of a new information ¢ C 2 into a new plausibility re-
lation denoted by >q|4. This new relation is obtained
by applying the three following postulates

Aq le,WQ € ¢5w1 >qQ w2 iff w1 >Q|¢ W2,
As : Vwy € (ﬁ,VOJQ ¢ ¢7 w1 >Q|¢' w2,

A3 : le,WQ ¢ ¢,w1 =Ql¢ Wa.

Ay means that the new plausibility relation should
not alter the initial order between the elements of ¢.
A, confirms that each interpretation of ¢ should be
preferred to any interpretation not belonging to ¢. Fi-
nally, the last postulate A3 says that the elements not
belonging to ¢ are in the same equivalence class. These
three postulates determine the new plausibility rela-
tion >q4 in a unique manner.

2.4 Accepted beliefs

We now introduce a further definition which will be
helpful in easily defining the notion of qualitative
independence, namely the notion of accepted belief,
e.g., (Dubois and Prade 1995), (Dubois et al., 1996),
(Halpern 1996).

Definition 1 An acceptance function associated to
a plausibility relation >q is a function, denoted by



Accs, (), which assigns to each ¢ a value in {—1,0,1}
in the following way:

L if ¢>a0 ¢
Acc>,(¢) =49 0  if ¢ =q ¢
=1 if =¢>q ¢.
When Aces,(¢) = 1 (resp. Aces,(¢) = —1) we

say that ¢ is accepted (resp. rejected). Accs,(¢) =
Acc>,(m¢) = 0, corresponds to the situation of to-
tal ignorance concerning ¢, i.e., ¢ and —¢ are equally
plausible.

The function Aces,, can be extended in order to take
into account a given context. Then a conditional belief
measure denoted by Aces,(.|.) is defined by

1 ifoney >q-¢pNy
Ace, (¢ |9) = 0 if ¢Np=q 4Ny
-1 if =pNY >q ¢Np.

Remarks:

e The plausibility relation >q determines in a
unique manner Accs,. The converse is not true.
Namely, many plausibility relations can generate
a same set of plain beliefs, i.e, can have the
same Accs,, on all formulas(including the inter-
pretations).

Counter-example : Let us consider the follow-
ing values of Accs,, relative to the two binary
variables A and B:
Accs,(ar) = Aces,(by) =1,
Accs (az) = Acex,(by) = -1,
Accs,(a; Vb)) =1,Aces,(as Vi) =1,
Accs, (a1 Vb)) =1, Aces,(as Vb)) = —1,
Accs,(as Ab1) = —1,Aces, (a2 A be) = —1,

( ) =

Accsq(ar A by —1,Acc>, (a1 Aby) =1

We can check that the two following plausibility
relations:

ap A by >q, a2 A\ by >0, a1 A by =@, a2 A\ bg, and
a1 Nby >q, as ANby >q, a1 ANbs >q, as A by
generate the same information on the accepted
beliefs then those given above i.e:

Accy,, = Accy,, = Acc,,.

e The set of all conditional beliefs determines in
a unique manner a plausibility relation on £ con-
structed in this way:

wi >q wy iff Aces,({wi} | {wr,we}) =1.

e The measures Accs,(.) and Accs>,(.|.) are
linked by the following equation

Acc29(¢ A ¢) = min(Achn (¢ | 11/})7 Achn (¢))

which is similar to Bayes conditioning.

e Accy, (.| ¢) can be defined from Accs, , in the
following way:

v’waACCZn (d) | ¢) = Achmqs(w)'

In the following, we use Acc(.) (resp. Acc(.] .)) in-
stead of Aces,(.) (resp. Accs,(.].)) when there is
no ambiguity.

3 Qualitative independence

3.1 In search of causal qualitative
independence

Independence can be thought of either in terms of qual-
itative plausibility relations or in terms of acceptance
measures. The two views can be related, as shown in
this section where we present three possible definitions
of causal independence. Basically, two sets of variables
X and Y are declared to be independent if learning any
instance of Y:

e preserves the preferred (or top) instances of X, or

e preserves the accepted (resp.
nored) instances of X, or

rejected and ig-

e preserves the relative ordering between instances

of X.

3.1.1 Preserving preferred instances

The first idea is to consider a variable set X as inde-
pendent of Y in the context Z if for all instance z of
Z, the acceptance of any instance (z Ay) of (X, Y) is
fully determined by the separate acceptance of x and
y- In particular, if 2 and y are accepted, then (zAy) is
accepted. One way to relate the acceptance of (z A y)
to the acceptance of x and the acceptance of y is:

Acc(z Ay | z) = min(Ace(z | 2), Acc(y | 2)),Vzyz.
1)
It can be checked that this definition only cares about
the preservation of the top elements (i.e. best ele-
ments) in X an Y in any context z of Z. In other terms,
for any plausible instance z of X (i.e., Acc(z) =1) and
for any plausible instance y of Y, (z A y) should be a



plausible element of (X, Y). In the following, indepen-
dence relations satisfying the equation (1) are called
PT-independence (PT for Preserving Top elements),
and are denoted by Ipr(X,Z,Y).

This is clearly a very weak definition of independence
where generally the acceptance of one instance of X or
of Y is enough to conclude the independence between
these two variable sets. In particular, if a plausibil-
ity relation >q contains exactly one preferred element
then all variables are pairwise PT-independent.

3.1.2 Preserving accepted beliefs

One way of making the above definition stronger is
to consider conditional beliefs. Namely, a variable set
X is considered as independent of Y in the context
Z, if for all instance z of Z the following condition is
respected: any instance x of X is accepted (resp. re-
jected, ignored) in the context z and remains accepted
(resp. rejected, ignored) in this context after knowing
any instance y of Y. In other words, believing in X does
not change when Y is learned. More formally X and
Y are said to be PB-independent (PB for Preserving
Beliefs) in the context Z, denoted by Ipp(X,Z,Y), if:

(i) Acc(z |y A z) = Ace(z | 2) and
(1) Ace(y | z A z) = Acc(y | 2),Vzyz. (2)

Note that contrarly to the situation in the probability
theory, (i) and (ii) are not equivalent.

Counter-example : Consider two binary variables A
and B with the following plausibility relation:

a1/\b1 >ﬂ—a1/\b2 >7|—112/\b2 >ﬂ—(12/\b1

The relation (i) is true since Acc(a | b) = Acc(a), Vab,
but (ii) is false since Acc(by) = 1 # Acc(by | as) =
—1.

In the case when the plausibility relation only con-
tains two equivalent classes (which can, for instance,
correspond to the models and counter-models of some
classical databases), then this definition is equivalent
to the so-called logical conditional independence (LCI)
proposed by Darwiche (Darwiche 1997).

This definition of independence preserves the accep-
tance of instances of X in the context of Y but does
not preserve the relative ordering between instances of
X (except when we consider binary variables).

For instance let A and B be two independent vari-
ables (according to the previous definition) such that
D4 = {ay,a2,a3} and Dp = {b1,b2} with the fol-
lowing plausibility relation: a1 A b1 >q a2 A b1 >q
az Aby >qg a1 ANby >q as ANby =q az A by

It can be checked that the relative ordering between
instances of A is not preserved in context of B. Indeed,
a; >q as >q az but a1 >q a2 =g a3 in the context
ba.

3.1.3 Preserving the relative ordering

The definition, we propose now, simply says that two
variable sets X and Y are independent in the context
of Z, if for all z, the preferential ordering between the
different values of X (resp. Y) is preserved after the
revision by any value y of Y (resp. z of X). More
formally:

Definition 2 Let X, Y and Z be three disjoint sub-
sets of U. X and Y are said to be PO-independent
(PO for Preserving Ordering) in the context Z, de-
noted Ipo (X,Z,Y), ifVz2 € Dz,y € Dy,x € Dx:

(i) Vzi,x; € Dx,z; >q; ¢j iff Ti >ajysz Tj, and

(i) Yy, y1 € Dy, yx >az Y1 iff Yk >Qonz vi- (3)

The following proposition rewrites PO-independence
relations in terms of Acc.

Proposition 1 X and Y are PO-independent in the
context 7 iff VDx» C Dx,YDy:+ C Dy such that
Dx: # 0 and Dy # 0 and Vzyz:

Acc(z Ay |2,Dx/,Dy/) =

min(Acc(z | z,Dx'),Acc(y | z, Dy)). 4)
As a corollary of this rewriting, we deduce:

Proposition 2 If X and Y are PO-independent in
the context Z, then they are PT-independent and PB-
independent.

Indeed equation (4) implies (1), since it is enough to
let Dx: = Q and Dy = Q in (4) to obtain (1). It
also implies (2) by letting Dx» = Q and Dy = {y}
which leads to (i) of (2) and Dx: = {z} and Dy, = Q
which leads to (ii) of (2). Clearly, the converse of the
above proposition, in general, does not hold. However,
when we only restrict to binary variables then PO-
independence and PB-independence are equivalent.

Lastly, we can check that PO-independence is equiv-
alent to the independence relation based on Ce-
teris Paribus (all else being equal) principle used in
(Boutilier et al. 1999) (Dolye and Wellman 1991).
This principle is closely related to preferential indepen-
dence in multiple criteria analysis, see, e.g.,(Bacchus
and Grove 1996).



3.2 decomposition independence based on
remarkable plausibility relations

A natural way of defining decomposition independence
relations is to analyze the structure of the plausibility
relation >q. A plausibility relation is said to be de-
composable w.r.t. X and Y in the context Z, iff >¢ is
a function of the local orderings >xyz and >yyz.

The following introduces a well known principle, called
Pareto-principle, which defines a partial oredering be-
tween pairs (z; A 2,y A 2):

Definition 3 Let X, Y, Z three disjoint sets of U.
Then the pair (x; A\ z,yr, N z) is said to be Pareto-
preferred to (x; A z,y1 A z), denoted by (z; Az, yr A 2)
>p (zjNz,yiNz), if and only if ;A2 >q zjAz and ypA
zZ2ay Nz

In general >p is only a partial order. Since this pa-
per deals with plausibility relations which are total
pre-order, the following introduces a general class of
plausibility relations which are compatible with the
Pareto-principle:

Definition 4 Let X, Y and Z be disjoint subsets of
U. A plausibility relation >q is said to be Pareto-
compatible (or monotonic) on X and Y in the context
Z if Vz € Dz, Va;,x; € Dx,Vyg,y1 € Dy, we have:
(iNz,yr Nz) >p (x; Nz, y1 A\ z) implies (z; Nyr A z)
>a (T Ay Az)

Well known orderings >q used in the qualitative set-
ting, which are Pareto-compatible, Pareto-ordering,
leximin and leximaz orderings that we briefly present
now (Moulin, 1988).

1. A plausibility relation >q is said to be Pareto-
decomposable on X and Y in the context Z, if
Vz € Dz,Vz;,2; € Dx,Vyi, y1 € Dy, we have:

i ANyp Nz > x5 Ay A z iff
ziNz2gzjAzand yy A2 >y ANz .

As we will see later, this definition is very strong
since it implies that one of the local distributions
on X or Y should be uniform. One can weaken
this definition in the following way: > is said to
be strict Pareto-decomposable on X and Y in
the context Z, if Vz € Dz, Va;,2; € Dx,Vyi, y1 €
Dy, we have:

TiNyp Nz >z ANy Az iff
(i)zinz>azjANzand yp Az >q Y1 A z, and
(i) z; Nz>qzjAzoryp Az >y A 2.

An example of plausibility relation which is
strict Pareto-decomposable but not Pareto-
decomposable is the following one defined on two
binary variables A and B:

arby >q a1bs = asby >q asbs.

2. A plausibility relation >gq is said to be leximin-
decomposable on X and Y in the context Z, if
Vz € Dgz,Vz;,xz; € Dx,Vyi, y1 € Dy, we have:

i Nyp N2 > x5 ANy Az iff

(i) min(z; A2,y A 2) > min(z; A z,y; A z) or
(ii) min(z; Az, yp A z) =q min(z; Az, y; Az) and
maz(z; A 2,y A 2) >q maz(z; A2,y A 2).2

3. A plausibility relation >gq is said to be leximax-
decomposable on X and Y in the context Z, if
Vz € Dgz,Vz;, x5 € Dx,Vyi, y1 € Dy, we have:

TNy A2 > zj Ay Az iff

(i) maz(z; A z,yi A 2) >q maz(z; A z,y; A z) or
(i) maz(z; Az, yx N z) =q maz(z; Az, y; Az) and
min(x; Az, yx A 2) >q main(z; A 2,y A 2).

Definition 5 X and Y
are said to be Pareto-independent (resp. leximin-
independent, leximaz-independent) in the context
7 if the plausibility relation >q is Pareto-decomposable
(resp.  leximin-decomposable, leximaz-decomposable)
on X and Y in the context Z.

Proposition 3 If X and Y are Pareto-independent in
the context Z, then they are leximin-independent and
lezimax-independent. Moreover, all of these relations
imply the PO-independence. The converse is not true.

As it will be discussed in Section 5.2.3, even if a plau-
sibility relation is leximin or leximax decomposable, it
cannot be decomposed without loss of information due
to the absence of commensurability assumption. Such
a problem can be solved by using ranking functions
which are introduced now.

4 Background on ranking functions
frameworks

In ranking functions frameworks, uncertainty is han-
dled in a qualitative way, but it is encoded on some
linearly ordered scale (finite or infinite). Typical exam-
ples of these frameworks are possibility theory (Dubois
and Prade 1998) where uncertainty is represented in
the interval [0, 1] and Spohn’s ordinal functions (Spohn

’where maz(a,b) >q maz(c,d) means either [a >q c
and a >q d] or [b >q ¢ and b >q d], and min(a,b) <a
min(c,d) means either [a <q c and a <q d] or [b <q ¢ and
b<qd.



1988) which use the set of integers. In the following, we
only focus on possibility theory, but results of this pa-
per are also valid for other frameworks such as Spohn’s
ordinal functions, or Lehmann’s ranked models, due to
their close relation to possibility theory.

Let us give a brief background on possibility theory
(see (Dubois and Prade 1988) for more details). The
basic building block is the notion of possibility distri-
bution denoted by 7w and corresponding to a mapping
from Q to [0, 1]. A possibility distribution 7 is said to
be normalized if it exists at least one world w which is
totally possible, i.e. 7(w) = 1.

Given a possibility distribution 7, we can define a map-
ping grading the possibility ® of a formula ¢ C € by:
II(¢) = mazy,ecqem(w).

Each possibility distribution 7 can generate a plau-
sibility relation (qualitative ordering relation) >q by
applying:

w>q W iff T(w) > w(W'). (5)

Similarly, if we define >q from 7 then:

¢ 2q ¢ iff TI(¢) > TI(¢)).

5 Advantages of the ranking function
setting

Let us first analyze the basic differences between rank-
ing functions and the qualitative framework presented
in Section 2, from the perspective of the study of in-
dependence relations. Basically, there are three differ-
ences:

e Normalization: in possibility theory, fully plausi-
ble worlds receives the grade 1 while there is no
counterpart in the qualitative setting.

e FEristence of impossible worlds graded to 0 in pos-
sibility theory, while all worlds are somewhat pos-
sible in the qualitative setting.

e Commensurability between uncertainty levels,
where all rankings reflect grades in the same scale.

In this section, we show the advantages of working
with uncertainty ranking functions in order to define
more powerful notions of qualitative independence.

3A dual measure to the possibility is the necessity de-
gree defined by N(¢) =1 — II(~¢) = min,gs(1 — m(w)).

5.1 Consequences of the normalization and
of the existence of impossible worlds

5.1.1 Definition of possibilistic conditioning

The normalization and the existence of impossible
worlds enables the definition of several notions of con-
ditioning in the graded settings, contrarily to the qual-
itative setting. This explains why in possibility theory
there are two definitions of independence based on con-
ditioning. The natural properties of 7 = (. | ¢) tak-
ing into account normalization and impossible worlds
become:

Ci:Vwdom(w) =0,

Cs : VYwi,ws € ¢, m(wr) > w(wa) iff 7 (w1) > 7 (w2),
C; : if II(¢) = 1, then Yw € ¢, m(w) = 7 (w),

C4 : 7 should be normalized,

Cs : if m(w) = 0 then 7 (w) = 0.

C; confirms that ¢ is a sure piece of information, C,
says that the new possibility distribution should not
affect the possibility degrees relative to the interpreta-
tions in ¢ and Cj says that if ¢ is already consistent
with beliefs encoded by 7, then the possibility degrees
of the elements in ¢ remain identical. Cj stipulates
that impossible worlds remain impossible after condi-
tioning.

The properties (C1-Cs) do not guarantee a unique def-
inition of conditioning. Indeed, the effect of the axiom
C; may result in a sub-normalized possibility distribu-
tion. Restoring the normalization, in order to satisfy
C4, can be done in at least two different ways (when
II(¢) > 0) (Dubois and Prade 1988):

e In an ordinal setting, we assign to the best ele-
ments of ¢, the maximal possibility degree (i.e.
1), then we obtain:

1 if m(w) =1I(¢) and w € ¢
m(w) if m7(w) <I(¢) and w € ¢
0 otherwise

(W |m ¢) =

Note that this conditioning form is equivalent to
the least specific solution of the combination equa-
tion :

T(w A @) = min(r(w |m ¢),1(¢)).

proposed by Hisdal (Hisdal 1978).

e In a numerical setting, we proportionally shift up
all elements of ¢ (if the definition makes sense in



the ranking scale):

m(w) if
_) @ Hwed
mwlp @) { 0 otherwise

5.1.2 Definitions of possibilistic causal
independence

The idea in defining possibilistic causal independence
relation based on the possibilistic conditioning is that
X is considered as independent from Y in the context
Z if for any instance z, the possibility degree of any x
remains unchanged for any value y. More formally:

M(z |y Az)=T(z | 2),Vzyz. (6)

Since possibility theory has two kinds of conditioning,
this leads to two definitions of causal possibilistic in-
dependence:

e Min-based independence relation obtained
by using |, in (6), this form of independence is not
symmetric (Fonck 1994). If we enforce this prop-
erty, we get a very strong relation, denoted MS-
independence(M for min-based and S for symetry)
since the independence between two sets of vari-
ables X and Y implies the ignorance of one of them
(De Campos and Huete 1998) i.e. w(z) = 1,Vz or
m(y) = 1,Vy. In (Ben Amor et al., 2000), it has
been shown that:

Proposition 4 Let © be a possibility distribu-
tion, and >q be its associated plausibility relation.
Then X and Y are MS-independent in 7 if and
only if they are Pareto-independent in >q.

e Product independence relation obtained by
using |p in (6). This relation is equivalent to:

Mz Ay lpz) =1z |p 2) *II(y |p 2),Vayz.

The product independence relation, denoted by
P-independence, is equivalent to Kappa func-
tions’ independence relation based on Spohn-
conditioning (Spohn 1988). Note that this rela-
tion enjoys the same properties as the indepen-
dence relation proposed in the probabilistic frame-
work. In particular, we can decompose it, i.e. we
can recover II(z Ay |p z) in a unique manner
from II(z |p z) and H(y |p z) using the product
operator.

The following proposition relates possibilistic causal
independence to PO-independence:

Proposition 5 If X and Y are independent in a pos-
sibility distribution 7 according to (6), then they are
PO-independent in the plausibility relation induced by
w. The converse is false.

5.2 Effect of the commensurability

In this section we study the decomposition of some im-
portant independence relations. We will see that the
commensurability property is crucial in the recompo-
sition of joint distributions from marginal ones.

5.2.1 Possibilistic Non-Interactivity

In the possibilistic framework, the standard decom-
positional independence relation between X and Y in
the context Z is the Non-Interactivity (INI) (Zadeh
1978) defined by:

Mz Ay |m 2) =min((z |m 2), 0y |m 2)),Veyz (7)

This relation can be defined in a purely qualitative set-
ting by first defining w > w iff 7(w) > 7(w ). Then
X and Y are Nl-independent iff:

TANY=q:TorTANYy=q¥y,VTYz.

However, NI-independence is not interesting in a quali-
tative representation since it does not allow the recom-
position of a unique global plausibility relation from lo-
cal orders defined on independent variables (due to the
non-satisfaction of the commensurability property), as
shown by the example below.

Example : Given two binary variables A and B with
the following local orderings:

(i ) a; >q Qs

(ii) by >q br.
There is no unique plausibility relation >q satisfying
(i) and (ii) such that A and B are NI-independent.

Indeed, it is sufficient to consider the two plausibility
relations >q and >qi:

ay ANby >q as ANby >q a1 ANby =q as AN by
air Aby >q as ANby =qr a1 Aby =qr as A by

However, if the local orderings are encoded in possi-
bility theory then we will have a unique plausibility
relation >q using 7(a A b) = min(n(a),w (b)), Vab.

Note that the importance of commensurability as-
sumption also appears in fuzzy communauty, espe-
cially in defining connectors between fuzzy sets. For



instance, French (1986) comments the limitation of
definition the intersection of two fuzzy sets (using the
minimum operator to define the membership function
associated to the intersection) when no commensura-
bility is assumed.

5.2.2 Decomposition of PO-independence

A natural question now is to see if the encoding of a
plausibility relation with a possibility distribution can
be useful in the decomposition of the causal indepen-
dence relation PO. Namely, if there exists a function f
such that for each possibility distribution 7 (encoding
some plausibility relation) where X and Y are PO-
independent, we have Vz,z' € Dx,Vy,y' € Dy:

m(zAy) > m(z'Ay') iff f(TI(2), T(y)) > f(T(z"), TI(y"))

Table 1: Possibility distributions on A and B

a b m(aAb) ma(aAbd)
ap b1 1 1

ay b2 0.9 0.9

ai b3 0.5 0.5

as b1 0.8 0.8
as b2 0.3 0.3
as b3 0.2 0.1

as b1 0.4 0.4
as b2 0.1 0.2

as b3 0 0

In the following, we show that this is impossible in
the general case. Indeed, assume that such a function
f exists, then let us consider the two possibility dis-
tributions 7; and 7y defined on two PO-independent
variables A and B and given by Table ?7.

We have:

Iy (a1) = Ma(a1) = 1,1 (az) = Ma(az) = 0.8,

Hl(a3) = Hg(ag) = 04,H1(b1) = Hg(bl) = 1,

Hl(bQ) = HQ(bg) = 0.9,H1(b3) = Hz(bg) = 0.5. We
can check that A and B are PO-independent in both
m and 7o, namely for all a;,a;, for all by we have:
7rl(a,') > ﬂ'l(aj) iff 7rl(a,~ A bk) > 7Tl(aj A bk), for 1=1,2,
and the same exchanging a and b.

Besides,m; induces

7r1(a2 A bg) > 7r1(a3 A bz), i.e.
[ (a3), 1 (b2))

while 75 induces

7T2((13 N bz) > 772(112 N b3), i.e.
[z (az), I>(bs)),

hence a contradiction.

(i (a2), 11 (b3)) >

(M2 (a3), M2(b2)) >

However, there are particular cases where decomposi-
tion can be achieved. The first particular case concerns
binary variables:

Proposition 6 If A and B are binary variables, then
A and B are PO-independent iff the plausibility rela-
tion induced by 7 is leximin and leximax decomposable.

The second particular case concerns binary possibility
distributions.

Proposition 7 If 7 is composed of two levels (namely
the set of interpretations is splitted in only two classes)
then X and Y are PO-independent iff the plausibility
relation induced by w is leximin and leximaz decom-
posable.

Such decomposition can be useful for databases when
the existing tuples are preferred to absent ones.

The difficulty of decomposing PO-independence rela-
tion in the general case is due to the fact that the
PO-independence is a weak relation. The following
proposition makes the weakness of PO-independence
explicit:

Proposition 8 X and Y are PO-independent in >q
iff >q is Pareto-compatible (i.e., monotonic) on X and

Y.

The following subsection discusses the decomposabil-
ity of Pareto, leximin and leximax relations, which are
all Pareto-compatible.

5.2.3 Decomposition of Pareto, leximin and
leximax independence

In this subsection we study the decomposition of
Pareto, leximin and leximax decomposable relations
when we use the possibilistic framework.

The decomposition of leximin and
leximax-decomposable relations is immediate since we
use weights represented by possibility degrees which
allows the comparison of different interpretations. We
illustrate it on the following example:

Example : Let us consider two variables A and B with
the following plausibility relation >q which is leximax
decomposable: a1 A by >q a1 Abs >q as A by >q
a1 ANbs >q as ANby >q as A bs

We can easily check that this plausibility relation can-
not be recovered from the local orders on A and B
induced by it:

(i) a >q a2

(ii) b1 >q by >q bs



Indeed, it is sufficient to consider the following plau-
Slblllty relation: a; A by >qr as Aby >qr a1 A by >q
ar N\ b3 >qr as N b2 >qr as N b3

which satisfies (i) and (ii) and is also leximax decom-
posable.

However, if >q is encoded by means of a possibility
distribution, then the decomposition will be possible
because we preserve the information concerning the
relative ordering between any instance of A and any
instance of B in the original relation as shown by the
following example:

Example : Let 7 be a possibility distribution encod-
ing the plausibility relation >q given in the previous
example (see Table 77).

Table 2: Possibility distribution on A and B

a b w(aAd)
ay b1 1

ay b2 0.9
ay b3 0.5
as b1 08
a2 b2 0.3
a2 bg 0.2

We can easily recover 7 from the local distributions
on A and B and the numerical scale (1, .9, .8, .5, .3,
.2) using the leximax ordering. Indeed, the use of the
leximax on the local distributions provides the order-
ing relation relative to 7 i.e. a3 A by >q a1 Aby >q
as Aby >q a1 Abs >q as Aba >q as Abs then using the
numerical scale we can recover the original distribution
.

For Pareto-independence, we also have the following
result:

Proposition 9 Let 7 be a possibility distribution such
that X and Y are two Pareto-independent variable sets.
Then, 7 is can be recovered from marginal probabilities
II(X) and TI(Y) using the product operator, namely:

m(x Ay) =I(z) = (y).

Note that other operators can also be used to recover
the oredering behing 7, however the advantage using
the product operator is that it preserves both orderings
and numerical values.

6 Comparative study

Given a joint possibility distribution 7, this section
provides a comparative study between the different in-
dependence relations presented in this paper. Let >q
be the plausibility relation induced from 7 by using
equation 5.

Let us first summarize the different independence re-
lations presented in this paper:

e Qualitative causal independence: three definitions
have been proposed, depending if we only pre-
serve preferred elements (i.e., Ipr), or we only
preserve accepted beliefs (i.e., Ipg), or we pre-
serve the whole relative ordering (i.e., Ipo).

e Qualitative decomposition independence: the de-
composibility of a plausibility relation has been
based on the well-known principles: Pareto-
ordering (i.e., Ipgreto), Leximin ordering (i.e.,
Ireximin), Or leximax ordering (i.e., Irezimaz)-

e Possibilistic causal independence: two definitions
have been proposed (i.e., Inrs and Ip) depending
on which of the two definitions of conditioning in
possibility theory is used.

e Possibilistic decomposition independence: which
corresponds to the non-interactivity (i.e., Iny) .

The arrows in Figure 1 show the inclusion of different
independence relations. The Iy and Ipgreo are the
strongest independence relations since the MS or the
Pareto independence between two sets of variables im-
plies the ignorance of one of them. However, Ipr is the
weakest one. Finally, note that Iy is implied by Ipg
but it is incomparable with the other independence
relations.

We give now some counter-examples relative to the
non-existent links.

Counter-examples : Let us consider two variables
A and B with the possibility distributions given in Ta-
ble 7?.

e with 7y, we can check that the
relation Ipo (4,0, B) is true while Inss(A, 0, B),
Ip(A,0,B) and Inr(A, D, B) are false.

e with 75 we can check that Inj(A,0,B) is
true contrary to Inrs(A, 0, B), Liezimin(A, 0, B),
Ilem‘maz(AamuB) IP(A,Q,B), and IPO(A:@rB)'



Table 3: Possibility distributions on A and B

a b m(aAb) m(aAb) w3(aAb)
al bl 1 1 0.6

al b2 0.8 0.8 1

as by 0.2 0.8 0.6

with 73, we can check that the relation Ip(A4, §, B)
is true contrary to Ipss(A, @, B) and I (A4, 0, B).

Suppose now that A is a binary variable and B is a
ternary variable and let us consider the possibility
distributions given in Table ?7?.

Table 4: Possibility distributions on A and B

a b m(aAb) m2(aAb)
a b] 1 1

ay b2 0.9 0.9

ap b3 0.5 0.6

as b] 0.8 0.8

as b2 0.3 0.7

as b3 0.2 0.5

we can check that in 71 lepimaz (A, 0, B) is re-
spected while Iny(A,(, B) is false. In addition,
in Ty Degimin(A, 0, B) is respected contrarily to
Ini(A,0, B).

with m we can check that A and B are PO-
independent but not leximin-independent since
m(ay Abs) > w(as Abs) while min(Il(ay),I1(b3)) <
min((as), II(bs)).

with 75 we can check that A and B are PO-
independent but not leximax-independent since
7(((12/\b2) > 7T(Cl1 /\bg) while ma:c(H(az), H(bQ)) <
maz(T(ay), T (b3)).

with m; we can check that A and B are leximax-
independent but neither leximin nor Pareto inde-
pendent. Moreover, with w5 we can check that A
and B are leximin-independent but neither lexi-
max nor Pareto independent.

with the following possibility distribution :

a b w(aAb)
ay b1 1

ay b2 0.8
a9 bl 0.5
a9 b2 0.4
as bl 0.4
as b2 0.32

we can check that Ip is satisfied while Ijezimin
and Ijezimaes are false.

Note that in the binary case Ip implies ljezimin
and Ilezimaz-

e Lastlylet A and B be two ternary varibles. In the
following possibility distributions, we can check
that in 71 Ijepimaz 18 respected while Ip is false
and that in 7o Ijezimin is respected contrarily to

Ip.

a b m(aAb) ma(aAbd)
ai bl 1 1

aq b2 0.9 0.9

aj b3 0.5 0.6

as b1 0.8 0.8

as b2 0.3 07
as b3 0.2 0.5

7 Concluding remarks

This paper relates the notions of independence rela-
tions defined in purely qualitative setting (when only
a total pre-order is used) to the ones defined in ranking
function frameworks. Two kinds of independence have
been investigated : causal and decomposition ones.
A first constatition is that independence relations de-
fined on purely qualitative framework are very weak
from the decomposability point of view. This paper
has shown that one way to overcome this limitation
is to use a ranking framework, like possibility theory,
total-order. A second constatation is that the decom-
position of joint distribution in possibility theory is not
unique, contrary to probability theory where only the
product operator is used. In possibility theory alter-
native operator, like leximin or leximax, can be used
as well. Note that this may be worth applying to other
types of numerical distributions (e.g., probability dis-
tributions) which will be leximin-independent but not
independent in the usual sense of the considered un-
certainty theory, in the same way as in (Wong and
Butz, 1999) where weak notions of independence are
exploited in the probabilistic setting.

A third constatation is that most of decomposition is
independence (except the non-interactivity) are also
causal. This clearly appears in Figure 1.



The notions of independence proposed in this paper
extend previous works in default reasoning (Benferhat
et al. 1994), and belief revision (Dubois et al. 1997) on
independence between events to the case of variables
which are not necessarily binary. A line for further
research concerns logical counterpart of leximin and
leximax independence relations in the possibilistic set-
ting. Indeed, procedures for translating graph repre-
sentations (defined from min-based and product-based
conditional independence) into stratified possibilistic
logic bases have been recently exhibited (Benferhat et
al. 1999). This is worth doing for leximin-based inde-
pendence, which is stronger than min-based indepen-
dence, but still meaningful in a qualitative setting.
Another line of research io to relate the results of
decomposition of joint distribution defined on inde-
pendent relations, to the ones provided in multi-
criteria decision making for preferential independence
(refxxx).
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