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Abstract: This paper proposes a qualitative counterpart of Kalman 
filtering in the possibilistic logic setting. It corresponds to a type of 
updating involving a prediction step followed by a revision step. 
This is compared with updating operations based on imaging in the 
sense of Lewis. Imaging is reconsidered in the perspective of a 
generalized view of Kalman filtering where it appears as a 
particular case of Kalman filtering. A syntactic counterpart of 
qualitative filtering is given in terms of weighted knowledge bases.

1. Introduction
Since the pioneering work of Alchourron, Gärdenfors and Makinson 
[1], and the publication of the seminal book "Knowledge in Flux" 
by Gärdenfors [21], there has been an important and increasing 
interest in the modelling of belief change in A. I. Progressively, 
basic distinctions have emerged between various types of belief 
change: revision of beliefs by an input information in a static world 
vs. update of beliefs in a dynamic world [22], revision by an input 
held as certain and prioritary vs. revision by an uncertain 
information [10, 4, 17], revision vs. focusing on a class of reference 
[18], revision of beliefs vs. revision of preferences [26, 3]. What is 
noticeable is that the same distinctions can be made in various 
representational settings provided that these frameworks, which 
might be symbolic or numerical [24, 20], are rich enough for 
enabling the expression of these distinctions. 
Another important aspect with respect to belief revision is the 
epistemic entrenchment underlying any well-behaved revision 
process, which should obey Alchourron, Gärdenfors and Makinson 
(AGM) postulates. Since an epistemic entrenchment relation is 
closely related to a necessity measure in the sense of possibility 
theory [15], the framework of possibilistic logic [13] enables us to 
envisage belief revision both at the syntactic level of a possibilistic 
logic base, and in an equivalent manner, at the semantic level of a 
possibility distribution ranking the interpretations. In this approach 
the ordering on which the revision is based is explicitly associated 
with the formulas and is modified in the revision process. This 
view is also advocated by Williams [29] in her related approach 
based on adjustments. 
The present paper should be understood in this general perspective, 
where different types of belief change operations have been 
investigated both at the semantic and at the syntactic level. A 
qualitative counterpart of a well-known "updating" method, 
Kalman filtering (briefly recalled in Section  2), is  introduced in 
Section 3 and compared to updating based on imaging in Sections 
4 and 5, in the setting of possibility theory. Then a syntactic 
counterpart of these machineries is outlined in Section 6. 
A preliminary draft of this paper was made electronically available 

at http://www.lucs.lu.se/spinning/ in September 1999 as a 

contribution to the Festschrift in honour of Peter Gärdenfors on the 

occasion of his fiftieth birthday. The present paper extends and 

improves this draft in various respects. 

2. Kalman filtering and dynamic estimation
Kalman filtering is the basis of well-known updating techniques in 
systems engineering (e.g., [2]), in the case of an evolving system 
when events are dated. The idea underlying Kalman filtering, 
namely a two-steps procedure involving prediction followed by 
revision, can be of interest in other settings. Recently, Castel, 
Cossart and Tessier [5], Cossart and Tessier [8] have proposed to 
transpose these ideas in a symbolic setting for a situation assessment 
problem. Let us first consider the probabilistic framework. We only 
give here an abstract view of Kalman filtering. Let ! be a set of 

interpretations. ω  ! is also called a state or a possible world, or 
also an elementary event. Subsets of ! are called propositions or 
formulas, or simply events. It is assumed that there exists a 

prediction function f such that f(ωt) = ωt+1, where ωt ! is the

state at time t and f(ωt) is the resulting state at time t+1. Knowing

the probability distribution pt on the system state at time t, the 

prediction (forecast distribution) at t + 1 is given in ω by: 

p'(ω) = Pt(f
�1(ω)). (1) 

where f�1(ω) = {ω' : ω=f(ω')}. Let A∏! be an information
available at time t+1, the updated state at t+1 using Bayes rule, is

pt+1(ω) = p'(ω| A).   (2)

These two equations (1) and (2) can be equivalently written 

pt+1(ω) = Pt(f
�1(ω) | A) = Pt(f

�1(ω)) / Pt(f
�1(A)) if ω  A.

 = 0   otherwise 
 (3) 

Thus this type of updating is decomposed into a prediction step 
followed by a revision or a conditioning step.  The underlying idea 
is that the prediction of the next state at t+1 pervaded with 
uncertainty is improved by taking into account the observation A. 
Classical Kalman filtering is a particular case of this view where ! 
is a continuous state space, f is a linear function, and Gaussian 
distributions are used.  

3. Possibilistic filtering
A brief background on possibility theory is first given in a belief 
change perspective, before proposing a possibilistic counterpart of 
Kalman filtering. 

3.1. The possibility theory setting 
Possibility theory [31] provides a framework for uncertainty 
modelling, which can be numerical or remain qualitative, and 
which departs from probability by the use of maxitive (rather than 
additive) law and the existence of a dual pair of measures for 



assessing the uncertainty. See [19] for a detailed overview of 
possibility theory. The possibilistic approach enriches the 
knowledge representation provided by the pure logical setting from 
the point of view of expressiveness. Instead of viewing a belief 

state as a flat set Ω of mutually exclusive states, one adds a 
complete partial ordering on top of the logical structure, according 
to which some states are considered as more plausible than others. 
A cognitive state can then be modelled by a possibility distribution 
", that is, a mapping from ! to a totally ordered set V containing a 
greatest element (denoted 1) and a least element (denoted 0), 
typically the unit interval V = [0,1]. However any finite, or infinite 
and bounded, chain will do as well.  This approach is also close to 
Spohn [28]'s well-ordered partitions, see [15].  

A consistent cognitive state " is such that "(ω) = 1 for some ω, i.e., 
at least one of the states is considered as completely possible in !. 
In such a case " is said to be normalized. Here consistency can be a 
matter of degree. A cognitive state " is said to be partially  

inconsistent  if 0 < max ω ! "(ω) < 1. When "(ω)>"(ω') then ω is 

a more plausible state than ω'. A possibility measure # is 
associated with a possibility distribution ", namely:   

#(A) = supω A "(ω). 

Possibility measures thus satisfy the following characteristic 

decomposition property:  #(A≈B) = max(#(A), #(B)).  
Necessity measures N are defined by duality, namely  

N(A) = 1 - #(¬A) and N(A↔B) = min(N(A), N(B)). 
Let us give the definition of conditioning which transforms a 
cognitive state " into a possibility distribution "*A = "(· | A) 

obtained by revising " with input A: 

"(ω | A)     = 1  if "(ω) = #(A), ω  A 

   = "(ω)            if "(ω) < #(A), ω  A  (4) 

   = 0         if ω  A.  
 

3.2. Filtering in the possibilistic framework 
Let us now give the possibilistic counterpart of Kalman filtering 

first suggested in [14]. Let f be a prediction function f(ωt) = ωt+1, 

where ωt is the state at time t. Knowing the possibility distribution 

"t on the system state at t and the input information A available at 

time t+1, the updated state at t+1 can be computed in two steps 
using possibilistic conditioning: 

"'(ω) = #t(f
�1(ω)) = max

ω' f�1(ω)
 "t(ω') (5) 

and   "t+1(ω) = "'(ω | A).       (6) 

Note that "t+1 is always normalized (if "t is). In the above formula, 

it would be possible to replace "'(. | A) by a more general 

expression in case of an uncertain observation (A,  α). See [17] for 
conditioning by an uncertain input.  

More generally, one may consider a family {"ω, ω  !} describing 

a transition graph, hence generalizing f as a fuzzy relation R, such 

that µR(ω,ω') = "ω(ω') is the plausibility that ω' follows ω, and 

then compute the image of the cognitive state pertaining to the 
initial state through the fuzzy relation R (prediction) and revise the 
so-obtained prediction by the input, that is compute the updated 
possibility distribution "t+1 

"'(ω) = maxω' min("t(ω'), "ω' (ω)) .    (7) 

and   "t+1(ω) = "'(ω | A).       (8) 

Note that "t+1 is normalized provided that ∃ω, ω' such that 

"t(ω')=1 and "ω'(ω)=1. Clearly, (7) generalizes (5) by letting "ω' 

(ω) = 1 if f(ω') = ω and 0 otherwise.

4 - Updating 
In the following, updating precisely refers to the belief change 
operation which aims at restoring uptodate views of the world in a 
dynamic world when receiving new information. At the theoretical 
level probabilistic imaging belongs to this type of operation. We 
then consider its possibilistic counterpart. 

4.1 Probabilistic imaging 
Another path in the problem of probabilistic change, which departs 
both from conditioning and filtering, is the one followed by Lewis 
[25]. Assume that the set ! of possible states possesses a distance 

measure and is such that for any state ω  !, and any set A ∏ !, 

there is a single state ωA in A defined as the closest state to ω. If 

there is no natural distance on !, we may think of using Dalal's [9] 
distance. Then the principle of minimal change upon learning that 

some event A ∏ ! has occurred can be expressed as an advice to 
allocate the probability weight of each state that becomes 
impossible to the closest state that is made possible by the input. 
The input is here at the same level of generality as the prior 
probability, and the translation of worlds expresses that the current 
state has changed, and not that our previous beliefs about it were 
wrong. This updating rule can be formally expressed as 

∀ ω  A, pA(ω) = $ω': ω=ω'A
 p(ω').  (9) 

This rule is called 'imaging' because pA is the image of p on A 

obtained by moving the masses p(ω') for ω' A to ω'A A, with the 

natural convention that ω'A = ω' if ω'  A. This rule actually comes 

from the study of conditional logics[23], and was motivated by the 
study of the probability of a conditional in such logics.  
The imaging rule has been generalized by Gärdenfors [21] to the 

case when the set of states in A closest to a given state ω contains 

more than one element. If A(ω) ∏ A is the subset of closest states 

from ω, p(ω) can be shared among the various states ω'  A(ω) 
instead of being allocated to a unique state. Clearly, instead of 

sharing p(ω) among ω'  A(ω), a less committed update is to 

allocate p(ω) to A(ω) itself (and none of its subsets). In that case 
the imaging process produces a basic probability assignment [27] 
in the sense of Dempster [11]'s view of belief functions. But this 
type of update is not consistent with Bayesian probabilities because 
the result of imaging is a family of probability distributions, and 
not a unique one.  
Note that imaging can turn impossible states into possible ones, 

i.e., one may have pA(ω) > 0 while p(ω) = 0 for some ω, e.g., if 

ωA is such that p(ωA) = 0. As a consequence a sure fact B a priori, 

i.e., such that P(B) = 1 may become uncertain, i.e., PA(B) < 1. This 

is not the case with Bayesian conditioning. In order to preserve this 
kind of monotonicity property, one idea (see [21]) is to build PA as 

the image of P on A ↔ S where S = {ω | P(ω) > 0} is the support 

of P. However, as with the Bayesian rule, P(A) = 1 � PA = P; this 

is the probabilistic version of the success postulate of Katsuno and 
Mendelzon [22] for updating. In fact, all postulates of Katsuno and 
Mendelzon hold or have a natural counterpart for probabilistic 
cognitive states, except the postulate which expresses that the 
conjunction of B with the result of an updating by A entails the 



result of the updating by the conjunction of A and B (see, e.g., 
[24]). 

4.2 Possibilistic imaging 
It is easy to define the possibilistic counterpart to Lewis' imaging 
since this type of belief change is based on mapping each possible 
state to the closest one that accommodates the input information. 

As above, define for any ω  !, and non-empty set A ∏ ! the 

closest state to ω where A is true, that is, where ωA  A. Then the 

image "°A of a cognitive state " in A is 

"°A(ω) = maxω': ω=ω'A
 "(ω') if ω  A 

                  = 0 if ω  A.    (10) 

If there is more than one state ω'A closest to ω', then the weight 

"(ω') is allocated to each of the closest states forming the set A(ω'), 
and the above imaging rule becomes 

"°A(ω) =  maxω': ω A(ω')  "(ω')  if ω  A 

 = 0 if ω  A.    (11) 

Note that "°A is normalized if " is normalized. Defining ∀ω, A(ω) 

precisely as {ω' | "(ω') = #(A)}, which does not depend on ω, then 
"°A = "(· | A), i.e., we recover the revision based on conditioning. 

Clearly in this setting, we see that possibilistic imaging formally 
subsumes the AGM revision. However this link is somewhat 
artificial. Indeed imaging can be envisaged in a dynamic 

perspective in which A(ω) represents the states where A is true that 

most plausibly follow ω. Clearly A(ω) depends on the current 

system state ω. Then input A warns the agent that a change in that 
system state has occurred. 
It is easy to check that the above updating rule defined by (10) 
satisfies all postulates of Katsuno and Mendelzon [22]'s updates 
(see [14]). Katsuno and Mendelzon [22] have proved that any 
change operation that obeys all postulates involves a proximity 

structure on !, that is, a family {<ω, ω  !} of partial ordering 

relations, where ω" <ω ω' means that ω" is closer than ω' to ω. In a 

dynamic system perspective, a state is the state of a dynamic 

system and {<ω, ω  !} represents a partial transition graph where 

ω" <ω ω' means that ω" is a more plausible successor to ω than ω'. 

Then A(ω) gathers all states in A that are minimal in the sense of 
<ω. 

It has been shown in [12] that adding one more postulate the 

proximity structure on ! is a family {%ω, ω  !} of complete 

preordering relations, that can be equivalently represented by a 

family {"ω, ω  !} of qualitative possibility distributions. Then 

the most plausible states in A reachable from ω form the set A(ω) 

= {ω'  A, "ω(ω') = #ω(A)} where #ω is the possibility measure 

associated to "ω. Defining RA as the relation that to each ω 

assigns its closest neighbours A(ω) in A, the above update formula 
(10) is nothing but Zadeh [30]'s extension principle that 
characterizes the fuzzy image of the fuzzy set whose membership 
function is ". Namely, if " = µF then  "°A = µRAôF with 

µRA
(ω,ω') = 1 if ω'  A(ω) and µRA

(ω,ω') = 0 otherwise and 

µRAôF(ω') = maxω min("(ω), µRA
(ω,ω')). In other words, the 

uncertainty on the initial system state is propagated over to the next 
state via the input-dependent prediction relation based on the 
transition graph. 

 

More generally, let {"ω, ω !} be a family  describing a transition 

graph. The only requirement on distributions of this family is that 
they should satisfy the generalized inertia principle:  

"ω'(ω)=1 � ω = ω'  (12) 

We can compute the image of the cognitive state pertaining to the 

initial state through the fuzzy relation {"ω, ω  !}.  The updated 

possibility distribution " °A is computed in two steps: 

   ê"(ω) = maxω' min("(ω'), "ω' (ω))    (13) 

      " °A (ω) = ê"(ω | A).    (14) 

This can be viewed as a generalized form of update. Note that if 

ω and ω' are such that "(ω') = 1 and "ω'(ω)=#ω'(A) then 

"°A(ω)=1 while in Kalman filtering "t+1(ω)<1 if there exists ω"  

A such that ê"t+1(ω")>"t+1(ω). This situation occurs if the 

transition to ω" (from a highly plausible state different from ω') is 

more plausible than the transition from ω' to ω. This type of update 
operation can be encountered in other settings [6, 7]. 
 

5. Filtering vs. Imaging 
We first highlight the differences between imaging and Kalman 
filtering, and then we show how imaging can be encoded as a 
Kalman-like filtering. 
Clearly, filtering and imaging use equations presenting strong 
similarities in order to compute the new cognitive state after 
learning some new event A. The basic difference is that in Kalman 
filtering, any prediction function can be used, and it does not 
depend on the event A. However, in imaging the distance is a 

strong constraint since if ω A then the closest interpretation of ω 

in A is ω itself. This is clearly expressed by equation (12) when 
generalizing updating, while such requirement does not appear 
when generalizing Kalman filtering. 

Moreover, in imaging no possible initial state in A (π(ω)>0 and 

ω Α) is deemed impossible after A has occurred, since the used 

distance depends on A and is such that ω=ωA for ω Α. Imaging 

thus comes down in the probabilistic setting to computing pA(ω) = 

Pt(fA
�1(ω)) for all ω  Α, and does not require any normalization 

since PA(A) = 1.  

In the possibilistic setting (as well as in probabilistic setting) we 
always have: 

" °A (ω)  &  "(ω)    for ω Α.   (15) 

While A(ω) is a subset of A in the imaging, the value of the 
prediction function, and more generally "ω, does not depend on A 

when filtering. Instead of selecting A(ω), generalized filtering 

considers the family {"ω, ω !} describing the transition graph, as 

a fuzzy relation R such that µR(ω,ω')="ω(ω').  

As a consequence of using a prediction function which does not 
depend on A, the above inequality (15) does not hold, and even 
worse one may have: 

" t (ω)  &  0 and " t +1 (ω)=0    for ω Α. (15) 

This should not be viewed as a drawback since the prediction 
function is not a "similarity" measure. 
It is clear that "t+1 in (6) differs from "°A in (11) because they 

correspond to different strategies. Using "°A the assumed 

transition from each state ω is always supposed to be the most 

plausible one(s) modelled by A(ω), and the intrinsic plausibility of 



this transition is not considered. Using "t+1, transitions that are not

the most plausible ones compatible with A are considered via 
"ω and lead to possible final states that are neglected by imaging.

Hence the two approaches are different. However it is obvious that 
imaging makes sense for answering questions about the next most 
plausible state, while the prediction/revision approach is more 
adapted to the handling of trajectories in the transition graph, and 
is the counterpart in the possibilistic setting of Kalman filtering. 
From this discussion, it is easy to see that Kalman filtering is more 
general than updating since there is no restriction on the function f 
in Kalman-like filtering. Hence, the distance measure used in 
imaging can be encoded using some particular kind of transition 
functions. Indeed, let A be a subset of ! and let d be some distance 

which gives for each interpretation ω its closest interpretation ω' in 
A. Then for each A, and for each d, we define fA,d in the following

way:

∀ω, fA,d (ω) = ω' where ω' is the closest

interpretation to ω in A w.r.t. d  (16) 
The converse does not hold. This is mainly due to the strong 

assumption imposed by the distance where if ω A then the closest 

interpretation of ω in A is ω itself.  

6. Syntactic filtering
Filtering (and also updating) has been defined at the semantic 
level. In this section we provide its syntactic counterpart. We first 
give a compact representation of a possibility distribution by 
means of possibilistic knowledge bases. 

6.1.  Background on possibilistic logic  
A possibilistic knowledge base is made up of a finite set of 
weighted formulas  

ℜ={(φi,  ai), i=1,n}

where ai is understood as a lower bound on the degree of necessity

N(φi). Formulas with zero degree are not explicitly represented in

the knowledge base (only beliefs which are somewhat accepted by 
the agent are explicitly represented). The higher the weight, the 
more certain the formula. The weights ai hence induce constraints

on possibility distributions. Indeed, each pair (φi, ai) imposes that

the induced possibility distribution " should satisfy:  N(φi)&ai. Let

Σεai  be the set of formulas with weight at least equal to ai. A

possibilistic knowledge base ℜ is said be consistent if its classical 
counterpart, obtained by forgetting the weights, is classically 
consistent. We denote by 

Inc(Σ) = max{ai :Σεai is inconsistent}

the inconsistency degree of Σ. Inc(ℜ) = 0 means that Σεai is

consistent for all ai. 

Given a possibilistic knowledge base ℜ, we can generate a unique 
possibility distribution by associating to each interpretation, the 

level of compatibility with agent's beliefs, i.e., with ℜ. This 
possibility distribution is such that all the interpretations satisfying 

all the beliefs in ℜ have the highest possibility degree, namely 1, 
and the other interpretations will be ranked w.r.t. the highest belief 
that they falsify [13]. The possibility distribution associated with a 

knowledge base ℜ is: 

∀ω Ω, πℜ(ω) = 1 if ∀(φi ai)  ℜ,  ω � φi]

=  1 � max{ ai : (φi ai)  ℜ and ω °  φi }  otherwise.

The possibility distribution πℜ is not necessarily normalized,

however πℜ is normalized iff Σ is consistent.

Lastly, syntactic possibilistic inference is very efficient with a 
complexity close to the one of classical logic.  

6.2.  Syntactic counterpart of conditioning 

Let $ be a possibilistic knowledge base, and πℜ its associated

possibility distribution (using the above definition). This 

subsection provides a syntactic counterpart of conditioning πℜ
with some observation A. This consists in constructing from a 

possibilistic base Σ and the new information A, a new possibilistic 

base Σ' such that: 

∀ω, πℜ'(ω) = πℜ(ω|A).

This is done in a very simple way:  add the input A to the 
knowledge base with highest possible priority (i.e., 1); compute the 

level of inconsistency x = Inc(Σ≈{(A, 1)}) of the resulting possibly 
inconsistent knowledge base; drop all formulas with priority less 
than or equal to this level of inconsistency. This guarantees that the 
remaining beliefs are consistent with A. More formally, $' is 
defined as follows: 

$ ' = {(φi,  ai) : (φi,  ai) $ and ai > x} ≈ {(A, 1)}.

6.3. Syntactic counterpart of filtering 
Let $t be a knowledge base associated with "t (using the above 

definition). We recall that given a prediction function f and a new 
observation A, the new possibility distribution is computed in two 
steps: 

i) compute π' using the function f in the following way:

"' (ω) = maxω':ω=f(ω') " t(ω').

ii) apply conditioning of π' to A, namely: πt+1 (ω) = π' (ω|A)

Now we are interested in constructing $t+1 such that :

π$t+1
 (ω) =πt+1 (ω) .

Let $t be the possibilistic base associated with "t. Let us construct 

$' the possibilistic associated with "' obtained in step (i). Let αn =

1 >αn-1 >�>α1 (with let α0=0) as the weights used in $t and we

denote by Si be the set of classical formulas having the weight 

equal to αi. We now describe "t in terms of classes corresponding

to the same certainty level, that we denote Ci, and defined as 

follows: 

C0 = [S1 ≈ �≈Sn]

Ci = [Si+1 ≈ �≈Sn] - [Si≈ �≈Sn],  for i=1,n-1,

Cn = {countermodels of Sn}, 

where [φ] denotes classical models of φ. We can easily check that 
the Ci's encodes exactly the possibility distribution associated to 

$t, namely we have:   "t(ω) = 1 - αi  iff   ω Ci .

We are taking advantage of the compatibility of the extension 
principle with the level cutting of $t. Let us describe similarly "t+1
using classes Ei's such that ω Ei iff "'(ω) = 1 - αi. Then we can

easily check that Ei's can be defined using the classes Ci's, and the 

function f as follows: 

E0= f(C0),  Ei = f(Ci) - ≈j=0,i-1 f(Cj),     for i = 1, n-1 and

En = ! - ≈j=0,n-1 f(Cj),



where f(Ci) = {f(ω) : ω Ci}. Note that it may happen that some

Ei's can be empty. 

Given this representation, the knowledge base $' associated with "' 

can be defined as follows : Let ξi  be a classical formula whose

counter-models is the set En-i+1. Then: 

$' = {(ξi, αi) : i=1,n}.

Note that a more efficient construction of $' can be obtained if the 

function f is directly defined on formulas rather than on 
interpretations. In some cases, f may directly available on the set of 
varaibles. Let us illustrate this idea on a simple example. Consider 
a moving object in a discritized space whose positions denoted by 
a1, a2, a3, a4 form a partition. The initial position of the object O 

is described by the possibilistic knowledge base (we omit mutual 
exclusiveness constraints on the ai's): 

$ = {(a1∆a2∆a3, 1), (a1∆a2, λ)},

which means that O is certainly in a1 or a2 or a3, and most likely 

in a1 or a2. Let f be given on the discretized space for the ai's. Note 

that f(ai∆aj) = f(ai)∆ f(aj). Here, let us assume that we have the

information:  

f(a1) = a2∆a3,   f(a2) = a3,  f(a3) = a4, and f(a4)=a2.

Note that f can be computed on the discretized space from its 
expression in the physical space offline.  
We can check using the previous steps that $'=f($) is: 

$' = {(a2∆a3∆a4, 1), (a2∆a3, λ)}.

 Note that this syntactic treatment can be easily extended when f 

has a fuzzy image, e.g., f(a1) = {(a2∆a3, 1), (a4, α)}, taking

advantages of the fact that f(Σ)εa  = f(Σεa).

Now computing $t+1 
from $' is immediate using the previous

subsection. Namely, let x = Inc(Σ'≈{(A, 1)}). Then: 

$ t+1= {(φi,  ai) : (φi,  ai) $' and ai > x} ≈ {(A, 1)}.

Going back to the example, let A = a1∆a3∆a4 be the input 
information (which implicitely using mutually exclusiveness 
constraints, this means that O is not in a2). Then $ is updated 

into:       $ t+1 =  {(a3∆a4, 1), (a3, λ)}.

A syntactic counterpart to updating can be easily obtained in a 
similar way. See also [16] for an example.  

7. Conclusion
This paper has presented a preliminary investigation of the idea of 
filtering in the qualitative setting of possibility theory and 
possibilistic logic setting. In spite of some similarities, filtering and 
updating have been contrasted. Their respective roles for situation 
assessment and for acknowledging the dynamics of the world are 
still to be better analyzed. 
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