
HAL Id: hal-03299698
https://univ-artois.hal.science/hal-03299698

Submitted on 21 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Possibilistic Networks: MAP Query and Computational
Analysis

Salem Benferhat, Amélie Levray, Karim Tabia

To cite this version:
Salem Benferhat, Amélie Levray, Karim Tabia. Possibilistic Networks: MAP Query and Computa-
tional Analysis. IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI’18),
2018, Volos, Greece. pp.916-923, �10.1109/ICTAI.2018.00142�. �hal-03299698�

https://univ-artois.hal.science/hal-03299698
https://hal.archives-ouvertes.fr


Possibilistic networks: MAP query and
computational analysis

Salem BENFERHAT, Karim TABIA
Centre de Recherche en Informatique de Lens (CRIL)

Lens, France
{benferhat,levray,tabia}@cril.fr
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Abstract—Possibilistic networks are powerful graphical uncer-
tainty representations based on possibility theory. This paper
analyzes the computational complexity of querying min-based
and product-based possibilistic networks. It particularly focuses
on a very common kind of queries: computing maximum a
posteriori explanation (MAP ). The main result of the paper is
to show that the decision problem of answering MAP queries in
both min-based and product-based possibilistic networks is NP-
complete. Such computational complexity results represent an
advantage of possibilistic networks over probabilistic networks
since MAP querying is NPPP -complete in probabilistic Bayesian
networks. We provide the proof based on reduction from the
3SAT decision problem to MAP querying possibilistic networks
decision problem. As well as reductions that are useful for
implementation of MAP queries using SAT solvers.

Index Terms—Complexity, Possibilistic networks, MAP infer-
ence

I. INTRODUCTION

Probabilistic and possibilistic networks [11], [22], [27] are
powerful tools to represent and reason with uncertain infor-
mation. They allow a compact representation of uncertainty
distributions using directed acyclic graphs and independence
relations. Despite many similarities with probabilistic net-
works, possibilistic graphical models offer interesting addi-
tional advantages especially for modeling and reasoning with
qualitative and incomplete uncertainty. As stressed in [19],
some possibility theory particularities may offer interesting
gains in inference algorithms. For example, in the ordinal
possibilistic setting, there may be meaningful gains where the
idempotence property of min and max operators benefit to
inference algorithms. Also, recent works [9], [16], [23], [30]
involves using possibilistic setting applied to web semantics.
In this paper, we provide additional benefits for adopting
such tools in terms of inferential computational complexity
in the context of possibility theory frameworks ( [15], [18]).
Possibility theory is a natural alternative uncertainty theory
particularly appropriate when only the plausibility ordering
between events is useful. In fact, there are two main definitions
of possibility theories. The first one is called min-based
possibility theory. In this setting, the unit interval [0, 1], used
for assessing the uncertainty degrees of events, is viewed as
an ordinal scale. Hence, only the minimum and maximum
operators are used for defining uncertainty measures. This
contrasts with the second definition of possibility theory, called

product-based possibility theory, where the unit interval is used
in the general sense.

This paper focuses on one of the most important inference
task in graphical models which is computing maximum a
posteriori explanation (MAP ). One of the major result of
this paper is to show that querying possibilistic networks
has a lower complexity than querying probabilistic networks.
More precisely, we show that the decision problem associated
with answering MAP queries in possibilistic networks is NP-
complete. The proof is provided for both min-based and
product-based networks and is built progressively. To show
the hardness of the decision problem of MAP querying a pos-
sibilistic network, we focus on a special type of possibilistic
networks called Binary and Boolean possibilistic networks.
And we provide a reduction from 3SAT to MAP querying a
Binary and Boolean possibilistic network. Finally, we provide
reductions MAP querying a possibilistic network to two known
NP-complete problems: SAT and weighted MaxSAT decision
problems.

The rest of this paper is organized as follows: the first
section recalls basic notions on possibilistic frameworks. Then,
we discuss motivations and related work. The third section
introduces the decision problems of MAP query in possibilistic
networks and presents an overview of the solution to prove the
complexity results of the decision problems considered in this
paper. The remaining sections present different polynomial-
time reductions used in this paper.

II. BACKGROUND NOTIONS

This section provides a brief refresher on possibility theory
(for more details see [18]) and possibilistic networks ( [2],
[7], [20]). One of the basic elements in possibility theory is
the notion of possibility distribution, denoted by π, which is a
mapping from the universe of discourse Ω to the unit interval
[0, 1]. Especially, we consider a finite and discrete universe
of discourse. By convention, for a given ω ∈ Ω, π(ω) = 1
means that ω is fully possible while π(ω) = 0 means that
it is impossible for ω to be the real world. π is said to be
normalized if there is at least an element ω ∈ Ω such that
π(ω) = 1.

Given a possibility distribution π, one can define a possi-
bility measure, defined for each event φ ⊆ Ω, by:

Π(φ) = max{π(ω) : ω ∈ φ}. (1)
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It expresses to what extent φ is coherent (compatible) with
available information represented by π.

There are two interpretations of possibility degrees, either
the product-based interpretation of the scale [0, 1] like in prob-
ability theory or the min-based interpretation which consider
degrees on an ordinal scale. These two interpretations lead to
two different ways to deal with possibility degrees. Indeed,
updating degrees given a new evidence, namely conditioning,
differs whether the interval [0, 1] is just used to rank-order
events or not. We call min-based conditioning |m [18], [21]
the operation defined by: given a possibility distribution π,
and a new evidence φ ⊆ Ω (with Π(φ) > 0) the conditional
distribution π(.|mφ) is obtained as follows:

π(ωi|mφ) =

 1 if π(ωi) = Π(φ) and ωi ∈ φ;
π(ωi) if π(ωi) < Π(φ) and ωi ∈ φ;
0 otherwise.

(2)

The product-based conditioning, denoted by |∗, is, as in the
probabilistic setting, defined as follows:

π(ωi|∗φ) =


π(ωi)

Π(φ)
if ωi ∈ φ;

0 otherwise.
(3)

When there is no ambiguity, we simply write π(ω|φ) to
indifferently refer to π(ω|mφ) or π(ω|∗φ).

The compact representation, in form of a graphical model,
associated with a possibility distribution is known as possi-
bilistic networks. As in Bayesian networks, a possibilistic net-
work denoted PN =< G,Θ > is defined by two components:
• A graphical component G: a directed acyclic graph

(DAG) where each node represents a discrete variable
(from the set of variables V = {X1, .., Xn}) and edges
encode independence relations between variables.

• A numerical component Θ: a set of local normalized
possibility distributions Θi = πPN (Xi|par(Xi)) of each
node Xi given its parents par(Xi), where the normalized
condition is defined by:

∀uij ∈ Dpar(Xi) max
xi∈DXi

πPN (xi|uij) = 1.

The semantics associated with a possibilistic network is a joint
possibility distribution obtained using a so-called chain rule.
As there are two definitions of conditioning, there are also two
definitions of chain rule that compute a joint distribution. We
denote by PNm (respectively PN ∗) a min-based (respectively
a product-based) possibilistic network. The possibilistic chain
rule for these networks is defined as:

πPN⊗(X1, .., Xn) = ⊗i=1,..,nπPN⊗(Xi|⊗ par(Xi)). (4)

where ⊗ = m in min-based possibilistic setting and ⊗ = ∗
in product-based possibilistic setting.

Example 1. Figure 1 is an example of a possibilistic network
on the set of boolean variables V = {A,B,C,D}.

Again, when there is no ambiguity, we simply write PN to
indifferently refer to PNm or PN ∗.

A

BC

D

A πPN (A)
a 1
¬a .6

B A πPN (B|A)
b a .3
¬b a 1
b ¬a 1
¬ b ¬a .7

D B πPN (D|B)
d b 1
¬d b .4
d ¬b .4
¬d ¬b 1

C B πPN (C|B)
c b 1
¬c b .5
c ¬b 1
¬c ¬b .3

Fig. 1. Example of a possibilistic network PN over four boolean variables.

III. RELATED WORKS AND MOTIVATIONS

Possibilistic graphical models offer some advantages over
probabilistic ones especially for modeling and reasoning with
qualitative and incomplete uncertainty. Moreover, possibilistic
graphical models also offer nice features regarding practical
and computational aspects. This section illustrates two exam-
ples of features when it comes to modeling complex problems.

A. Probability underflow/undistinguishable likelihoods

In many real-world problems (eg. forecasting [28], simu-
lation of physical [1] or biological systems [8], [24], etc.)
there is need to model a sequential or more generally a
dynamic system with many variables over a long period of
time. Inference typically consists in computing the likelihood
of an outcome or any event of interest given an input. The
problem then is that drawing inferences for a long sequence
leads inevitably to what is called probability underflow prob-
lem due to propagating a long series of small probabilities
(indeed, the computer representation of numbers does not
allow to represent extremely small probabilities and rounds
them to zero). As a consequence, two events with relatively
different likelihoods will be associated to equal likelihoods.
Of course, an alternative and very common approach is to
use log likelihood values rather than computing likelihood
itself but then over long sequences one can encounter the
overflow problem. Possibilistic propagation thanks to the use
of idempotent operators will not encounter such a problem.

B. High computational complexity

Inference in probabilistic models is a hard task in the general
case. In particular, the decision problem associated with MAP
is NPPP -complete (see [12], [14] for more details on com-
plexity issues in Bayesian and credal networks). As said in the
introduction, it is important to note that while the complexity
results regarding inference in probabilistic networks are well-
established [13], there is, to the best of our knowledge, no
systematic study of such issues for possibilistic networks (ex-
cept a study of complexity in possibilistic influence diagrams
[20]). Some probabilistic network inference algorithms have
already been adapted from the probabilistic setting and seem to
show the same complexity. Among the first works on inference



in possibilistic graphical models we mention [17] dealing
with inference in hypergraphs. Most of the works are more
or less direct adaptations of probabilistic networks inference
algorithms. For example, a possibilistic elimination variable
algorithm can be found in [5] in the context of possibilistic
network classifiers. In [7], a possibilistic counterpart of the
wel-known Message passing algorithm is proposed. A direct
adaptation of the Junction tree algorithm in the possibilistic
setting is presented in [6]. Possibilistic networks could also
be used to approximate inference models of some imprecise
probabilistic models. For instance, in [3], an approach based on
probability-possibility transformations is proposed to perform
approximate MAP inference in credal networks where MAP
inference is very hard [13]. Clearly, modeling and reasoning
with complex problems involving many variables will not be
tractable unless strong assumption are made regarding the
structure of the network. One of the main results of this paper
is to show that querying possibilistic networks has a lower
complexity than querying probabilistic ones making the former
more appropriate for modeling and reasoning with complex
problems.

IV. MAP INFERENCE IN POSSIBILISTIC NETWORKS

MAP queries require searching for the most plausible in-
stantiation of query variables Q given an evidence e (an
instantiation of a set of variables E). In this paper, we
show that the computational complexity of MAP querying a
possibilistic network is NP-complete.

A. Definition of a MAP query

Let PN be a possibilistic network over the set of variables
V , Q ⊂ V be a set of query variables and E ⊂ V be a set of
evidence variables with Q ∩ E = ∅. Then, given an evidence
E = e, the aim is to compute the most plausible instantiation
q of Q given the evidence e. More formally, MAP queries aim
to compute

argmaxq∈DQ
(ΠPN (q|e)). (5)

Using the maximum property of possibility measures allows
us to rewrite Equation (5) as follows:

Proposition 1. Given a possibilistic network PN , Q the set
of query variables and an evidence e (an instantiation of
variables E), we have:

argmaxq∈DQ
(ΠPN (q|e)) = argmaxq∈DQ

(ΠPN (q ∧ e)),

for both min-based and product-based conditioning rule.

B. Decision problem associated with a MAP query

We now formally define the decision problem associated
with a MAP query in min-based possibilistic networks, de-
noted πm-D-MAP, and in product-based possibilistic net-
works, denoted π∗-D-MAP. They are given in the following
definition where we substitute ⊗ by m when considering min-
based possibilistic setting and by ∗ when considering product-
based possibilistic setting:

Definition 1. By π⊗-D-MAP(PN⊗, Q, e, t) we denote the
decision problem associated with MAP querying possibilistic
networks that we define by:
Input:
• PN⊗: a possibilistic network (min-based or product-

based)
• e (evidence): an instantiation of a set of variables E
• Q (query): a set of variables with Q ∩ E = ∅
• t: a real number in (0, 1].

Question: Is there an instantiation q of non observed variables
Q such that ΠPN⊗(q ∧ e) ≥ t?

V. OVERVIEW OF THE SOLUTION

We will show that MAP inference in possibilistic networks
is NP-complete. We will provide polynomial-time reductions
from some known NP-complete problems to our MAP decision
problems and conversely.

A. Background on satisfiability problems

Let us first recall the basic notions of boolean satisfiability
where we only consider formulas that are in conjunctive
normal form (this is enough for the purpose of this paper).
Let us consider a set of boolean variables V = {X1, ..., Xn}.
We denote by xi (¬xi respectively) the positive literal (the
negative literal respectively) of variable Xi. A clause C is a
disjunction of literals (or a single literal). For instance a clause
C would be: x1 ∨¬x2. A CNF formula Ψ is a conjunction of
clauses (e.g. C1∧C2). In particular, a 3CNF is a formula in a
conjunctive normal form for which each clause is a disjunction
of at most 3 literals.

A CNF formula Ψ is said to be satisfiable (or consistent)
if there exists an assignment of all the variables (that we also
call an interpretation) that renders Ψ true. Now, we define the
boolean satisfiability decision problem CNF-SAT (specified
for conjunctive normal form formulas), denoted simply by D-
SAT, as follows:

Definition 2. By D-SAT(Ψ) we denote the decision problem
associated to determining if there exists an assignment that
satisfies Ψ. It is defined by:
Input: Ψ a formula in a conjunctive normal form
Question: Is Ψ satisfiable?

The D-3SAT decision problem is defined as:

Definition 3. By D-3SAT(Ψ) we denote the decision problem
defined by:
Input: Ψ a 3CNF formula
Question: Is Ψ satisfiable?

Example 2. Let us consider the set of variables V =
{X1, X2, X3, X4} and the following 3CNF Ψ over V :

(x1 ∨ ¬x2 ∨ x3) ∧
(¬x3 ∨ ¬x2 ∨ x4)

Ψ is satisfiable. Indeed the assignment (or interpretation) ω =
x1, x2,¬x3,¬x4 satisfies all clauses. Hence, the answer to the
decision problem D-SAT(Ψ) is ”yes”.



The last problem that we will refer to in this paper is the
weighted MaxSAT problem. This problem generalizes the SAT
problem: given a formula with non-negative integer weights on
each clause, find an assignment of variables that maximizes
the sum of the weights of the satisfied clauses. More precisely,
we define its associated decision problem as follows:

Definition 4. By D-WMaxSAT(Ψ, k) we denote the decision
problem defined by:
Inputs:
• Ψ: a weighted CNF formula over V = {X1, ..., Xn}

simply represented by

Ψ =


(C1, α1),
(C2, α2),

...
(Cm, αm).


where C ′is are clauses and α′is are positive integers.

• k: a positive integer
Question: Is there an instantiation of variables V such that
the sum of weights of satisfied clauses in Ψ is greater or equal
to k?

B. Description of the solution

The following section provide the proof of the NP com-
pleteness of πm-D-MAP and π∗-D-MAP decision problems.
We then give tranformations of MAP decision problems in
possibilistic networks in order to use SAT solver. The next
sections follow these three steps:
• We first show the NP-hardness of πm-D-MAP and π∗-

D-MAP. This is done by providing a reduction from the
D-3SAT decision problem to both πm-D-MAP and π∗-
D-MAP decision problems. In this reduction, we use
a restricted version of possibilistic networks that only
involve boolean variables and binary possibility degrees 0
or 1 (namely, each conditional event is either fully possi-
ble or fully impossible). We call this type of networks
Boolean and Binary possibilistic networks denoted by
B&B possibilistic networks.

• We provide a reduction of the πm-D-MAP decision
problem, defined for min-based possibilistic networks, to
the D-SAT decision problem.

• The last section focuses reducing the π∗-D-MAP de-
cision problem, defined for product-based possibilistic
networks, to the D-WMaxSAT decision problem.

In particular, we highlight the results of the min-based possi-
bilistic setting.

VI. FROM 3SAT TO MAP QUERYING OVER B&B
POSSIBILISTIC NETWORKS

As described in the overview of the solution, we propose
to first reduce the 3SAT decision problem to MAP querying
Boolean and Binary possibilistic networks.

In this context, we are faced to only consider two kinds
of queries: given e an instantiation of evidence variables E,
is there an instantiation q of query variables Q such that
ΠPN⊗(q∧ e) ≥ 0 or such that ΠPN⊗(q∧ e) ≥ 1 with ⊗ = m

for min-based possibilistic setting or ⊗ = ∗ for product-
based possibilistic setting. The inequality ΠPN⊗(q∧ e) ≥ 0 is
trivially satisfied since any instantiation q of Q is a solution
to the query.

Hence, we will only focus on analyzing the com-
putational complexity of the decision problems πm-D-
MAP(PNB&Bm

, Q, e, 1) and π∗-D-MAP(PNB&B∗ , Q, e, 1).

A. Equivalence of the MAP decision problem in min-based
B&B possibilistic networks and product-based B&B possibilis-
tic networks

Given the definition of a B&B possibilistic network, the
following proposition states that the decision problems π∗-D-
MAP(PNB&Bm

, Q, e, 1) and π∗-D-MAP(PNB&B∗ , Q, e, 1)
are equivalent.

Proposition 2. Let e be an instantiation of evidence
variables and Q be a subset of query variables. Let
PNB&Bm

and PNB&B∗ be two B&B possibilistic net-
works such that ∀Xi, ∀µ an instance of parents of Xi,
πPNB&Bm

(Xi|µ) = πPNB&B∗
(Xi|µ). Then the answer to πm-

D-MAP(PNB&Bm , Q, e, 1) is ”yes” if and only if the answer
to π∗-D-MAP(PNB&B∗ , Q, e, 1) is ”yes”.

Proposition 2 means that the answer to a MAP query in
a B&B possibilistic network does not depend on whether we
consider the min-based version of B&B possibilistic networks
or the product-based version one. This is due to the fact that
operators ∗ and min applied to possibility degrees 0 and 1
lead to same results. More precisely,

Proposition 3. Let PNB&Bm and PNB&B∗ be two B&B
possibilistic networks such that ∀Xi, ∀µ an instance of parents
of Xi, πPNB&Bm

(Xi|µ) = πPNB&B∗
(Xi|µ). Then we have:

∀ω ∈ Ω, πPNB&Bm
(ω) = πPNB&B∗

(ω). (6)

The proof of Proposition 3 is immediate and follows from the
fact that if a and b are either equal to 0 or 1 then min(a, b) =
a ∗ b.

B. Reduction from 3SAT problem to B&B-D-MAP problem

Now we can tackle the reduction from 3SAT to querying
B&B possibilistic networks. Since we showed that MAP
querying B&B possibilistic networks is the same in min-
based or in product-based B&B possibilistic networks, we
only consider in this section the decision problem in the min-
based possibilistic setting, denoted by B&Bm-D-MAP. Since
ΠPN⊗(q ∧ e) ≥ 1 is trivially equivalent to ΠPN⊗(q ∧ e) = 1
there is no need to specify the threshold t. Then we get:

Definition 5. By B&Bm-D-MAP(PNB&Bm
, Q, e) we denote

the decision problem associated with MAP querying a min-
based Boolean and Binary possibilistic network that we define
by:
Inputs:
• PNB&Bm

: a min-based binary and boolean possibilistic
network over V = {X1, ..., Xn}



• e (evidence): an instantiation of a set of observation
variables E

• Q (query): a set of query variables with Q ∩ E = ∅
Question: Is there an instantiation q of variables Q such that
ΠPNB&Bm

(q ∧ e) = 1?

We first provide the B&B possibilistic network associated
with a 3CNF formula Ψ. This reduction takes inspiration from
the probabilistic reduction provided in [10] and used to prove
the fact that probabilistic inference in belief networks is NP-
hard. More precisely, the B&B possibilistic network associated
with a 3CNF is given by the following definition.

Definition 6. Let Ψ = C1∧C2∧ ...∧Cm be a 3CNF formula.
Let V = {X1, ..., Xn} be the set of propositional variables
appearing in Ψ. The B&B possibilistic network associated
with Ψ, denoted by PNΨ is defined as follows:

1) Modeling the propositional variables: For each propo-
sitional symbol Xi appearing in Ψ, we create a rooted
boolean node variable, also and simply denoted by
Xi, in the graph (with two values xi and ¬xi). Each
rooted variable Xi is associated with a local binary
possibility distribution defined by: πPNΨ(xi) = 1 and
πPNΨ(¬xi) = 1.

2) Modeling the satisfaction of a clause Cj: For each
clause Cj of Ψ, we create a conditional node variable,
again simply denoted Cj . Cj is a boolean variable, its
two values are denoted by cj and ¬cj . Parents of Cj
are the rooted variables Xi that are involved in Cj .
Each conditional node variable Cj is associated with
a conditional possibility distribution given by: ∀ujk an
instance of parents of Cj .

πPNΨ
(cj |ujk) =

{
1, if ujk |= Cj ,
0, otherwise.

πPNΨ(¬cj |ujk) =

{
0, if ujk |= Cj ,
1, otherwise.

where ujk is an instantiation of the parents of Cj ,
namely the instantiation of variables Xi involved in Cj
and uk |= Cj means that the instantiation uk satisfies
the clause Cj .

3) Modeling the satisfaction of the 3CNF formula Ψ:
Lastly, we add a single boolean node denoted by EΨ,
which represents the satisfiability of the overall formula
Ψ. Its values are denoted by eΨ and ¬eΨ. It has
all nodes C ′js as parents. The conditional possibility
distributions associated with EΨ are as follow:

πPNΨ
(eΨ|C1∧..∧Cm) =

{
1, if ∀Cj , Cj = cj ,
0, otherwise

(∃j∈{1..m} s.t. Cj=¬cj)

πPNΨ
(¬eΨ|C1 ∧ .. ∧ Cm) =

{
0, if ∀Cj , Cj = cj ,
1, otherwise

The reduction (from 3SAT clauses to a B&B possibilistic
network) given by Definition 6 is done in polynomial time. Its

space complexity is also polynomial with respect to the size
of the formula.

Example 3. Let us consider the 3CNF Ψ of Example 2.
Following Definition 6, the B&B possibilistic network PNΨ,

associated with Ψ, consists of three levels of nodes. The first
level of nodes represents the set of variables. In this example
we have the first level containing the nodes X1, X2, X3 and
X4 as depicted in Figure 2.

X1 X2 X3 X4

X1

x1 1
¬x1 1

X2

x2 1
¬x2 1

X3

x3 1
¬x3 1

X4

x4 1
¬x4 1

Fig. 2. First level of nodes in PNΨ.

The second level of nodes has 2 nodes C1 and C2 with
local distributions as illustrated in Figure 3. Note that in local
distributions of Figures 3 and 4 we describe by the
remaining instantiations of par(Cj) and par(EΨ).

X1 X2 X3 X4

C1 C2

C1 X1X2X3

c1 ¬x1x2¬x3 0
c1 1
¬c1 ¬x1x2¬x3 1
¬c1 0

C2 X2X3X4

c2 1
c2 x2x3¬x4 0
¬c2 0
¬c2 x2x3¬x4 1

Fig. 3. First two levels of nodes Xi and Cj in PNΨ.

By adding the last node EΨ representing the 3CNF formula,
we obtain the final binary possibilistic network, given in Figure
4.

X1 X2 X3 X4

C1 C2

EΨ

EΨ C1C2

eΨ c1c2 1
eΨ 0
¬eΨ c1c2 0
¬eΨ 1

Fig. 4. B&B possibilistic network PNΨ obtained from the 3CNF formula
Ψ given in Example 2.



Theorem 1 provides the reduction from the decision prob-
lem D-3SAT(Ψ) into B&Bm-D-MAP(PNΨ, Q, e). The input
e is let to eΨ while Q is set to the remaining variables in
PNΨ (namely, ({X1, ..., Xn}∪ {C1, ..., Cm}) \ {EΨ}). More
formally:

Theorem 1. Let Ψ be a 3CNF formula. Let PNΨ be the B&B
possibilistic network given by Definition 6. Let VPNΨ

be the set
of variables in PNΨ, namely {X1, ..., Xn} ∪ {C1, ..., Cm} ∪
{EΨ}. Then, D-3SAT(Ψ) answer is ”yes” if and only if the
B&Bm-D-MAP(PNΨ, (VPNΨ

\ {EΨ}), eΨ) answers ”yes”
where D-3SAT is given in Definition 3 and B&Bm-D-MAP
is given by Definition 5.

Proof.
? Let us assume that the answer to D-3SAT(Ψ) is ”yes”. It
means that there exists an interpretation or an instantiation of
the variables {X1, ..., Xn}, that we denote ω∗, that satisfies all
the clauses in Ψ. If ω is an interpretation and X is a variable
then we simply denote by ω[X] the instance of X present in
ω.

Let us construct an interpretation, denoted ωPNΨ
, of VPNΨ

such that ωPNΨ
|= eΨ and πPNΨ

(ωPNΨ
) = 1. For the variable

EΨ, we let ωPNΨ [EΨ] = eΨ. For variables Xi ∈ {X1, ..., Xn}
we let ωPNΨ [Xi] = ω∗[Xi]. For variables Cj ∈ {C1, ..., Cm}
we simply let ωPNΨ

[Cj ] = cj . Now, let us show that indeed
πPNΨ

(ωPNΨ
) = 1.

Recall that for all variables Xi in PNΨ, we have
πPNΨ

(Xi) = 1. Since ω∗ satisfies all clauses, then for all
variables Cj in PNΨ (namely, the set of nodes representing the
clauses), we have πPNΨ

(cj |ujk) = 1 where ω∗ |= ujk. Lastly,
the variable EΨ = eΨ when all C ′js are set to c′js respectively
have a possibility degree of 1 (πPNΨ(eΨ|c1 ∧ ... ∧ cm) = 1).

Therefore, using the min-based chain rule, we have

πPNΨ
(ωPNΨ

) = min{πPNΨ
(eΨ|c1 ∧ ... ∧ cm),

minj=1,...,m,ωPNΨ
|=ucj

πPNΨ
(cj |ucj ),

mini=1,...,n,ωPNΨ
|=Xi

πPNΨ(Xi))}
= 1

where ucj is the instance parents of Cj such that ωPNΨ
|= ucj .

Therefore, defining q as the instantiation of Q satisfied by
ωPNΨ

we have ΠPNΨ
(q ∧ eΨ) = 1, hence B&Bm-D-

MAP(PNΨ, (VPNΨ
\ {EΨ}), eΨ) is ”yes”.

? Let us assume that the answer to D-3SAT(Ψ) is ”no”.
Hence, whatever the considered interpretation ωPNΨ

where
ωPNΨ |= eΨ there exists at least Cj such that πPNΨ(cj |ucj ) =
0 with ωPNΨ |= ucj . Hence, πPNΨ(ωPNΨ) = 0. So
using the min operator of the chain rule, we obtain that
ΠPNΨ

(q∧eΨ) = 0 for all instantiation q of Q. Hence, B&Bm-
D-MAP(PNΨ, (VPNΨ

\ {EΨ}), eΨ) is ”no”.

This proof can be easily extended to multi-valued variables
and non-binary domains. Hence, the following corollary:

Corollary 1. Let PN⊗ be a possibilistic network, Q be a
subset of variables, e be an instantiation of evidence variables
E (with E ∩ Q = ∅) and let t be a real value in (0, 1] with

⊗ = m or ⊗ = ∗. Then π⊗-D-MAP(PN⊗, Q, e, t) is NP-
complete.

In particular, the Membership part of the π⊗-D-MAP is:
Given an instance q, it is easy to check if Π(q ∧ e) ≥ t.
Indeed, x = (q, e) is a complete instantiation of the network
variables, hence the possibility degree Π(q ∧ e) is computed
in polynomial time (more precisely, in linear time) in the size
of the network (number of variables) using the chain rule.

By this reduction we have shown that MAP querying
possibilistic network is NP-hard. In addition to this proof,
we provide converse transformations which are useful for im-
plementation issues of MAP queries in possibilistic networks
using SAT solvers.

VII. FROM QUERYING min-BASED POSSIBILISTIC
NETWORKS TO SAT

In this section, we no longer restrict ourselves to binary pos-
sibility distributions. Namely, (conditional) possibility degrees
can take any value in the unit interval [0, 1]. However, for the
sake of simplicity, we still only consider boolean variables.
This is not a restriction and the proof can be adapted by
encoding a non-boolean variable by a set of boolean variables.
We propose to reduce the decision problem πm-D-MAP to the
decision problem D-SAT.

A. Definition of a CNF formula associated with a min-based
possibilistic network

In this subsection, we define the transformation of a min-
based possibilistic network PNm into a CNF formula, denoted
ΨPNm,Q,e,t. The following gives the definition of the CNF
formula associated with the network PNm, the set Q, the
evidence e (an instantiation of the variables E) and the real
number t in ΨPNm,Q,e,t.

Definition 7. Let PNm be a min-based possibilistic network
over the set of boolean variables V = {X1, ..., Xn}. Let Q
be a subset of V , e = e1, ..., el be an instantiation of evidence
variables E (with Q ∩ E = ∅) and let t be a threshold.
Then ΨPNm,Q,e,t over the same set of boolean variables
V = {X1, ..., Xn}, is given by:

ΨPNm,Q,e,t = {(¬xi ∨ ¬uij) : πPNm
(xi|uij) < t}

∪ {ek : k = 1, ..., l}
Clearly, this reduction is done in polynomial time (and

space) with respect to the size of PNm.

Example 4. Let us consider the possibilistic network PNm

of Figure 1 over the set of variables V = {A,B,C,D}.
Let E = {D} be the set of evidence with e = {D = d}
be an instantiation of E, Q = {B,C} be the set of query
variables and t = .5. Then the CNF ΨPNm,{B,C},d,.5 given by
the transformation of Definition 7 is:

ΨPNm,{B,C},d,.5 =

(c ∨ b) ∧
(d ∨ ¬b) ∧
(¬d ∨ b) ∧

(¬b ∨ ¬a) ∧
d



B. Reduction from a min-based possibilistic network into a
CNF

The following theorem states that πm-D-MAP can be
reduced to D-SAT.

Theorem 2. Let PNm be a min-based possibilistic network,
Q be a subset of query variables, e be an instantiation
of evidence variables E and t be a real number in (0, 1].
Let ΨPNm,Q,e,t be the CNF formula given by Definition 7.
Then, πm-D-MAP(PNm, Q, e, t) says ”yes” if and only if D-
SAT(ΨPNm,Q,e,t) says ”yes” where πm-D-MAP is given by
Definition 1 and D-SAT is given by Definition 2.

Proof.
? Assume that ΨPNm,Q,e,t is satisfiable. This means that there
exists an instantiation of all variables, denoted by ω∗, that
satisfies all clauses of ΨPNm,Q,e,t including e = e1, ..., el.
Recall that by construction of ΨPNm,Q,e,t, if (¬xi ∨ ¬uij) ∈
ΨPNm,Q,e,t then we have πPNm

(xi|uij) < t. So if ω∗ satisfies
all clauses in ΨPNm,Q,e,t then ω∗ falsifies each of the formulas
in {(xi ∧uij) : (¬xi ∨¬uij) ∈ ΨPNm,Q,e,t}. This means that
all conditionals πPNm(xi|uij) used in chain rule for defining
πPNm

(ω∗) have a possibility degree greater or equal to t.
Therefore, πPNm

(ω∗) ≥ t.
Denoting now q = ω∗[Q] the instantiation of the variables

Q such that ω∗ � q, we have ΠPNm
(q ∧ e) ≥ t since

πPNm
(ω∗) ≥ t, ω∗ |= q and ω∗ � e. Hence the answer to

πm-D-MAP(PNm, Q, e, t) is also ”yes”.

? Assume that ΨPNm,Q,e,t is unsatisfiable. Then for all
instantiation of variables ω such that ω |= e(= e1∧..∧el), there
exists at least a clause Ci = ¬xi ∨ ¬uij that is falsified by ω
(and hence ω |= xi∧uij). And by construction of ΨPNm,Q,e,t,
we have πPNm(xi|uij) < t, so using the min-based chain
rule we have ∀ω |= e, πPNm

(ω) < t and therefore ∀q ∈ DQ,
ΠPNm

(q ∧ e) < t.

We illustrate the above theorem and its proof with an
example using a MAP query.

Example 5. Let us consider the CNF formula
ΨPNm,{B,C},d,.5, of Example 4, corresponding to the
MAP query: Is there an instantiation q of query variables
{B,C} such that ΠPNm

(q ∧ e) ≥ .5? Namely, the decision
problem is πm-D-MAP(PNm, {B,C}, d, .5). There exist
two models ¬abcd and ¬ab¬cd. Hence, the answer to
D-SAT(ΨPNm,Q,e,t) is ”yes”. And by using the min-
based chain rule on the possibilistic network of Figure
1, we get π(¬abcd) = .6 hence ΠPNm

(bcd) = .6 which
is higher or equal than .5. So the answer to πm-D-
MAP(PNm, {B,C}, d, .5) is ”yes”.

For the sake of clarity, we focused on detailing the min-
based possibilistic setting reduction. Therefore, the next sec-
tion only gives the definition of the reduction and the main
result stating the equivalence of the result of the two decision
problems given the right parameters.

VIII. FROM QUERYING PRODUCT-BASED POSSIBILISTIC
NETWORKS TO WMAXSAT

In this section, we will consider that the possibility degrees
in the possibilistic network are of the form 2−αi (plus 0 and
1) where αi is a positive integer. Having uncertainty degrees
of the form 2−αi will allow us to easily reduce PN ∗ to
WMaxSAT given the fact that the weights used in WMaxSAT
are integers (it is enough to use −log2(2−αi) to get positive
integers). This assumption is done again for the sake of clarity
but the proof can be generalized to other real numbers between
0 and 1. Note that αi may represent a degree of surprise used
in Spohn’s ordinal conditional function [29].

A. Definition of a weighted CNF formula associated to a
product-based possibilistic network

In the following definition, we give the weighted CNF
formula associated with a MAP query in product-based pos-
sibilistic networks. More precisely, it takes into account the
evidence e = e1, ..., el of the set of variables E (of size
|E| = l), the set of query variables Q and the threshold t
to produce the associated weighted CNF formula.

Definition 8. Let PN ∗ be a product-based possibilistic net-
work over the set of boolean variables V = {X1, ..., Xn}.
Let Q be a subset of V , e = e1, ..., el be an instantiation of
evidence variables E (with Q∩E = ∅) and t be a threshold.
Then ΨPN∗,Q,e,t is defined by: ΨR ∪Ψ0 ∪Ψe where

ΨR = {(¬xi ∨ ¬uij , αi) : πPN∗(xi|uij) = 2−αi},
Ψ0 = {(¬xi ∨ ¬uij ,M) : πPN∗(xi|uij) = 0},
Ψe = {(ek,M) : k = 1, ..., l},

(7)

where M >
∑
{αi : (¬xi ∨ ¬uij , αi) ∈ ΨR}.

ΨR represents the clauses in ΨPN∗,Q,e,t such that have
possibility degrees of the form 2−αi . Ψ0 represents the clauses
for which the possibility degrees in PN ∗ are 0. And Ψe

represents the clauses added to enforce the evidence. Intu-
itively, the integer weight M is used for fully certain pieces
of information. Besides, Ψ0 ∧Ψe is of course assumed to be
consistent (this reflects the very reasonable assumption that
the evidence is somewhat possible).

For the following, we will also denote by X =
∑
{αi :

(¬xi ∨ ¬uij , αi) ∈ ΨR} the sum of weights in ΨR.

B. Reduction from a product-based possibilistic network to a
weighted CNF formula

Theorem 3 provides the reduction from the deci-
sion problem π∗-D-MAP(PN ∗, Q, e, t) into D-WMaxSAT
(ΨPN∗,Q,e,t, k). We will denote by Z the number of possibility
degrees, πPN∗(xi|uij) in PN ∗ that are equal to 0 (namely, Z
is the number of clauses in Ψ0).

The input k is let to X + log2 t + M ∗ (Z + |E|) while
ΨPN∗,Q,e,t is the weighted CNF formula given associated to
PN ∗ given by Definition 8 (we also assume for only sake of
simplicity that t is of the form 2−α with α an integer). More
formally:



Theorem 3. Let PN ∗ be a product-based possibilistic net-
work. Let Q be a subset of V , e be an instantiation of variables
E and t be a threshold. Let ΨPN∗,Q,e,t be the CNF formula
given by Definition 8. Then, π∗-D-MAP(PN ∗, Q, e, t) answers
”yes” if and only if D-WMaxSAT(ΨPN∗,Q,e,t, X + log2 t+
M ∗ (Z + |E|)) answers ”yes” where π∗-D-MAP is given by
Definition 1 and D-WMaxSAT is given by Definition 4.

IX. CONCLUSIONS

As stressed out in the motivations, inference in probabilistic
models is a hard task in the general case. Indeed, computing
MAP queries in Bayesian networks is NPPP -complete [14],
[26]. This paper provided crucial complexity results for pos-
sibilistic networks where MAP inference queries are shown
to be NP-complete. Especially, these results are valid in both
min-based and product-based possibilistic networks.

A future work concerns the computational complexity anal-
ysis of MAP queries in interval-based possibilistic networks.
We believe that our results on MAP queries will still hold
in the interval-based possibilistic setting. Since in interval-
based possibilistic logic the complexity of conditioning is the
same as the complexity of conditioning a standard possibilistic
knowledge base. Among other future works, we also argue that
the nice complexity results of possibilistic networks shown
in this paper can really benefit for inference in probabilistic
credal networks where these latter can be approximated by
possibilistic networks by means of imprecise probability-
possibility transformations [4], [25].
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Preference modeling with possibilistic networks and symbolic weights:
A theoretical study. In ECAI 2016 - , The Hague, The Netherlands,
pages 1203–1211, 2016.
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