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Abstract—Reasoning with uncertainty in graphical models

often implies great computational cost. For example, computing

the most probable explanation in Bayesian networks is known to

be NP

PP
-complete. Possibilistic networks represent an alternative

powerful representation for uncertain information. This paper

aims at showing that the computation complexity of MPE
inference tasks in possibilistic networks are NP-complete. To that

end, we provide full reduction and proof for MPE querying min-

based and product-based possibilistic networks. More precisely,

we provide incremental proofs based on reductions to and

from three well-known NP-complete problems: SAT, 3SAT and

Weighted MaxSAT decision problems.

Index Terms—Complexity, Possibilistic networks, MAP infer-

ence, MPE inference

I. INTRODUCTION

Beliefs graphical models, such as Bayesian networks [6],
credal networks [5], or possibilistic networks [3] are power-
ful means of compactly represent uncertainty using directed
acyclic graphs and independence relationships. Typically, pos-
sibilistic networks are seen as counterparts of Bayesian net-
works based on possibility theory [10], where possibility
degrees are more suited for handling imperfect, qualitative and
partial information.

Inference in such graphical models has been extensively
studied and many algorithms have emerged. On the other hand,
while complexity results regarding inference in probabilistic
networks are well-established [7]–[9], there is no such deep
study for possibilistic networks. This paper aims at filling this
gap.

Essentially, in graphical models there are three common
types of queries: computing most probable (or plausible)
explanation (MPE); computing a posteriori probability (or
possibility) degrees (Pr); and computing the maximum a
posteriori explanation (MAP ). These tasks are known to be
very hard in the probabilistic setting. Indeed, the decision
problems associated to MPE, Pr, MAP are NP-complete,
PP -complete and NPPP -complete respectively (see [7], [9]
for more details on complexity issues in Bayesian and credal
networks). In this paper, we focus on possibility theory where
we consider two interpretations of possibility theory, min-
based possibility theory and product-based possibility theory
[11].

In [2], the authors analysed the computational complexity
of MAP queries in min-based and product-based possibilistic

networks. They showed that the decision problem behind MAP

querying is NP-complete for both min-based and product-
based possibilistic networks. Regarding MAP querying a
product-based possibilistic network, only the proof of NP-
hardness has been provided. The first part of this paper
provides the proof of NP-completeness theorem, stated in [2],
of MAP querying a product-based possibilistic network. In the
second part of the paper, we address the complete analysis
of the decision problems associated with the most plausible
explanation (MPE) task in both min-based and product-based
possibilistic networks, show using a reduction to the SAT
decision problem, that it is NP-complete. Such computational
complexity outcomes favour possibility theory as an efficient
alternative for reasoning with uncertainty (some results on
learning possibilistic parameters over probabilistic ones can
be found in [13]).

The paper is outlined as follows. In section II, we briefly
recall notions on possibility theory, as well as give motivations.
The third section investigates general properties on inference
tasks in possibilistic networks. In particular, we provide the
proof that the decision problem based on conditioning oper-
ator is the same as the one based on conjunction operator
when computing MAP queries. Hence, we no longer need
conditioning rule in the computation of MAP queries. The
fourth section addresses the NP-completeness result of MAP

inference in product-based possibilistic networks. In the fifth
section, we establish the complexity of MPE inference. This
is done by showing a reduction from 3SAT to MPE querying
a binary and boolean possibilistic networks, and conversely
with a reduction from MPE in a possibilistic network to a
SAT problem.

II. A REFRESHER ON POSSIBILITY THEORY AND
POSSIBILISTIC NETWORKS

In this section, we give a short reminder of the basic
notions associated to possibility theory [11] and its associated
graphical models named possibilistic networks [1], [4], [12].
A possibility distribution, denoted by ⇡, is a mapping from the
set of possible worlds ⌦ to the unit interval [0, 1]. Note that
we consider a finite and discrete set. For a given interpretation
! 2 ⌦, ⇡(!) = 1 is interpreted as fully possible. ⇡(!) = 0 is
interpreted as impossible. ⇡ is said to be normalised if there
is at least an element ! 2 ⌦ that is fully possible (i.e. such
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that ⇡(!) = 1).

There are two understandings of the scale [0, 1] of pos-
sibility degrees, either the product-based interpretation as in
probability theory or the min-based interpretation which con-
siders degrees on an ordinal scale. These two interpretations
lead to two different conditioning rules when dealing with new
evidence. We call min-based conditioning |

m

the operation
leading to ⇡(.|

m

�) given by [11], [14]:

⇡(!

i

|
m

�) =

8
<

:

1 if ⇡(!
i

) = ⇧(�) and !

i

2 �;

⇡(!

i

) if ⇡(!
i

) < ⇧(�) and !

i

2 �;

0 otherwise.
(1)

The product-based conditioning, denoted by |⇤, is, as in the
probabilistic setting, defined as follows:

⇡(!

i

|⇤�) =

8
<

:

⇡(!

i

)

⇧(�)

if !
i

2 �;

0 otherwise.
(2)

A possibilistic network denoted PN =< G,⇥ > is speci-
fied by two components:

• A graphical component G: a directed acyclic graph
(DAG) where each node represents a discrete variable and
edges encode independence relations between variables.

• A numerical component ⇥: a set of local normalised
possibility distributions ⇥

i

= ⇡PN (X

i

|par(X
i

)) of each
node X

i

given its parents par(X

i

).
The joint possibility distribution is factorised using a chain

rule, defined as:

⇡PN⌦(X1, .., Xn

) = ⌦
i=1,..,n⇡PN⌦(Xi

|⌦ par(X

i

)). (3)

where ⌦ = m in min-based possibilistic setting and ⌦ = ⇤
in product-based possibilistic setting.

It is well-known that inference in probabilistic models is
a hard task in the general case. In particular, the decision
problem associated with MAP in Bayesian networks is NPPP -
complete [7]. The next sections address the same complexity
issues on product-based possibilistic networks as well as the
computational complexity of MPE inference.

The complexity of MAP querying a min-based possibilistic
network has already been discussed in [2] and it has been
shown that MAP inference in this context is NP-complete.

But first, we recall the definition of inference tasks in
possibilistic networks.

III. INFERENCE IN POSSIBILISTIC NETWORKS

In this paper, we investigate two of the most common
types of queries when reasoning with graphical models,
that are MAP inference and MPE inference. MAP queries
require searching for the most plausible instantiation of query
variables Q given an evidence e (an instantiation of a set
of variables E). While MPE queries search for the most
plausible explanation of an evidence e. More formally,

MAP query: Let PN be a possibilistic network over the set
of variables V , Q ⇢ V be a set of query variables and E ⇢ V

be a set of evidence variables with Q \ E = ;. Then, given
an evidence E = e, the aim is to compute the most plausible
instantiation q of Q given the evidence e.

argmax

q2DQ(⇧PN (q|e)). (4)

MPE query: Let PN be a possibilistic network over the set of
variables V , E ⇢ V be a set of evidence variables. We denote
X the set of remaining variables (X = V \ E). Then, given
an evidence E = e, MPE query compute the most plausible
instantiation x of X compatible with the evidence e. Stated
otherwise by:

argmax

x2X

(⇧PN (x, e)). (5)

Note that ⇧PN (x, e) is the possibility degree of the con-
junction of x and e, especially since X \ E = ;. Another
notation commonly used is ⇧PN (x ^ e).

In [2], it is stated that in the case of a MAP query,
the problem can be reduced to finding the most plausible
assignment of query variables Q compatible with the evidence
e. More precisely, it can be rewritten as:

argmax

q2DQ(⇧PN (q, e)). (6)

Namely, given a possibilistic network PN , Q the set of
query variables and an evidence e (an instantiation of variables
E), we have:

argmax

q2DQ(⇧PN (q|e)) = argmax

q2DQ(⇧PN (q, e)). (7)

Simply put, the conditioning rule of possibility theory is not
required to compute the maximum a posteriori assignment. In
this section, we provide the full proof of Equation (7) of the
above statement, stated in [2].

• Let us start with the min-based conditioning. Given a
possibilistic network PN

m

over V and let Q and E

be two subsets of V (s.t. Q \ E = ;). Then, com-
puting argmax

q2DQ(⇧(q|e)) is equivalent to searching
the instantiation q such that ⇧(q|e) = 1. By defi-
nition of the min-based conditioning, ⇧(q|e) = 1 if
⇧(q, e) = ⇧(e). Assume that argmax

q2DQ(⇧(q, e)) is
q

0 then since ⇧(e) = max

!✏e ⇡(!) or said otherwise
⇧(e) = max

q2DQ ⇧(q, e) which is given by ⇧(q0, e).
• Let us now consider product-based conditioning. In

the same way, since the possibilistic network PN ⇤ is
normalised then 8e 2 E, argmax

q2DQ(⇧(q|e)) is
equivalent to searching the instantiation q such that
⇧(q|e) = 1. Which, by definition, is given by ⇧(q|e) =
⇧(q, e)

⇧(e)

, therefore, ⇧(q|e) = 1 if ⇧(q, e) = ⇧(e).

From there, assume that argmax

q2DQ(⇧(q, e)) is q

0

then since ⇧(e) = max

!✏e ⇡(!) = ⇧(q

0
, e). Thus,

argmax

q2DQ(⇧PN (q|e)) = argmax

q2DQ(⇧PN (q, e)).
Given this equivalence, we can focus only on the MAP

problem redefined by Equation (6).



IV. MAP QUERYING PRODUCT-BASED POSSIBILISTIC
NETWORKS

In [2] a computational complexity analysis of MAP queries
in min-based and product-based possibilistic networks is pro-
vided. In particular, it is stated that the decision problem
behind MAP querying is NP-complete for product-based pos-
sibilistic networks. The full proof of NP-hardness has been
provided. This section provides the proof of NP-completeness
theorem, stated in [2], of MAP querying a product-based
possibilistic network. Let us first give a brief refresher on
decision problems associated with MAP querying product-
based possibilistic networks.

A. Definition of the decision problems

Let us recall the definition of the decision problem as-
sociated with a MAP query in product-based possibilistic
networks, denoted ⇡⇤-D-MAP.

Definition 1. By ⇡⇤-D-MAP(PN ⇤, Q, e, t) we denote the
decision problem associated with MAP querying possibilistic
networks that we define by:
Input:

• PN ⇤: a product-based possibilistic network
• e (evidence): an instantiation of a set of variables E

• Q (query): a set of variables with Q \ E = ;
• t: a real number in (0, 1].

Question: Is there an instantiation q of non observed variables
Q such that ⇧PN⌦(q, e) � t?

As said before, the decision problem we refer to in this
reduction is the weighted MaxSAT problem. It is defined as
follows:

Definition 2. By D-WMaxSAT( , k) we denote the decision
problem specified by:
Input:

•  : a weighted CNF formula over boolean variables V =

{X1, ..., Xn

} simply represented by

 =

8
>><

>>:

(C1,↵1),

(C2,↵2),

...

(C

m

,↵

m

).

9
>>=

>>;

where C

0
i

s are clauses and ↵

0
i

s are positive integers.
• k: a positive integer

Question: Is there an instantiation of variables V such that
the sum of weights of satisfied clauses in  is greater or equal
to k?

B. From querying product-based possibilistic networks to
WMaxSAT

1) Definition of a weighted CNF formula associated to a
product-based possibilistic network: In what follows, we will
reuse the same weighted CNF formula associated to a product-
based possibilistic network and defined in [2].

Definition 3. Let PN ⇤ be a product-based possibilistic net-
work over the set of boolean variables V = {X1, ..., Xn

}.

Let Q be a subset of V , e = e1, ..., el be an instantiation of
evidence variables E (with Q\E = ;) and t be a threshold.
Then  PN⇤,Q,e,t

is defined by:  
R

[ 0 [ e

where

 

R

= {(¬x
i

_ ¬u
ij

,↵

i

) : ⇡PN⇤(xi

|u
ij

) = 2

�↵i},
 0 = {(¬x

i

_ ¬u
ij

,M) : ⇡PN⇤(xi

|u
ij

) = 0},
 

e

= {(e
k

,M) : k = 1, ..., l},
(8)

where M >

P
{↵

i

: (¬x
i

_ ¬u
ij

,↵

i

) 2  
R

}.

Example 1 illustrates Definition 3.

Example 1. Let us consider the product-based possibilistic
network PN ⇤ of Figure 1. Let Q = {B} be a subset of V , let
e = ¬c be an instantiation of evidence variables E = {C}
and let t = 2

�2 be the threshold.

A B

C

A ⇡PN⇤ (A)
a 1
¬a 2�4

B ⇡PN⇤ (B)
b 2�8

¬b 1

C A B ⇡PN⇤ (C|AB)
c a b 2�7

¬c a b 1
c a ¬b 1
¬c a ¬b 2�2

c ¬a b 0
¬c ¬a b 1
c ¬a ¬b 0
¬c ¬a ¬b 1

Fig. 1. Example of a product-based possibilistic network PN ⇤ over A,B
and C.

Let M = 30. Then following Definition 3, the weighted CNF
formula  PN⇤,{B},¬c,2�2 is

 PN⇤,{B},¬c,2�2
=

8
>>>>>>>><

>>>>>>>>:

(a, 4),

(¬b, 8),
(¬c _ ¬a _ ¬b, 7),
(c _ ¬a _ b, 2),

9
>>=

>>;
 

R

(¬c _ a _ b, 30),

(¬c _ a _ ¬b, 30),

�
 0

(¬c, 30)
 
 

e

9
>>>>>>>>=

>>>>>>>>;

2) Reduction from a product-based possibilistic network to
a weighted CNF formula: Theorem 1, given in [2], provides
the result that the decision problem ⇡⇤-D-MAP(PN ⇤, Q, e, t)
can be reduced into D-WMaxSAT ( PN⇤,Q,e,t

, k).

Theorem 1. [2] Let PN ⇤ be a product-based possibilistic
network. Let Q be a subset of V , e be an instantiation of
variables E and t be a threshold. Let  PN⇤,Q,e,t

be the CNF
formula given by Definition 3. Then, ⇡⇤-D-MAP(PN ⇤, Q, e, t)
answers ”yes” if and only if D-WMaxSAT( PN⇤,Q,e,t

, X +

log2 t+M ⇤ (Z + |E|)) answers ”yes” where ⇡⇤-D-MAP is
given by Definition 4 and D-WMaxSAT is given by Definition
2.

In this section, we provide the full proof of Theorem 1 and
illustrate it with examples.

Proof. Let us first define the parameters of the WMaxSAT
decision problem, D-WMaxSAT( PN⇤,Q,e,t

, k). Namely,



•  PN⇤,Q,e,t

is the weighted CNF formula given by Defi-
nition 3.

• k is the threshold for the problem and it is given by:

k = X + log2t+M ⇤ ((
X

⇧PN⇤(xi

|u
i

) = 0)+ 1) (9)

where M is defined in Definition 3. And X is given by the
sum of weights in  

R

: X =

P
{↵

i

: (¬x
i

_ ¬u
ij

,↵

i

) 2
 

R

} .
The second part of the proof consists in showing

that the two decision problems as defined are equivalent.
Let the query associated to D-WMaxSAT be: Does D-

WMaxSAT( PN⇤,Q,e,t

, X + log2t + M ⇤ (Z + 1)) answer
”yes”? More precisely, is there an instantiation of all variables
that satisfies a subset of clauses in  PN⇤,Q,e,t

having the sum
of the degrees of the satisfied clauses greater or equal to k?

Recall that ⇡⇤-D-MAP decision problem is: Given an in-
stantiation e of evidence variables, is there an instantiation q

of query variables Q such that ⇧(q, e) � t?
For the sake of clarity, in this proof we simply write  

instead of  PN⇤,Q,e,t

.
? Assume that D-WMaxSAT( , k) answers ”yes”. This means
that there exists a subset A ✓  such that:

• {(�
i

,↵

i

) 2 A} is consistent and
•
P

(�i,↵i)2A

↵

i

� k

Note that we can state that {(e
k

,M) : k = 1, ..., l} is
included in A. Indeed, if some (�

i

,M) of  is not in A

then
P

(�i,↵i)2A

cannot be greater than M ⇤ (Z + |E|). Let
us denote by A

⇤
= A \ {(�

i

,M) : (�

i

,M) 2 A} then we can
also state that:

• {(�
i

,↵

i

) 2 A

⇤} is consistent,
•
P

(�i,↵i)2A

⇤ ↵
i

� X + log2 t

Let ! be a model of {�
i

: (�

i

,↵

i

) 2 A} and {�
i

: (�

i

,↵

i

) 2
A

⇤}. Since X =

P
{↵

i

: (�

i

,↵

i

) 2  and ↵

i

6= M}. Then
the latter equation implies that:

X
{↵

i

: (�

i

,↵

i

) 62 A

⇤}  �log2 t

This can be rewritten as:
X

{↵
i

: (�

i

,↵

i

) 2  \A, ! 2 �

i

}  �log2 t

It is enough now to consider the following immediate simpli-
fied inequalities to get the desirable result.

P
{↵

i

: (�

i

,↵

i

) 2  \A, ! 2 �

i

}  �log2 t

�
P

{log22�↵i
: (�

i

,↵

i

) 2  \A, ! 2 �

i

}  �log2 t

�log2(⇤{2�↵i
: (�

i

,↵

i

) 2  \A, ! 2 �

i

})  �log2 t

�log2(⇤{2�↵i
: ! 2 ¬x

i

_ ¬u
ij

})  �log2 t

�log2(⇤{2�↵i
: ! ✏ x

i

^ u

ij

})  �log2 t

�log2 ⇡PN⇤(!)  �log2 t

⇡PN⇤(!) � t

with ! ✏ e. Hence the answer to ⇡⇤-D-MAP(PN ⇤, Q, e, t) is
also ”yes” by taking q such that ! |= q.

? Assume that D-WMaxSAT( PN⇤,Q,e,t

, k) answers ”no”.
Then, for all consistent subset of clauses A that include  0

and  
e

we have
X

{↵
i

: (�

i

,↵

i

) 2 A} < k.

Let us consider such a subset A⇤. Let ! be a model of A

⇤,
then following the same previous steps we have:

P
{↵

i

: (�

i

,↵

i

) 2  \A⇤ s.t ! 2 �

i

} > �log2t

�log2(⇤{2�↵i
: ! 2 ¬x

i

_ ¬u
ij

}) > �log2 t

�log2(⇤{2�↵i
: ! ✏ x

i

^ u

ij

}) > �log2 t

�log2 ⇡PN⇤(!) > �log2 t

⇡PN⇤(!) < t

with ! ✏ e. Hence the answer to ⇡⇤-D-MAP(PN ⇤, Q, e, t) is
also ”no”.

Example 2. Let Q = {B} and E = {C} be the set of query
variables and evidence variables respectively. Let us consider
the evidence e = ¬c. Let  PN⇤,Q,e,t

be the weighted CNF
formula associated to PN ⇤ given by Definition 3. The MAP

query over PN ⇤ is: Is there an instantiation q of the variables
Q such that ⇧PN⇤(q, e) � 2

�2. Hence, the corresponding
problem D-WMaxSAT( PN⇤,Q,e,t

, k) is given by: Is there an
instantiation of the variables such that the sum of the degrees
of the satisfied clauses is greater or equal to k?

Let us set the values of the variables X,M and Z: X = 21,
M = 30, and Z = 2. Then, k = X+log2t+30⇤(Z+1) = 109.
Given this configuration, D-WMaxSAT( PN⇤,{B},¬c,2�2 , 109)
answers ”yes”. Indeed, it is enough to consider A such that

A =

8
>>>>>><

>>>>>>:

(a, 4),

(¬b, 8),
(¬c _ ¬a _ ¬b, 7),
(¬c _ a _ b, 30),

(¬c _ a _ ¬b, 30),
(¬c, 30)

9
>>>>>>=

>>>>>>;

The sum of the weights in A is equal to 109. A model of
formulas in A can be a¬b¬c for which using the product-
based chain rule has a possibility degree of ⇧PN⇤(a¬bc) =

2

�2. Hence, ⇡⇤-D-MAP(PN ⇤, {B},¬c, 2�2) answers ”yes”
as well.

C. Complexity of MPE inference

In this subsection, we analyse the complexity of MPE

inference in product-based possibilistic networks. As we have
mentioned in the definition of the query, we search for the
assignment of all variables compatible with the evidence.
Which means that the only difference with a MAP query as
redefined in Equation (6) is that instead of a subset of variables
we use all of them.

Based on what has just been proven for MAP inference, we
argue that by choosing a set of query variables corresponding
to the remaining variables V \E, the complexity results follows
from Theorem 1. This is formally stated in the following
proposition.

Proposition 1. ⇡⇤-D-MPE is NP-complete.



We provide a more rigorous proof for MPE inference in
min-based possibilistic networks in the next section.

V. COMPLEXITY ANALYSIS OF MPE INFERENCE IN
min-BASED POSSIBILISTIC NETWORKS

This section focuses on MPE query in min-based possi-
bilistic networks. Contrary to MAP inference, where the com-
plexity analysis have shown that MAP inference in possibilistic
networks costs less than in Bayesian networks; Here we show
that MPE querying a possibilistic network is NP-complete as
in Bayesian networks.

Basically, to prove that ⇡

m

-D-MPE is NP-complete, we
follow the same steps as in the analysis of MAP in min-based
possibilistic networks given in [2]. More precisely,

• we first show the NP-hardness of ⇡

m

-D-MPE by pro-
viding a reduction from the D-3SAT decision problem
to ⇡

m

-D-MPE decision problem. In particular, in this
reduction we build a special possibilistic network that
only takes into account boolean variables and binary
values. This network is called a binary and boolean
possibilistic network (see [2] for more details).

• we provide a reduction of the ⇡

m

-D-MPE decision
problem, defined for min-based possibilistic networks, to
the D-SAT decision problem.

A. Definition of the decision problems

We first formally define the decision problem associated
with a MPE query in min-based possibilistic networks, de-
noted ⇡

m

-D-MPE as well as the decision problem associated
with querying a B&B possibilistic network.

Definition 4. We denote ⇡

m

-D-MPE(PN
m

, e, t) the decision
problem associated with MPE querying a min-based possi-
bilistic network. It is defined by:
Input:

• PN
m

: a min-based possibilistic network
• e (evidence): an instantiation of a set of variables E

• t: a real number in (0, 1].

Question: Is there an instantiation x of the variables X such
that ⇧PNm(x, e) � t?

Definition 5 considers a particular case of Definition 4
where degrees are either 0 or 1 (hence no need to explicitly
specify t).

Definition 5. By B&B

m

-D-MPE(PN
B&Bm , e) we denote the

decision problem associated with MPE querying a min-based
Boolean and Binary possibilistic network that we define by:
Input:

• PN
B&Bm : a min-based binary and boolean possibilistic

network over V = {X1, ..., Xn

}
• e (evidence): an instantiation of a set of observation

variables E

Question: Is there an instantiation x of variables X such that
⇧PNB&Bm

(x, e) = 1?

In [2], the authors gave the reasons why we can afford to
only consider the case ⇧PNB&Bm

(x, e) = 1.

Let us now recall the boolean satisfiability decision problem
denoted D-SAT.

Definition 6. By D-SAT( ) we denote the decision problem
associated to determining if there exists an assignment ! that
satisfies  . It is defined by:
Input:  a formula in a conjunctive normal form
Question: Is  satisfiable?

A restricted version of the SAT problem involves a 3CNF
and is called D-3SAT decision problem. A 3CNF is a formula
in a conjunctive normal form for which each clause is a
disjunction of at most 3 literals. Thus,

Definition 7. By D-3SAT( ) we denote the decision problem
defined by:
Input:  a 3CNF formula
Question: Is  satisfiable?

B. From 3SAT to MPE querying over B&B possibilistic
networks

As in [2], we build a B&B possibilistic network from a
3CNF. The definition of this reduction is recalled by Definition
8. For more details, the reader can refer to [2].

Definition 8. Let  = C1^C2^ ...^C

m

be a 3CNF formula.
Let V = {X1, ..., Xn

} be the set of propositional variables
appearing in  . The B&B possibilistic network associated
with  , denoted by PN is defined as follows:

1) For each propositional symbol X
i

appearing in  , we
add a boolean node variable in the graph. Each variable
X

i

is associated with a possibility distribution given by:
⇡PN (xi

) = 1 and ⇡PN (¬xi

) = 1.
2) For each clause C

j

of  , we add a conditional node
variable, C

j

. Parents of C

j

are the rooted variables
X

i

that are involved in C

j

. Each C

j

is associated with
a conditional possibility distribution given by: 8u

jk

an
instance of parents of C

j

that models the satisfiability
of the clause.

3) Lastly, we add a single boolean node, E , which rep-
resents the satisfiability of the overall formula  . It has
all nodes C

0
j

s as parents. Intuitively, E is set to true
if all clauses are satisfied.

Theorem 2 provides the reduction from the decision prob-
lem D-3SAT( ) into B&B

m

-D-MPE(PN , e) where the in-
put e is let to e . More formally:

Theorem 2. Let  be a 3CNF formula. Let PN be the
B&B possibilistic network given by Definition 8. Let VPN 

be the set of variables in PN , namely {X1, ..., Xn

} [
{C1, ..., Cm

} [ {E }. Then, D-3SAT( ) answer is ”yes”
if and only if the B&B

m

-D-MPE(PN , e ) answers ”yes”
where D-3SAT is given in Definition 7 and B&B

m

-D-MPE

is given by Definition 5.



C. From querying min-based possibilistic networks to SAT

In this section, we no longer restrict ourselves to binary
possibility distributions. Namely, (conditional) possibility
degrees can take any value in the unit interval [0, 1]. However,
for the sake of simplicity, we still only consider boolean
variables. This is not a restriction and the proof can be
adapted by encoding a non-boolean variable by a set of
boolean variables. We propose to reduce the decision problem
⇡

m

-D-MPE to the decision problem D-SAT.

The following gives the definition of the CNF formula asso-
ciated with the network a MPE query, denoted by  PNm,e,t

.

Definition 9. Let PN
m

be a min-based possibilistic network
over the set of boolean variables V = {X1, ..., Xn

}. Let e =
e1, ..., el be an instantiation of evidence variables E and let
t be a threshold. Then  PNm,e,t

over the set of variables
V = {X1, ..., Xn

}, is given by:

 PNm,e,t

= {(¬x
i

_ ¬u
ij

) : ⇡PNm(x

i

|u
ij

) < t}
[ {ek : k = 1, ..., l}

This reduction is done in polynomial time (and space) with
respect to the size of PN

m

.

The following theorem states that ⇡

m

-D-MPE can be re-
duced to D-SAT.

Theorem 3. Let PN
m

be a min-based possibilistic network,
e be an instantiation of evidence variables E and t be a real
number in (0, 1]. Let  

PNm,e,t

be the CNF formula given by
Definition 9. Then, ⇡

m

-D-MPE(PN
m

, e, t) says ”yes” if and
only if D-SAT( PNm,e,t

) says ”yes” where ⇡

m

-D-MPE is
given by Definition 4 and D-SAT is given by Definition 6.

Proof. The proof is similar to the one provided in [2] for
analyzing the complexity of map-querying possibilistic net-
works. We need to prove that when  PNm,e,t

is satisfiable then
⇧PNm(x, e) � t and that when  PNm,e,t

is unsatisfiable then
⇧PNm(x, e) < t for all assignments of all variables compatible
with e.

• Assume that  PNm,e,t

is satisfiable. This means that
there exists an instantiation of all variables, denoted
by !

⇤, that satisfies all clauses of  PNm,e,t

including
e = e1, ..., el. Then we have ⇡PNm(x

i

|u
ij

) < t by
construction of  PNm,e,t

. So if !

⇤ satisfies all clauses
in  PNm,e,t

then !

⇤ falsifies each of the formulas in
{(x

i

^ u

ij

) : (¬x
i

_ ¬u
ij

) 2  PNm,e,t

}. Thus, all con-
ditionals ⇡PNm(x

i

|u
ij

) applied in chain rule to compute
⇡PNm(!

⇤
) have a possibility degree greater or equal to

t. Therefore, ⇡PNm(!

⇤
) � t. Hence the answer to ⇡

m

-

D-MPE(PN
m

, e, t) is also ”yes”.
• Assume that  PNm,e,t

is unsatisfiable. Then for all
instantiation of variables ! such that ! |= e(= e1^..^el),
there exists at least a clause C

i

= ¬x
i

_ ¬u
ij

that
is falsified by ! (and hence ! |= x

i

^ u

ij

). And by
construction of  PNm,e,t

, we have ⇡PNm(x

i

|u
ij

) < t,
so using the min-based chain rule we have 8! |= e,

⇡PNm(!) < t. Hence ⇡

m

-D-MPE(PN
m

, e, t) is also
”no”.

To summarise Proposition 1 together with Theorems 2
and 3 show that the decision problem associated with MPE

inference is NP-complete for both min-based and product-
based possibilistic networks.

VI. CONCLUSIONS

This paper dealt with the computational complexity of
inference in possibilistic networks. The main results shown in
this work proved that possibilistic networks offer interesting
advantages for reasoning with uncertain information. These
results have an impact on the complexity of reasoning in the
interval-based possibilistic setting. A future work concerns the
computation of the a posteriori possibility degree of an event
in both min-based and product-based possibilistic networks.
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