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Abstract

Possibility theory and possibilistic logic are well-known uncertainty frameworks particularly suited
for representing and reasoning with uncertain, partial and qualitative information. Belief update plays a
crucial role when updating beliefs and uncertain pieces of information in the light of new evidence. This
paper deals with conditioning uncertain information in a qualitative interval-valued possibilistic setting.
The first important contribution concerns a set of three natural postulates for conditioning interval-
based possibility distributions. We show that any interval-based conditioning satisfying these three
postulates is necessarily based on the set of compatible standard possibility distributions. The second
contribution consists in a proposal of efficient procedures to compute the lower and upper endpoints of
the conditional interval-based possibility distribution while the third important contribution provides a
syntactic counterpart of conditioning interval-based possibility distributions in case where these latter
are compactly encoded in the form of possibilistic knowledge bases.

Interval-based possibilistic logic, conditioning, possibility theory

1 Introduction

Many problems and applications need efficient formalisms for encoding and reasoning with uncertain, partial
information or knowledge. Possibility theory and possibilistic logic [1, 2, 3, 4, 5] are uncertainty frameworks
particularly suited for representing and reasoning with uncertain, incomplete, prioritized and qualitative
information. In the literature, many extensions have been proposed for possibilistic logic to deal for instance
with imprecise certainty degrees [6, 7], symbolic certainty weights [8, 9], multi-agent beliefs [10], temporal and
uncertain information [11], uncertain conditional events [12, 13, 14], generalized possibilistic logic [1, 4, 15],
justified beliefs [16], etc.

Interval-based uncertainty representations extend the underlying uncertainty settings in order to encode
uncertainty by means of intervals of possible degrees instead of single values. Such extensions allow more
flexible representations especially to deal with poor information, imprecise or ill-known beliefs, confidence
intervals and multi-source information [17, 18]. Such representations are very widely used in some appli-
cations such as sensitivity analysis. In this paper, we are interested in interval-based possibilistic logic [6]
which extends the standard possibilistic logic setting to allow intervals of possible degrees instead of single
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values attached to the formulas of the knowledge base.

Conditioning is an important task for updating the current uncertain information when a new sure piece
of information is received. A conditioning operator is designed to satisfy some desirable properties such as
giving priority to the new information and ensuring minimal change while transforming an initial distribu-
tion into a conditional one. Conditioning in standard (single-valued) possibility theory has been addressed
in many works [19, 20, 21, 22, 23, 24, 25, 26, 27]. There are two major definitions of a possibility theory:
min-based (or qualitative) possibility theory and product-based (or quantitative) possibility theory. At the
semantic level, these two theories share the same definitions, including the concepts of possibility distri-
butions, necessity measures, possibility measures and the definition of normalization conditions. However,
they differ in the way they define possibilistic conditioning. Indeed, in possibility theory, there are two
main definitions of possibilistic conditioning. The first one is called min-based conditioning [19, 28] (or
qualitative-based conditioning) which is appropriate in situations where only the ordering between events is
important. In this case, the unit interval [0, 1] is viewed as an ordinal scale where only the minimum and the
maximum operations are used for propagating uncertainty degrees. The second definition of conditioning
is called product-based conditioning (or quantitative-based conditioning) where the unit interval is used in
a general sense. In this case, the product operation can also be used in the propagation of uncertainty de-
grees. In the context of interval-based possibility theory [6, 7, 29], an extension of a conditioning operator is
proposed for the interval-based setting. This is only done for the product-based conditioning. This extension
is based on conditioning compatible possibility distributions and a syntactic counterpart for conditioning
possibilistic logic bases is also proposed. In [12, 13], the authors dealt with some issues regarding inference
(propagating possibility and necessity bounds) and independence where the beliefs are encoded using the
concept of uncertain conditionals in a possibilistic setting.

This paper is primarily oriented to the study of min-based conditioning in an interval-based possibilistic
setting and contains three major contributions:

• The first contribution (Section 4, Theorem 1) deals with conditioning in an interval-based possibility
theory setting. We first propose three natural postulates for an interval-based conditioning. We show
that any interval-based conditioning satisfying these postulates is necessarily based on applying min-
based conditioning on each compatible standard possibility distribution.

• The second contribution (Section 4) consists in providing the exact lower and upper endpoints of min-
based conditioning an interval-based distribution and a proposal of efficient procedures to compute the
lower and upper endpoints of the conditional interval-based possibility distribution.

• The third contribution (Section 5) concerns syntactic computations of conditioning where interval-
based possibility distributions are compactly represented by interval-based knowledge bases. We show
that interval-based conditioning has the same computational complexity as the standard min-based
conditioning.

Before presenting these contributions, let us first provide a brief refresher on possibility theory and possi-
bilistic logic.

2 Brief reminder on possibility theory and possibilistic logics

Possibility theory [30, 31] is a well-known alternative uncertainty theory. This framework was coined by L.
Zadeh [31] and it is developed by several researchers (eg. Dubois and Prade [32], Yager [33] and Borgelt
and Kruse [34]). Possibility theory is based on a pair of dual measures allowing to evaluate the knowl-
edge/ignorance relative to the event in hand. Among the main concepts of this framework are the ones of
possibility distribution and possibilistic knowlegde base.
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2.1 Possibility distributions

A possibility distribution, denoted π, is a mapping that attaches to every state ω of the world Ω (the uni-
verse of discourse or the set of states of the world) a degree in the unit interval [0, 1] expressing a partial
knowledge over the world. The degree π(ω) associated with a state ω represents the degree of compatibil-
ity (or consistency) of the state ω with the available knowledge. By convention, π(ω)=1 means that ω is
fully consistent with the available knowledge, while π(ω)=0 means that ω is impossible. π(ω)>π(ω′) simply
means that ω is more compatible than ω′. A possibility distribution π is said to be normalized if there exists
an interpretation ω such that π(ω)=1, it is said to be subnormalized otherwise (subnormalized possibility
distributions encode inconsistent sets of beliefs).

A possibility distribution allows to define two dual functions from 2Ω to [0, 1] called possibility and
necessity measures and denoted by Π and N respectively. They are defined as follows:

Π(φ) = max{π(ω) : ω∈φ}, and

N(φ) = 1−Π(φ).

Note that φ denotes the complement of φ in Ω (namely, φ=Ω\φ). Π(φ) measures to what extent the event φ
is compatible with the available knowledge encoded by π while N(φ) measures to what extent it is entailed
from π with certainty.

As already mentioned, possibility degrees are interpreted either i) qualitatively (in min-based possibility
theory) where only the ordering of the values matters, or quantitatively (in product-based possibility theory)
where the possibilistic scale [0, 1] is quantitative as in probability theory.

2.2 Conditioning a possibility distribution

In the standard possibilistic setting, conditioning comes down to updating a possibility distribution π encod-
ing the current knowledge when a completely sure event called evidence or observation, denoted by φ⊆Ω, is
received. This results in a conditional possibility distribution denoted by π(.|φ). There are many definitions
of conditioning operators in the standard possibilistic setting [19, 20, 21, 22, 23].
Hisdal [19] proposed that the definition of a conditioning operator in the qualitative setting should satisfy
the condition:

∀ω ∈ φ, π(ω) = min(π(ω|φ),Π(φ)).

Dubois and Prade [28] proposed to select the largest conditional possibility distribution satisfying this con-
dition, leading to the following conditioning operator.

Definition 1 (min-based conditioning). Let π be a possibility distribution, φ ⊆ Ω be a sure event. We define
min-based conditioning of π by φ, simply denoted π(.|mφ) as:

∀ω∈Ω, π(ω|mφ)=







1 if π(ω)=Π(φ) and ω∈φ;
π(ω) if π(ω)< Π(φ) and ω∈φ;
0 otherwise.

(1)

When Π(φ)=0, then by convention ∀ω∈Ω, π(ω|mφ)=1.
Conditioning a possibility distribution π with a completely sure piece of information φ⊆Ω using Equa-
tion (1) results in a new and updated possibility distribution π′=π(.|mφ) that is normalized (namely,
maxω∈Ω(π

′(ω)=1) and fully accepting φ (namely, ∀ω/∈φ, π′(ω)=0).

In case where possibility degrees are interpreted quantitatively like in the probabilistic setting, condition-
ing a possibility distribution is done using the so-called product-based conditioning [35], defined as follows
(for Π(φ)6=0):

π(ωi|∗φ) =

{

π(ωi)
Π(φ) if ωi ∈ φ ;

0 otherwise.
(2)

3



A possibility distribution can be compactly encoded in the form of possibilistic logic knowledge bases [3]
or by means of possibilistic graphical models [34]. In this paper, we deal only with possibility distributions
compactly encoded in the form of possibilistic logic knowledge bases.

2.3 Possibilistic logic knowledge bases

Possibilistic knowledge bases [1, 36, 3, 4, 5] are one of the well-known compact representations of possibility
distributions. In possibilistic logic, weights are attached to formulas instead of elementary worlds. A pos-
sibilistic formula is a pair (ϕ, α) where ϕ is a propositional logic formula and α∈[0, 1] is a certainty degree
associated with ϕ. The higher the certainty degree α is, the more important is the formula ϕ . A possibilistic
base K={(ϕi, αi), 1≤ i≤n} is simply a set of possibilistic formulas as shown in the following example.

Example 1. In this example, we consider a toy example from the medical area. The knowledge base K is
given as follows:

Formulas Weights

Flu ∨ Cold 1
¬Fever 1

Cold ⇒ Sneezing .9

Flu ⇒ Cough .7

Flu .6

Given a possibilistic base K, we can generate a unique possibility distribution where interpretations ω
satisfying all propositional formulas in K have the highest possible degree π(ω)=1 (since they are fully
consistent), whereas the others are pre-ordered with respect to the highest formulas they falsify. More
formally:

Definition 2. Let K be a possibilistic knowledge base. Then, the corresponding possibility distribution πK
is given by: ∀ω∈Ω,

πK(ω)=

{

1 if ∀(ϕ, α)∈K, ω � ϕ
1−max{αi : (ϕi, αi)∈K,ω 2 ϕi} otherwise.

(3)

Ω here denotes the set of propositional interpretations. ω�ϕ means that ω is a model of (or satisfies) ϕ
in the sense of propositional logic.

Example 2. (Example 1 continued) The possibility distribution induced by the knowledge base of Example
1 is as follows:

State (ω) πK(ω)

Flu Cold Fever Sneezing Cough 0.0
Flu Cold Fever Sneezing ¬Cough 0.0
Flu Cold Fever ¬Sneezing Cough 0.0

Flu Cold Fever ¬Sneezing ¬Cough 0.0
Flu Cold ¬Fever Sneezing Cough 1.0

Flu Cold ¬Fever Sneezing ¬Cough 0.3
Flu Cold ¬Fever ¬Sneezing Cough 0.1

Flu Cold ¬Fever ¬Sneezing ¬Cough 0.1
Flu ¬Cold Fever Sneezing Cough 0.0

... ... ... ... ... ...

... ... ... ... ... ...
¬Flu ¬Cold ¬Fever ¬Sneezing ¬Cough 0.0

In this example, we have five propositional variables in the knowledge base K. Hence, the possibility distri-
bution πK is over 25 states. Note that all the missing ones are associated with a zero possibility degree.
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An important notion that plays a central role in the inference process and conditioning is the one of strict
α-cut. Let α be a positive real number. A strict α-cut, denoted by Kα, is a set of propositional formulas
defined by Kα= {ϕ : (ϕ, β)∈K and β >α}. The strict α-cut is useful to measure the inconsistency degree
of K denoted by Inc(K) and defined by:

Inc(K) =

{

0 if K0 is consistent
max{α : Kα is inconsistent} otherwise

(4)

If Inc(K)=0 then K is said to be completely consistent. If a possibilistic base K is partially inconsistent,
then Inc(K) can be seen as a threshold below which every formula is considered as not enough entrenched
to be taken into account in the inference process.

The concept of α-cut can be used to provide the syntactic counterpart of conditioning a possibilistic
knowledge base with a propositional formula:

Definition 3. Let K be a possibilistic knowledge base and φ be a sure piece of information. The result of
conditioning K by φ, denoted Kφ is defined as follows:

Kφ ={(φ, 1)} ∪ {(ϕ, α) : (ϕ, α) ∈ K and K≥α ∧ φ is consistent.}

Namely, Kφ is obtained by considering φ with a certainty degree ’1’, plus weighted formulas (ϕ, α) of
K such that their α-cut is consistent with φ (the notation K≥α means the formulas of K associated with
degrees greater or equal to α). It can be checked that:

∀ω ∈ Ω, πKφ
(ω) = πK(ω|φ).

Next section briefly recalls main concepts of interval-based possibility theory and interval-based possi-
bilistic logic.

3 Interval-based extension of possibilistic logic

Before giving a refresher on interval-based possibility theory [6], let us first start with an example to motivate
the current work.

Example 3. Let us choose an example from the football competitions area. Suppose we are interested
in betting on football competitions. To increase our chances, we decided to do a survey on the Internet
concerning the upcoming Euro championship. This survey is concerned with the views of football fans and
supporters about the chances of two national teams we are interested in to reach the final. For the sake of
simplicity, assume that we are interested only in the chances that the french and german teams have to get
into the final match. We denote in the remainder of this example by f (resp. g) the statement that the
french (resp. german) team will get into the final. To collect people’s opinions, we posted a question on a
specialized Internet survey platform. In addition, we also asked people to specify how much they believe in
their answers using a unit scale [0, 1] with the convention that the degree 1 should be attached to the most
plausible scenario1 while the degree 0 totally excludes the corresponding scenario. Values in between allow
to rank order the other scenarios. Assume that we’ve got answers from five people p1,..,p5. We’ve got the
plausibility levels of these people with respect to the different scenarios summarized as follows:

In this example, the confidence degrees provided by the responders can be viewed as possibility degrees.
Now, suppose that we got hundreds or thousands of answers or suppose that there is a large number of vari-
ables, then it makes sense to find a compact way to encode the obtained answers and more importantly to
reason with them (answer any request of interest and update the available information when new sure in-
formation is obtained). Interval-valued possibility theory is suited for encoding and reasoning with this kind

1In this example, the scenario fg means both French and German teams will attend the final match while the scenario

f¬g means that the french team will attend the final contrary to the german team .
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p1 p2 p3 p4 p5
f g 1 1 1 .8 .5
¬f g .7 1 .9 1 1
f ¬g .3 .2 .4 .6 .2
¬f ¬g .4 .5 .3 .6 5

Table 1: Example of multiple sources information

of information. For instance, the available knowledge from Example 3 could be summarized as an interval-
valued possibility distribution given in Table 2.

Iπ
f g [.5, 1]
¬f g [.7, 1]
f ¬g [.2, .6]
¬f ¬g [.3, .6]

Table 2: Interval-based distribution corresponding to the multiple source information of Table 1.

Let us now formally introduce the concept of interval-based possibility distributions and interval-based
possibilistic knowledge bases.

3.1 Interval-based possibility distributions

As illustrated in Table 2, in the interval-based possibilistic setting, the available knowledge is encoded
by an interval-based possibility distribution Iπ where each state ω is associated with an interval Iπ(ω) =
[Iπ(ω),Iπ(ω)] of possible values of the possibility degree π(ω) [6]. If I is an interval, then we denote by I
and I its upper and lower endpoints respectively. When all I’s associated with interpretations (or formulas)
are singletons (meaning that I = I), we refer to standard distributions (resp. standard possibilistic bases).
Here, Iπ(ω) (resp. Iπ(ω)) denotes the lower (resp. upper) endpoints of the possibility degree of ω.

Definition 4 (Interval-based possibility distribution). An interval-valued possibility distribution Iπ is a
mapping Iπ : Ω→I from the universe of discourse Ω to the set I of all subintervals of the interval [0, 1], with
the normalization property requiring that max

ω∈Ω
Iπ(ω)=1.

As in [6], we also interpret an interval-based possibility distribution as a family of compatible standard
possibility distributions defined by:

Definition 5. Let Iπ be an interval-based possibility distribution. A normalized possibility distribution π is
said to be compatible with Iπ if and only if ∀ω∈Ω, π(ω)∈Iπ(ω).

An interval-based possibility distribution accepts at least one compatible distribution. We denote by
C(Iπ) the set of all compatible possibility distributions with Iπ.

Example 4. Let Iπ be a possibility distribution described in the Table 3. Then following Definition 5, the
possibility distribution π1 and π2 (from Table 3) are compatible with Iπ. However, π3 is not compatible with
Iπ since π3(fg)=.2 6∈ [.5, 1]=Iπ(fg).

The following defines the concept of interval closure of a set of uncertainty degrees

Definition 6 (Interval closure). Let A be a set of degrees between 0 and 1. We define the interval closure
of A, denoted by IntCl(A), as the smallest (narrowest) interval that contains all the elements of A.
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ω∈Ω Iπ(ω) ω∈Ω π1(ω) π2(ω) π3(ω)
fg [ .5, 1] fg .8 1 .2

f¬g [ .7, 1] f¬g 1 .8 1
¬fg [.2, .6] ¬fg .5 .3 .5

¬f¬g [.3, .6] ¬f¬g .5 .6 .6

Table 3: Example of compatible and non compatible possibility distributions.

Example 5. Assume that A is a set defined as follows: A=[.8, .9]∪{1} then the closure of A is IntCl(A)=[.8, 1].
Clearly, the interval [.8, 1] is the narrowest sub-interval of [0, 1] containing all the values of A.

Let us now first provide a brief reminder of interval-based possibilistic logic bases [27] which allow to
compactly represent interval-based possibility distributions.

3.2 Interval-based possibilistic logic

Contrary to the standard possibilistic logic where the uncertainty is described with single values, interval-
based possibilistic logic uses intervals. We use closed sub-intervals I⊆[0, 1] to encode the uncertainty asso-
ciated with formulas or interpretations.

The syntactic representation of interval-based possibilistic logic generalizes the notion of a possibilistic
base to an interval-based possibilistic knowledge base. Formally,

Definition 7. An interval-based possibilistic knowledge base, denoted by IK, is a set of propositional formulas
associated with intervals of certainty degrees:

IK = {(ϕ, I), ϕ ∈ L and I is a closed sub-interval of [0, 1]}

In Definition 7, ϕ∈L denotes a formula of a propositional language L. As in standard possibilistic
logic, an interval-based knowledge base IK is also a compact representation of an interval-based possibility
distribution IπIK [6].

Definition 8. Let IK be an interval-based possibilistic base. Then :

IπIK(ω) =
[

IπIK(ω), IπIK(ω)
]

where:

IπIK(ω) =

{

1 if ∀(ϕ, I)∈IK, ω |= ϕ
1−max{I : (ϕ, I)∈K,ω 2 ϕ} otherwise.

and

IπIK(ω) =

{

1 if ∀(ϕ, I)∈IK, ω |= ϕ
1−max{I : (ϕ, I)∈K,ω 2 ϕ} otherwise.

Given an interval-based possibilistic base IK, we define two particular compatible possibilistic bases IK
and IK by selecting either lower endpoints of intervals or upper endpoints of intervals:

• IK = {(ϕ, α) : (ϕ, [α, β])∈IK}

• IK = {(ϕ, β) : (ϕ, [α, β])∈IK}

Example 6. Let IK={(a∧b, [.4, .5]), (¬a∨b, [.3, .9])} be an interval-based possibilistic base. The interval-
based possibility distribution corresponding to IK according to Definition 8 is given in Table 4.

From the knowledge base IK, we can compute Inc(IK) (with IK={(a∧b, .4), (¬a∨b, .3)}) which is 0 since
IK is fully consistent.
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ω IπIK(ω)
ab [ 1, 1 ]

a¬b [.1, .6]
¬ab [.5, .6]

¬a¬b [.5, .6]

Table 4: Example of an interval-based distribution induced by an interval-based knowledge base.

This is for the representation part of the interval-based possibilistic setting. The question now is how
to extend the min-based conditioning operator for conditioning interval-valued possibility distributions and
interval-valued possibilistic logic knowledge bases?

4 Conditioning interval-valued possibility distributions

Before presenting our interval-based extension to the min-based possibilistic conditioning, let us first focus
on some natural properties that an interval-based conditioning should satisfy in a possibilistic setting.

4.1 Three natural requirements for the interval-based conditioning

The first natural requirement concerns the degenerate case, namely when each interval Iπ(ω) contains exactly
one single degree π(ω). The result of the new conditioning procedure should coincide with the result π(.|mφ)
of the original conditioning procedure (Definition 1). For each possibility distribution π, by [π, π] we denote
its interval-valued representation, i.e., an interval-valued possibility distribution for which, for every ω∈Ω,
we have Iπ(ω)=[π(ω),π(ω)]. In these terms, the above requirement takes the following form:

P1. For all π, φ⊆Ω and ω∈Ω, ([π, π])(ω|φ)= [π(ω|mφ), π(ω|mφ)].
In other terms, let π be any possibility distribution and Iπ such that ∀ω, Iπ(ω)=[π(ω), π(ω)]. Then ∀φ,
Iπ(ω|φ)=[π(ω|mφ), π(ω|mφ)].

The second requirement is related to the fact that we do not know the exact values π(ω) since we only
have partial information about them. In principle, if we can get some additional information about these
values, then this would lead, in general, to narrower intervals (indeed, the width of an interval captures
the ignorance regarding the exact value of π(ω)). Let us define the concepts of meta-specificity between
interval-based possibility distributions:

Definition 9. Let Iπ and Iπ′ be two interval-based possibility distributions. Then Iπ is said to be more
meta-specific than Iπ′, denoted Iπ⊆Iπ′, if Iπ(ω)⊆Iπ′(ω) holds for all ω∈Ω

It is reasonable to require that if we have new information about the original values π(ω), this should
help us also to narrow down the corresponding values of conditional distributions:

P2. If Iπ is more meta-specific than Iπ′ (namely, Iπ⊆Iπ′) then Iπ(.|φ) is more meta-specific than Iπ′(.|φ)
(namely, Iπ(.|φ)⊆Iπ′(.|φ)).

It is obvious that postulates P1 and P2 are not sufficient to fully characterize the new extension. For
example, we can take ([π, π])(.|φ)=[π(.|mφ), π(.|mφ)] for degenerate interval-valued possibility distributions
and Iπ(ω|φ)=[0, 1] for all other Iπ. To avoid such extensions, it is reasonable to impose the following
minimality condition:

P3. Iπ(.|φ) is the narrowest interval-based distribution satisfying P1–P2. Namely, there exist no operation
Iπ(.|1φ) that satisfies both properties P1–P2 and for which:

• Iπ(ω|1φ) ⊆ Iπ(ω|φ) for all Iπ, ω, and φ,
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• Iπ(ω|1φ) 6= Iπ(ω|φ) for some Iπ, ω, and φ.

P3. ensures that Iπ(.|φ) computed applying the min-based conditoning on the compatible distributions
cannot be narrowed further using another conditioning operator while satisfying properties P1, P2.

The following theorem provides our first main result where we show that there is only one interval-based
conditioning satisfying P1-P3 and where the interval conditional possibility degree Iπ(ω|φ) is defined as the
interval closure of the set of all π(.|mφ), where π is compatible with Iπ.

Theorem 1. There exists exactly one interval-based conditioning, denoted by Iπ(.|mφ), that satisfies the
properties P1–P3, and which is defined by: ∀ω ∈ Ω,

Iπ(ω|mφ) = IntCl({π(ω|mφ) : π ∈ C(Iπ)}) (5)

where IntCl is the interval closure given in Definition 6.

Proof.
1◦. We need to prove:

• that this closure Iπ(.|mφ) satisfies the properties P1–P3, and

• that every operation Iπ(.|φ) that satisfies the properties P1–P3 coincides with the interval closure of
Iπ(.|mφ).

2◦. One can easily check that Iπ(.|mφ) satisfies the properties P1–P2.

3◦. Let us now prove that if an operation Iπ(.|φ) satisfies the properties P1–P2, then for every Iπ and φ,
we have Iπ(.|mφ) ⊆ Iπ(.|φ).

Then, for every distribution π∈C(Iπ), we have ([π, π]) ⊆ Iπ and thus, due to the postulate P2, we have
([π, π])(.|φ) ⊆ Iπ(.|φ). By the property P1, we have ([π, π])(ω|φ) = [π(ω|φ), π(ω|φ)]. Thus, the above
inclusion means that π(.|φ) ∈ Iπ(.|φ).

The interval Iπ(ω|φ) therefore contains all the values π(ω|φ) corresponding to all possible π∈C(Iπ):

{π(ω|φ) : π ∈ C(Iπ)} ⊆ Iπ(ω|φ).

Since the set Iπ(ω|φ) is an interval, it therefore contains, with the set {π(ω|φ) : π∈C(Iπ)}, its interval
closure, i.e., the set Iπ(ω|mφ). Thus, we conclude that Iπ(ω|mφ) ⊆ Iπ(ω|φ) for all ω.

The statement is proven.

4◦. We can now prove that Iπ(.|mφ) also satisfies the property P3.
Indeed, if there is some other operation |1 that satisfies P1 and P2, and for which Iπ(ω|1φ) ⊆ Iπ(ω|mφ)

for all ω, then, since we have already proven the opposite enclosure in Part 3 of this proof, we conclude that
Iπ(ω|1φ) = Iπ(ω|mφ) for all ω, so indeed no narrower conditioning operation is possible.

5◦. To complete the proof and show that there is only one solution, let us show that if some Iπ(.|φ) satisfies
the properties P1–P3, then it coincides with Iπ(.|mφ).

Indeed, by Part 3 of this proof, we have Iπ(ω|mφ) ⊆ Iπ(ω|φ) for all ω. If we had Iπ(ω|mφ) 6= Iπ(ω|φ)
for some ω and φ, this would contradict the minimality property P3. Thus, indeed, Iπ(.|mφ) = Iπ(.|φ).
Uniqueness is proven, and so is for the proposition.

We can now go one step beyond Theorem 1 and provide the exact bounds of intervals associated with
Iπ(.|mφ).
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4.2 Computing lower and upper endpoints of conditional interval-based possi-

bility distributions

The aim of this section is to compute the lower and upper endpoints of the conditional interval-based
possibility distribution.

Proposition 1. Let Iπ be an interval-based distribution. Then the interval-based conditional distribution,
satisfying P1–P3, is described by Iπ(ω|mφ)=[Iπ(ω|mφ), Iπ(ω|mφ)], such that ∀ω∈Ω:

Iπ(ω|mφ)=







0 if ω 6∈ φ
1 if ∀ω′6=ω, ω′∈φ and Iπ(ω)≥Iπ(ω′)
Iπ(ω) otherwise

and

Iπ(ω|mφ)=







0 if ω 6∈ φ
1 if Iπ(ω)≥IΠ(φ),
Iπ(ω) otherwise

Let us briefly comment Proposition 1. Let ω∈Ω be an interpretation. First, for ω 6∈φ, whatever the
considered compatible possibility distribution π, we have π(ω|mφ)=0. Hence, Iπ(ω|mφ)=[0, 0]. Assume now
that ω∈φ and ∀ω′∈φ, Iπ(ω)≥Iπ(ω′). This means that whatever is the considered compatible possibility
distribution π, we have π(ω)≥max{π(ω): ω∈φ}=Π(φ). Hence, π(ω|mφ)=1 and Iπ(ω|mφ)=[1, 1]. Now, the
last case for determining lower endpoint concerns the case where ∃ω′∈φ such that Iπ(ω)<Iπ(ω′). This means
that there exists a compatible possibility distribution π such that π(ω)=Iπ(ω)<Π(φ), hence π(ω|mφ)=Iπ(ω)
which is the smallest possible value. Similar reasoning goes for upper endpoints.

Example 7. Let Iπ of Table 5 (left side table) be the interval-based possibility distribution that we want
to condition with the new piece of information φ=¬c. min-based conditional distribution Iπ(.|mφ) given in
Table 5 (right side table) is obtained using either Proposition 1 or Theorem 1. For instance, for ω=ab¬c,
whatever the considered compatible possibility distribution π, we have π(ab¬c|φ) between .1 and 1. Thus, the
interval closure of Iπ(ab¬c|mφ)=[.1, 1].

ω∈Ω Iπ(ω) ω∈Ω Iπ(ω|φ)
abc [ 1, 1 ] abc [ 0, 0 ]
a¬bc [ .4,.6] a¬bc [ 0, 0 ]
¬abc [ .3,.6] ¬abc [ 0, 0 ]
¬a¬bc [ .3,.6] ¬a¬bc [ 0, 0 ]
ab¬c [ .1,.7] ab¬c [ .1, 1]
a¬b¬c [ .4,.6] a¬b¬c [ .4, 1]
¬ab¬c [ .1,.6] ¬ab¬c [ .1, 1]
¬a¬b¬c [ .3,.6] ¬a¬b¬c [ .3, 1]

Table 5: Interval-based distribution Iπ and its conditioned distribution Iπ(.|φ)

5 Syntactic computations of interval-based conditioning

In this section, we provide the syntactic counterpart of the interval-based conditioning presented above.

5.1 Computing conditioned knowledge bases

Given an interval-based possibilistic knowledge base IK and a new evidence φ, our aim is to compute the
conditional base IKφ corresponding to conditioning the information encoded in IK with φ. As illustrated
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in Figure 1, the aim of this subsection is therefore to propose the syntactic characterization of conditioning
such that:

∀ω∈Ω, IπIK(ω|mφ) = IπIKφ
(ω),

where IπIKφ
is the interval-based distribution associated with IKφ, and IπIK(.|mφ) is the result of condition-

ing IπIK using the conditioning operator presented in the previous subsection (Proposition 1 or Theorem 1),
and [φ] is the set of models of φ.

IK IπIK

IKφ IπIK(.|φ)IπIKφ
(.)

Definition 8
input=φ

aim of
this

section

Definition 8

input=φ

Theorem 1

Figure 1: Conditioning interval-valued possibilistic information at the semantic and syntactic levels

We first need to introduce some notations.

• α = Inc(IK ∪ {(φ, 1)}) and β = Inc(IK ∪ {(φ, 1)}), Intuitively, α and β compute inconsistency degree
intervals resulting from assuming that φ is fully true. This offers a characterization of IΠ(φ)=1 − β
and IΠ(φ)=1 − α.

• Let ω∗ be a model of {ψ : (ψ, I) ∈ IK and I>β}∪{φ}. Let IK¬ω∗=IK ∪{(¬ω∗, [1, 1])} be a base
obtained by adding the negation of ω∗, then we compute γ = Inc(IK¬ω∗ ∪ {(φ, 1)}). Models ω of
{ψ : (ψ, I)∈IK and I > β} are exactly those having Iπ(ω)=IΠ(φ). γ computes the second best value
of models of φ (since a model ω∗ is excluded from IK) which is very useful for characterizing Iπ(ω|mφ).

With the help of these notations, we are now ready to present the third contribution of this paper.

Theorem 2. Let IK be an interval-based knowledge base. Let IπIK be its associated possibility distribution.
Let IKφ={(φ, [1, 1])} ∪ {(ϕ, I) : (ϕ, I)∈IK, and I>α} ∪ {(ϕ, [0, I]) : (ϕ, I)∈IK, and I<α and I>γ}. Then:

∀ω, IπIK(ω|mφ) = IπIKφ
(ω);

where IπIK(.|mφ) is the result of applying min-based interval conditioning on IπIK (see Proposition 1 and
Theorem 1), and IπIKφ

is the interval-based distribution associated with IKφ using the Definition 8.

The knowledge base IKφ resulting from conditioning IK with φ is composed of three parts:

• The first consists in adding φ as a fully certain information, {(φ, [1, 1])}. From Definition 8, all worlds
that are outside φ (not satisfying φ) are excluded. This is in accordance with Proposition 1.

• The second part, {(ϕ, I) : (ϕ, I)∈IK, and I>α}, contains a subbase of IK where the intervals are
unchanged. This encodes the third item of definition of Iπ(ω) and Iπ(ω) in Proposition 1 (recall that
1− α=IΠ(φ)).

• The last part encodes exactly the situation where some possibility degrees (in Proposition 1) are shifted
up to 1. This is reflected in possibilistic knowledge bases by shifting down some certainty degrees to 0.

Indeed, the knowledge base IKφ is composed of three parts: i) the new sure piece of evidence φ associated
with the interval [1, 1], ii) the formulas in IK that belong to the consistent part of IK with φ (the intervals
associated with this second part are kept unchanged) while iii) the last part, namely formulas in the incon-
sistent part of IK with φ will see their intervals changed to allow satisfying the normalization condition at
semantic level. Recall that to ensure a possibility degree of 1 at the semantic level, the insconsistency degree
of at least one compatible base should be 0.
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Proof. In order now to prove the theorem we have to show that ∀ω∈Ω, IπIKφ
=IπIK(.|m[φ]). First note that

if an interpretation ω is not a model of φ, then by definition we have:

IπIKφ
(ω) = IπIK(ω|m[φ]) = [0, 0]

This is explained by the presence of (φ, [1, 1]) in IKφ.
Now, for ω|=φ, we have two distinct cases:

• The case where ω falsifies a formula from: {(ϕ, I) : (ϕ, I)∈IK, and I>α} then:
IπIKφ

(ω) = 1−max{I : (ϕ, I)∈IK and I>α}.

= 1−max{I : (ϕ, I)∈IK and I>Inc(IK ∪ {(φ, 1)})}
= 1−max{I : (ϕ, I)∈IK and I>1−IΠ([φ])}
= 1−max{I : (ϕ, I)∈IK and 1−I<IΠ([φ])}

= Iπ(ω) if Iπ(ω)<IΠ([φ])
= IπIK(ω|m[φ]).

IπIKφ
(ω) = 1−max{I : (ϕ, I)∈IK and I>α}.

= 1−max{I : (ϕ, I)∈IK and I>Inc(IK ∪ {(φ, 1)})}
= 1−max{I : (ϕ, I)∈IK and I>1−IΠ([φ])}
= 1−max{I : (ϕ, I)∈IK and 1−I<IΠ([φ])}

= Iπ(ω) if Iπ(ω)<IΠ([φ])
= IπIK(ω|m[φ]).

• The case where ω falsifies a formula from: {(ϕ, [0, I]) : (ϕ, I)∈IK, and I≤α and I>γ} then:
As γ computes the second best value of models of φ, for this proof, we use secondbest(IK) to determine
γ and secondbest(IK) = 1−secondbest(IπIK).
IπIKφ

(ω) = 1−max{I : (ϕ, I)∈IK and I≤α and I>γ}

= 1−max{I : (ϕ, I)∈IK and I≤Inc(IK ∪ {(φ, 1)}) and I>secondbest(IK)}

= 1−max{I : (ϕ, I)∈IK and I≤1−IΠ([φ]) and I>1−secondbest(IπIK)}
= 1−max{I : (ϕ, I)∈IK and 1−I≥IΠ([φ]) and 1−I<secondbest(IπIK)}
= Iπ(ω) if Iπ(ω)≥IΠ([φ]) and Iπ(ω)<secondbest(IπIK)
= IπIK(ω|m[φ]).

IπIKφ
(ω) = 1−max{0 : (ϕ, I)∈IK and I≤α and I>γ}.

= 1−max{0 : (ϕ, I)∈IK and I≤Inc(IK ∪ {(φ, 1)}) and I>secondbest(IK)}
= 1−max{0 : (ϕ, I)∈IK and I≤1−IΠ([φ]) and I>1−secondbest(IπIK)}
= 1−max{0 : (ϕ, I)∈IK and 1−I≥IΠ([φ]) and 1−I>secondbest(IπIK)}
= 1 if Iπ(ω)≥IΠ([φ]) and Iπ(ω)<secondbest(IπIK)
= IπIK(ω|m[φ]).

Let us see an example to illustrate Theorem 2.

Example 8. Let IK be an interval-based possibilistic knowledge base such that IK={(a∧b, [.4, .6]), (a, [0, .7]),
(c∨¬b, [.3, .9])}. The associated interval-based possibility distribution πIK (using Definition 8) is the same
as the one given in Table 5. Let φ=¬c (and φ=[φ] the set of models of ¬c) be the new evidence. For the
computation of IKφ, let us first compute the values of α, β and γ. Then, we have: α=Inc({(a∧b, .6), (a, .7),
(c∨¬b, .9), (¬c, 1)})=.6, β=Inc({(a∧b, .4), (a, 0), (c∨¬b, .3), (¬c, 1)})=.3 and γ=.4.

Hence, according to Theorem 2, the result of conditioning IK by φ is given by: IKφ={(a∧b, [0, .6]), (a, [0, .7]),
(c∨¬b, [0, .9]), (¬c, [1, 1])}. And if we compare with Example 7, where the distribution Iπ(.|mφ) is conditioned
according to Proposition 1 then the associated interval-based distribution to IKφ is exactly the same. Hence,
Theorem 2 indeed provides a compact encoding of the conditioning procedure.
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The following proposition gives the computational complexity of conditioning an interval-based possi-
bilistic knowledge base IK according to Theorem 2.

Proposition 2. Let IK be an interval-based possibilistic knowledge base and φ be the new evidence. Let
IKφ be an interval-based possibilistic knowledge base computed according to Theorem 2. Then IKφ have the
same size as IK and computing IKφ is in O(log2(m).SAT ) where SAT is a satisfiability test of a set of
propositional clauses and m is the number of different weights in IK and IK.

Clearly, once the parameters α, β, γ are computed, computing IKφ from {IK, φ, α, β, γ} is straightforward
and it is done in linear time. Indeed, computing α, β, γ mainly comes down to compute the inconsistency
degrees of IK and IK. This needs log2(m) calls to a SAT solver exactly as in standard possibilistic logic [3].
Hence, the syntactic counterpart of conditioning an interval-based possibilistic base has exactly the same
computational complexity as computing the min-based conditioning of a standard possibilistic base.

6 Concluding remarks and discussions

This paper addressed the issue of conditioning in a qualitative interval-based possibilistic setting. The
interval-based extension of the standard possibilistic setting offers a flexible model for encoding multiple
source information. However, no form of qualitative conditioning has been proposed in this framework. This
work fills this gap by proposing an efficient extension of the min-based conditioning to the interval-based
setting. Three main contributions are presented:

i) A set of three natural postulates P1-P3 ensuring that any interval-based conditioning satisfying these
three postulates is necessarily based on min-based conditioning the set of compatible standard possibil-
ity distributions. The first postulate P1 aims to recover the standard min-based conditioning in case
where all the intervals contain singleton values (all lower endpoints coincide with upper endpoints).
The second postulate P2 captures a kind of meta-specificity regarding conditioning interval-based sets
of beliefs while the third postulate P3 aims to ensure a minimality condition.

ii) Efficient procedures to compute the lower and upper endpoints of the conditional interval-based pos-
sibility distribution. Such procedures exclude any state of the world that is inconsistent with the
new evidence in hand and perform some kind of normalization based on the concept of compatible
possibility distribution without generating the whole set of compatible distributions.

iii) A syntactic counterpart of conditioning interval-based possibilistic bases. This counterpart performs
some tests and does some modifications on the formulas of the original knowledge base such that the
new evidence is integrated with a certainty degree of 1. This ensures the same result as if the knowledge
base were conditioned at the semantic level.

Interestingly enough, the syntactic counterpart has the same complexity as conditioning standard pos-
sibilistic knowledge bases. More precisely, conditioning an interval-based possibilistic knowledge base does
not require extra computational cost compared with conditioning a standard possibilistic base.

Our approach can be applied in many applications, especially when dealing with multiple sources or
imprecise qualitative information. The approach is appealing since it allows a compact representation of
knowledge while the conditioning operation is performed in time complexity equivalent to conditioning a
standard possibilistic knowledge base. Indeed, the proposed approach generalizes the standard qualitative
possibilistic conditioning and allows to update the current knowledge a syntactic way without any extra cost
compared to conditioning standard possibilistic knowledge bases.

In [7], a set of seven postulates IC1–IC7 have been proposed for product-based conditioning (which is
another form of conditioning in a standard but quantitative possibility theory, see Equation 2). To relate
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our postulates P1–P3 to postulates IC1–IC7, note that IC1–IC7 use the product-based operator while
P1–P3 use the min-based conditioning. Now, if P1 is replaced by P’1 stating that:

P’1 ∀π, φ⊆Ω and ω∈Ω, ([π, π])(ω|φ) = [π(ω|∗φ), π(ω|∗φ)]. (6)

Then we can show that an interval-based conditioning that satisfies P’1, P2, P3 necessarily satisfies IC1–

IC7 but the converse is false. Indeed, as pointed out in [7], using the unique conditioning satisfying properties
IC1–IC7 may lead in some situations to discontinuous intervals if we rely on the min-based conditioning.

In [12, 13, 14], the authors deal with some issues like inference and conditioning in a possibilistic setting
where the available knowledge consists in a set of conditional events. In particular, the authors deal with
such issues using different t-norms including the min-based operator. While they refer to classes of condi-
tional possibility measures, there is no reference to interval-based possibility distributions or interval-based
knowledge bases as representations encoding the available knowledge. The current paper proposes the first
min-based conditioning operator for interval-based possibilistic knowledge bases.

Recently, in [37], we proposed a set-valued extension to possibility theory. We provide a characterization
of set-valued possibilistic logic bases and set-valued possibility distributions in terms of compatible possi-
bilistic logic bases and compatible possibility distributions respectively. The main difference between the
interval-based representation proposed in this paper and the set-based one in [37] is that summarizing a set
of knowledge bases (resp. a set of possibility distributions) within an interval-based knowledge base (resp.
interval-based possibility distribution) incurs more information loss. However, both representations are non
trivial and guarantee that the semantics given to the interval-based/set-based representation in terms of
compatible bases/distributions contains the initial knowledge bases or possibility distributions. Moreover,
the interval-based representation requires less computations when it comes to reasoning and conditioning.

As a future work, we will address conditioning in another form of compact representations of interval-
based possibility distributions which are interval-based possibilistic networks [38].
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Reasoning 52 (1) (2011) 63–75.
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