On Tractable XAI Queries based on Compiled Representations

Gilles Audemard', Frédéric Koriche', Pierre Marquis'?
LCRIL, Université d’ Artois & CNRS, France
?Institut Universitaire de France, France
{audemard, koriche, marquis } @cril .fr

Abstract

One of the key purposes of eXplainable Al (XAI) is to de-
velop techniques for understanding predictions made by Ma-
chine Learning (ML) models and for assessing how much re-
liable they are. Several encoding schemas have recently been
pointed out, showing how ML classifiers of various types can
be mapped to Boolean circuits exhibiting the same input-
output behaviours. Thanks to such mappings, XAl queries
about classifiers can be delegated to the corresponding cir-
cuits. In this paper, we present some explanation queries and
verification queries about classifiers. We show how they can
be addressed by combining queries and transformations about
the associated Boolean circuits. Taking advantage of previ-
ous results from the knowledge compilation map, this allows
us to identify a number of cases for which XAI queries are
tractable provided that the circuit has been first turned into a
compiled representation.

1 Introduction

In the past decade, ML techniques have revolutionized vi-
sion, speech, language understanding, and many other fields.
However, the most powerful ML models (e.g., deep neural
nets) in term of quality of predictions are poorly explainable.
For such black boxes, it is humanly impossible to under-
stand the sequence of operations which are performed for
predicting the label of an input instance. Thus, explaining
the predictions made by such ML models (i.e., why a given
instance is classified as such?) is not feasible in general. As-
sessing the robustness of the predictions (i.e., would a small
change in the input instance question the predicted label?)
is also out of reach. In essence, the impossibility to explain
predictions and to determine the extent to which they are re-
liable forms a major obstacle in a number of applications for
which safety is of paramount importance (like autonomous
cars or medical diagnosis).

This calls for explanation technologies, enabling for rea-
soning about the decisions made by the classifier, measur-
ing how robust they are, testing whether the classifier is
biased and how much it complies with some prior knowl-
edge about classes, etc. Accordingly, there has been a
growing body of work on explainable and robust Al (XAI)
for the past couple of years (Katz et al. 2019; Ignatiev,
Narodytska, and Marques-Silva 2019; Bunel et al. 2018;
Leofante et al. 2018; Molnar, Casalicchio, and Bischl 2018;

Shih, Darwiche, and Choi 2019; Guidotti et al. 2019;
Miller 2019; Molnar 2019). In this research topic, recent
works have shown how ML classifiers C' of various types
(including black boxes) can be associated with Boolean
circuits X (alias transparent or “white” boxes), exhibiting
the same input-output behaviours (Narodytska et al. 2018;
Shih, Choi, and Darwiche 2018a; Shih, Choi, and Darwiche
2019). Thanks to such mappings, XAl queries about clas-
sifiers can be delegated to the corresponding circuits (Dar-
wiche and Hirth 2020). The rationale for this approach
is twofold: on the one hand, ¥ as an abstraction of C is
typically far less complex than C; on the other hand, the
Boolean nature of > makes it amenable to various reasoning
tasks required for generating explanations and addressing re-
liability issues.

The present study is relevant to this research trend within
XAI Our objective is to state in a formal way a number of
XAI queries about C' and for each of them, to identify some
sufficient conditions on the language £ used to represent
Y. that render the query tractable. For the sake of general-
ity, we do not make any strong assumption on the nature
of the classifier: C' can be a feedforward neural network, a
Bayesian network classifier, a random forest, etc. We just
assume that C' is a discrete multi-label classifier from which
a Boolean circuit ¥ having the same input-output behaviour
can been generated. More precisely, each input instance is a
vector x of n values assigned to Boolean features from a set
X ={x1, -, 2, } and each corresponding output is a vec-
tory € Y of m values taken fromasetY = {y1, - ,Ym}
of Boolean labels." Given the prediction y = C(z), the in-
stance * € X is classified by C' as an element of the jth
class if and only if ; = 1.

The variables of X are split into three categories:

(1) Input variables used to describe the input features of C.

Each input variable is a Boolean variable from X;

(2) Output variables used to describe classes or labels. Each

output variable is a Boolean variable from Y;

"When an input feature x; is not Boolean, but takes values into
a finite domain {v1, - - - , vp }, One can represent it using p Boolean

features 2}, - - - ,x? so that x is true if and only if ; takes value

vj. The direct — or sparse — encoding (de Kleer 1989; Walsh 2000)
of z; is given by the constraints ?;11 hej (7T V —¥) and
P

=1 x] ensuring that z; takes exactly one value in its domain.

(3) Intermediate variables used to capture all other features
of the classifier C, and corresponding to the wires of 3
that are not output ones. Each intermediate variable is
also assumed to take a Boolean value, and we use Z to
denote the set of those variables.

As ¥ and C are supposed to have the same input-output be-
haviour, for any pair (x,y) for which y = C(x), we have
y; = 1 precisely when the output variable y; of the circuit 3
on the input @ is set to 1. Importantly, we make no assump-
tion about the number of predicted labels: for an input @,
several coordinates — resp. no coordinate — of the associated
output y can be set to 1, which means that C' (and hence
>)) recognizes x as a member of several (resp. no) class(es).
In practice, C' is often associated with additional informa-
tion about vy, taking the form of weights representing confi-
dences or probabilities about predicted labels. Such weights
are usually exploited by the encoding scheme for generat-
ing 3 from C, but they are not encoded into . Thus, X is
viewed as a compact representation of the classes Y, as they
are recognized by C.

In the following, we present a number of XAI queries of
practical interest for explaining classifications achieved by
C, or for assessing the robustness of C. These queries are
addressed by considering the circuit 3 associated with C),
instead of C itself. For the sake of clarity, we split XAl
queries into explanation queries and verification queries.
Explanation queries are concerned by the local interpretabil-
ity issue, i.e., they are about a given input a, while verifi-
cation queries are concerned by the global interpretability
issue, i.e., they are independent of any input. Some of the
XAI queries considered in the following are brand new, oth-
ers have been introduced in the recent past. In both cases, we
show how these explanation and verification queries can be
modeled using basic operations over Boolean circuits. Tak-
ing advantage of previous results from the knowledge com-
pilation map for propositional languages £ (Darwiche and
Marquis 2002), this allows us to identify a number of XAI
queries which are tractable, provided that the circuit > has
been first turned into a compiled representation from L.

The rest of the paper is organized as follows. After
some formal preliminaries about propositional logic and the
knowledge compilation map, we present a simple encoding
schema that can be used to associate a Boolean circuit X
with a given random forest C' over Boolean features. A toy
example is provided, that will serve as a running example
for illustrating the XAI queries presented afterwards. Then,
we successively present some explanation queries and some
verification queries, and for each of them, we identify some
sufficient conditions on the propositional language used to
represent 2 which ensure that the query is tractable (i.e., it
can be answered using a polynomial-time algorithm). Fi-
nally, we discuss the results and conclude the paper.

2 Formal Preliminaries

Propositional Languages. The languages considered in
this paper are defined over a finite set PS of propositional
variables and a finite set of connectives. The elements of
a propositional language £ are called representations, and

for any such representation ¥, we denote by Var(X) the
subset of variables of PS occurring in 3. As usual, atomic
representations include propositional variables in PS, and
Boolean constants in {T, L}. A literal is a propositional
variable, possibly negated, or a Boolean constant. Any
propositional variable x is called a positive literal, and the
negation of x, denoted —x or 7, is called a negative literal. A
term is a conjunction of literals, and a clause is a disjunction
of literals.

Given a set of variables X CPS, an interpretation over
X is a mapping w from X to B = {0,1}. Propositional
representations are interpreted in a classical way. For a rep-
resentation ¥ and an interpretation over X = Var(X), we
use w = X to denote the fact that w if a model of X ac-
cording to the semantics of propositional logic. That is, as-
signing the variables of ¥ to truth values as specified by w
makes ¥ true. By [X] we denote the ser of models of ¥ over
Var(X), and by || X|| we denote the number of models of ¥
over Var(X). In particular, ¥ is inconsistent if || = 0,
and consistent otherwise. A representation Yo is a logical
consequence of a representation X7 (denoted ¥; = Xo) if
31 A—X, isinconsistent. 3; and Yo are logically equivalent
(denoted 31 = 3o) if they are logical consequences of each
other.

Given a representation X and a consistent term -, the con-
ditioning of ¥ by +y is the representation obtained by replac-
ing in ¥ every occurrence of a variable z € Var(y) by T
if x is a positive literal of y and by L if =z is a negative
literal of ~. Finally, when X is a subset of propositional
variables from PS, ¥ is said to be independent of X if
there is a representation ® logically equivalent to X such that
Var(®)NX = &. The forgetting of X in 3, denoted 3X.%,
is the most general consequence of X that is independent of
X (see e.g., (Lang, Liberatore, and Marquis 2003)). The
projection of ¥ onto X is the forgetting of X in 3, where X
denotes the set PS \X. We mention in passing that 3X.%
can be computed as a propositional representation, thanks to
the following inductive characterization:

o dJ X =3,
e H{z} X=X -2)Vv(Z|x),
e (X' U{x}).X =3X" (F{=x}.2).

Knowledge Compilation Map. Introduced by Darwiche
and Marquis (2002), and extended in a number of papers
(e.g., (Darwiche and Marquis 2004; Niveau et al. 2010; Dar-
wiche 2011; Fargier, Marquis, and Niveau 2013; Fargier and
Marquis 2014; Koriche et al. 2016)), the knowledge compi-
lation (KC) map is a multicriteria evaluation of propositional
languages. Various languages have been considered as target
languages for knowledge compilation. They include, among
others, DNF (disjunctions of terms), DNNF (decomposable
normal form circuits) (Darwiche 2001), FBDD (free binary
decision diagrams) (Gergov and Meinel 1994), and OBDD
(ordered binary decision diagrams) (Bryant 1986). In the
KC map, a propositional language L is evaluated according
to properties it offers, or not, depending on the existence of
a polynomial-time algorithm for achieving some treatment
of interest. These properties are usually decomposed into
queries and transformations. In this paper, we focus on the

following queries and transformations:
e Queries

— consistency: L satisfies CO if and only if there is a
polynomial-time algorithm that maps every representa-
tion X from £ to 1 if X is consistent, and to 0 otherwise.

— implicant: £ satisfies IM if and only if there is a
polynomial-time algorithm that maps every represen-
tation 3 from £ and every term to 1 if v = X holds,
and to 0 otherwise.

— sentential entailment: £ satisfies SE if and only if
there is a polynomial-time algorithm that maps any two
representations X7 and ¥y from £ to 1 if ¥; | X9
holds, and to O otherwise.

— equivalence: L satisfies EQ if and only if there is a
polynomial-time algorithm that maps any two repre-
sentations X1 and X5 from £ to 1 if X1 = X5 holds,
and to 0 otherwise.

— model counting: £ satisfies CT if and only if there
is a polynomial-time algorithm that maps every repre-
sentation X from £ to a nonnegative integer (in binary
notation) corresponding to the number of models || X||
of ¥ over Var(X).

— model enumeration: £ satisfies ME if and only if
there is an enumeration algorithm with polynomial de-
lay for the set [X] of models of ¥ over Var(X). Here,
the algorithm must generate all models in sequence,
without any model occurring more than once. Addi-
tionally, the algorithm must guarantee that each delay
between the generation of two successive models and
between the generation of the last model and the notifi-
cation of termination, is polynomial in the size of X.?

o Transformations

— conditioning: £ satisfies CD if and only if there is a
polynomial-time algorithm that maps every representa-
tion ¥ from £ and every consistent term -y to a repre-
sentation from £ that is logically equivalent to X | .

— bounded conjunction: L satisfies ABC if and only
if there is a polynomial-time algorithm that maps every
pair of representations Y3 and s from L to a represen-
tation from L that is logically equivalent to 37 A ¥5.

— forgetting: L satisfies FO if and only if there is a
polynomial-time algorithm that maps every represen-
tation X from £ and every subset X of variables from
PS to arepresentation from £ equivalent to 3.X.3.

— optimization: L satisfies OP'T if and only if there ex-
ists a polynomial-time algorithm that maps every rep-
resentation > from £ and any linear function f over
Var(X) into a representation from £ for which the
models are those of ¥ minimizing the value of f.

We also add to the list of properties the following trans-

2 Actually, this requirement is stronger than the one considered
in (Darwiche and Marquis 2002) which only required that the set
of models can be enumerated in time polynomial in the size of X
plus the size of the corresponding set of models. Note that we have
that £ satisfies ME (in the strong sense) whenever it satisfies CD
and CO (see (Fargier and Marquis 2014) for details).

formation that will be useful in the rest of the paper:

— decomposable conjunction: L satisfies ADC if and only
if there is a polynomial-time algorithm that maps k rep-
resentations X1,--- , ¥, from £ such that Var(%;) N
Var(X;) = @ (fori,j € {1,--- ,k},i # j) to a repre-
sentation from L that is logically equivalent to /\f:1 2.

In the KC map, the space efficiency or succinctness of
propositional languages is also assessed. Informally, the
succinctness captures the relative ability of propositional
languages to encode pieces of information using little space.
For example, it is known that DNNF is strictly more succinct
than OBDD and DNF. A language suited for a given appli-
cation is then viewed as one of the most succinct languages
offering the queries and transformations required by the ap-
plication (Darwiche and Marquis 2002).

3 Encoding Random Forests

In order to illustrate the approach into which our work takes
place and the forthcoming XAI queries, let us first explain
how to associate a Boolean circuit > with a given random
forest C over Boolean features (the proposed encoding is
quite easy).

A decision tree (here, a classification tree) (Breiman et al.
1984; Quinlan 1986) is a finite tree 1" where each internal
node is a decision node labelled by a feature x from X and
having as many children as the cardinality of the domain of
z, and each leaf node is labelled by a non-empty subset of
Y. The arcs from a decision node to its children are labelled
by pairs noted z = v where v is an element of the domain
of the feature x labelling the node (one value v per arc).
A path of T' is a (finite) sequence of labels x = v of the
arcs encountered from the root of 7' to one of its leaves.
A decision tree classifies an input « as an element of class
y; € Y if the unique path of T that is compatible with x
(i.e., that contains a pair x = v only if x takes the value v in
x) leads to a leaf node whose label contains ;.

A random forest R (Ho 1998; Breiman 1996; Breiman
2001) is a finite set of p decision trees over the set X of
features. Given a threshold 7 € {1,...,p}, a random forest
R ={T,...,T,} classifies an input as y; € Y if at least
7 decision trees of I? classifies x as y;.

Example 1. As a matter of example, consider a fruit
classification task and the random forest R given by the
trees T, Ty and T3, illustrated in Figure 1. Each deci-
sion tree is defined over the set of input features X =
{SW(eet taste), GR(een), RO(und shape)}, and the set of
output labels Y = {GRA(pe fruit), BAN(ana), APP(le)}. An
instance x is classified as a label y € Y if and only if it is
classified as such by a strict majority of decision trees in R
(i.e., at least T = 2 decision trees of R classify x as y).

In Figure 1, the labels x = v of the arcs are not explicitly
represented. A dashed line from a decision node labelled by
x corresponds to the label x = 0, while a plain line corre-
sponds to the label x = 1.

Based on this example, the input instance x, given by
(SW = 0,GR = 0,R0 = 0) is classified by Ty (resp. T,
T3) as an element of GRA (resp. GRA or BAN, BAN). The

|

<>
A

T3

Figure 1: A random forest with three decision trees 71, 15, T5.

instance x5 defined by (SW = 1,GR = 1,R0 = 0) is classi-
fied by T (resp. Ts, Ts) as an element of GRA (resp. BAN,
BAN). Thus, R classifies 1 as an element of GRA or BAN,
and R classifies x5 as an element of BAN.

Note that R may remain mute about a given instance,
meaning that there is no evidence enough to classify it as
any element of Y. For instance, R does not predict anything
about the input instance (SW = 1,GR = 1,R0O = 1), since
this input is classified by T (resp. T, T5) as an element of
GRA (resp. BAN, APP). Thus, the strict majority threshold of
2 is not met for this instance.

Based on these considerations, let us present an encod-
ing schema which maps any random forest R, defined on
the input variables X and the output variables Y, to a rep-
resentation X over the set of propositional variables PS
= X UY U Z, where Z captures the intermediate variables.
. is the conjunction of two kinds of constraints:

m}, ¥ includes the constraint

p
k
Y =T
k=1

e foreveryj € {1,...,

where variable ij is true if and only if the input instance x
is classified as an element of class y; by T}. Accordingly,
the input is classified as y; by R if and only if the number
of decision trees of R classifying x as an element of y; is
at least equal to the threshold 7;

e forevery j € {1,...,m} andevery k € {1,...,p}, &

SW GR RO GRA BAN APP
0 0 0 1 1 0
0 0 1 1 0 0
0 1 0 0 1 0
0 1 1 0 0 1
1 0 0 0 1 0
1 0 1 0 0 1
1 1 0 0 1 0
1 1 1 0 0 0

Table 1: The projection of X over X UY.

includes a constraint

e Vo o
YEL (Tk,y;)

indicating that z;“ is set to true (i.e., « is classified as an

element of y; by T},) if and only if x is compatible with

a path of T}, leading to a leaf node labelled by ;. Here,

I'(T}, y;) denotes the set of all terms -y encoding the paths

of T}, which lead to leaf nodes labelled by ;.

For our running example, R is associated with the repre-
sentation X, which is given by the conjunction of the follow-
ing constraints:

GRA & (GRA' + GRA + GRA >2)

BAN < (BAN' 4 BAN? 4 BAN® > 2)

APP & (APP + APP? 4 APP® > 2)
GRA' & ((SWAGR) V (SW A GR))
BAN' & ((SWAGRARO) V (SW A GR A RO))
APP! & ((SW A GRARO)V (SW A GR A RO))
GRA% & ((SWAGRARO) V (SW A GR A RO))
BAN? & ((SWAGRARO) V (SW A GR ARO)

V(SW A GR))

APP?2 & ((SWAGR ARO) V (SW A GR A RO))
GRA® & (SW AGR A RO)
BAN® & RO

APP? & ((SW A GR ARO) V (SW A RO))

From %, the following constraints expressing how each
class is inferred from the input features can be derived as
logical consequences:

GRA & (SWAGR)
BAN & RO
APP & ((SW AGR) V (SW A GR)) ARO

Equivalently, the projection of ¥ onto X UY is given by
the truth assignments in Table 1.

4 XAI Queries

After illustrating how multi-labels classifiers can be encoded
into propositional representations, we are now in position to
examine XAl queries. We first present a couple of results,
showing how the notion of membership of an instance x to
a class of Y as predicted by C' can be translated in logical
terms when X (represented using a propositional language
L) is considered instead of C.

To this point, observe that any input instance x of the form
(xr1 = v1,...,2, = v,) can be encoded as a term over
the literals on X, also denoted x to avoid heavy notations.
Specifically, x is given by /\;L:1 £; where {; = x;ifv; =1
and /; = T; otherwise.

Now, since X has the same input-output behaviour as C,
we know that every variable from Y U Z is defined in X
in terms of X. In other words, for any input , we have
C(x) = (y1 = c1,-..,Ym = C,) if and only if the unique
model of > over X UY U Z which is compatible with
assigns to each output variable y; (j € {1, ..., m}) the truth
value c;. Being “defined” means here that for any variable
u € Y U Z there exists a formula ¢,, built upon variables
of X, only, that is such that ¥ | u < ¢, (Beth 1953;
Lang and Marquis 2008).

Based on these notions, the input instances & which are
classified by C as elements of class y; in the sense that
y; = 1 when C(x) = (11 = ¢1,.-.,Ym = Cm) can be
characterized in several ways using >
e abductive characterization: x is an abductive explanation

of y; with respect to X provided that the set of assump-

tions is the set of all literals over the variables from X.

Indeed, if y; is true in C'(x) then we have ¥ A & |= y;.

Note here that X A @ is consistent for every input instance

x over X, since Y is a Boolean circuit with inputs in X.
e model-based characterization: x is a model over X of

3X.(X Ay;), or equivalently a model over X of 3X.(X |

y;). Thus, the projection of ¥ | y; onto X can be viewed

as a compact representation of all the input instances x

viewed as elements of y; by C.

4.1 Verification Queries

As indicated above, the XAI queries under consideration
in this study are separated into verification and explanation
queries. We start with the verification queries.

Counting the inputs (CIN) / enumerating the inputs
(EIN) associated with a given class. These queries are
useful for a user in order to figure out the classes of Y as
they are recognized by C' (which may differ from what the
user has in mind). For instance, in our running example, the
user might be surprised by the fact that the instance given by
SW A GR ARO is classified as an element of GRA, and hence,
she would like to gather more information about instances
labeled by this class.

Proposition 1. Counting the inputs associated by C with a
given class is in P when L satisfies CD and CT. Enumer-
ating those inputs with polynomial delay is feasible when L
satisfies CD and ME.

Proof. Counting the inputs x associated by C' with a given
output y; amounts to computing ||X|y;||. Enumerat-
ing those inputs boils down to enumerating the models of
3X.(X | y;) with polynomial delay, which is feasible as
soon as L satisfies CD, FO, and ME. Since every variable
of Var(X) not belonging to X is defined from X in 3, we
can just enumerate the models of ¥ | y;, filtering out from
each of them all the literals over the intermediate variables
from Z. Thus, the enumeration query is tractable as soon as
L satisfies CD and ME. O

Counting the inputs (CAM) / enumerating the inputs
(EAM) for which the classifier provides ambiguous out-
puts / remains mute. The CAM query is important for

estimating how resolute the classifier C' is. Indeed, as much
C provides ambiguous outputs or remains mute for input in-
stances, as much it will be hard to take advantage of it for
making decisions. The EAM query is also useful, as it points
out instances for which ambiguities or omissions arise. In
our running example, only one instance, given by the term
SW A GR A RO, is ambiguously classified by C. Similarly,
only one instance, given by SW A GR A RO, is not recognized
by C' as a member of any class from Y.

Proposition 2. Counting the inputs for which C' provides
ambiguous outputs / remains mute is in P when L satisfies
CD and CT. Enumerating with polynomial delay the in-
puts that are ambiguously recognized by C' as elements of
the intersection of a given set of classes / the inputs for which
C remains mute, is feasible when L satisfies CD and ME.

Proof. Counting the inputs for which C' remains mute
amounts to computing A = HE | /\;n:1 EH Furthermore,
the number of inputs mapped by C' into a single class y; is

given by B; = HE | (U5 A Nkeqa,...my it yk)H. There-
fore, counting the number of inputs for which C pro-
vides ambiguous outputs amounts to evaluating | X | — A —
Z;n:1 B;. The instances classified as elements of the inter-
section of a given set S C Y of classes are given by the
models over X of 3 | g, where yg = /\yjes y;, and those
for which C remains mute correspond to the models over X
of ¥ | AjZ, 7. Thus, they can be enumerated with polyno-
mial delay from ¥ when L satisfies CD and ME. O
Measuring the frequency of some feature in a given class
(MFR) / identifying mandatory or forbidden features
(IMA). MFR aims to evaluate how significant is the pres-
ence of each feature xy in each class of interest y;. More
generally, one can consider a combination of features (each
of them being either present or absent) instead of a single
feature being present. We can also consider a combination of
classes (again, each of them being either met or not). When
the frequency is equal to 1, x is mandatory for being rec-
ognized as an element of y;, while when it is equal to 0, it
is forbidden for being recognized as an element of y;. In
our running example, the frequency of SW (resp. GR, RO) in
class APP is 3 (resp. %, 1). Thus, none of the three features
is forbidden for the class of apples, but having a round shape
(RO) is mandatory.

Proposition 3.

o Computing the frequency of a feature (or a combination
of features) in a given class (or combination of classes) is
in P when L satisfies CD and CT.

e Deciding whether a feature (or a combination of features)

is mandatory or forbidden in a given class (or combina-
tion of classes) is in P when L satisfies CD and CO.

Proof.

e The frequency of zy, in y; is given by W When
J

a more complex combination of features / classes is con-
sidered, it is sufficient to replace the terms y; A xy, (resp.

y;) in this equation by the terms denoting the combina-
tion of features and classes (resp. classes) to get the right
value. This value can be computed in polynomial time
when L satisfies CD and CT.

e Determining whether zj, is mandatory (resp. forbidden)
for y; amounts to deciding whether or not X | (y; A ZTy)
is inconsistent (resp. ¥ | (y; A x) is inconsistent), which
can be achieved in polynomial time when £ satisfies CD
and CO. When a more complex combination of features
/ classes is considered, one consistency test per feature
must be done, replacing y; by the combination of classes
under consideration. Since the combination of features is
part of the input, the problem can still be solved in poly-
nomial time when £ satisfies CD and CO.

O

Identifying irrelevant features for a given class (IIR). In
many scenarios, the user has some beliefs about the features
that must be relevant (or not), for some classes. For instance,
she might expect that the shape of a fruit is relevant for de-
termining whether it is a banana - this is indeed the case in
our running example. Dually, the user could believe that a
given class should not depend on some features, which oth-
erwise would reveal a bias in the classifier. For instance, she
might expect that the class of bananas should not depend on
GR - again, this is the case in our running example.

Recall that an input feature x; is irrelevant for a class y;
if the value of x; can be switched without changing the fact
that the instance is predicted by the classifier as an element
of y;. Stated otherwise, the membership in y; of any in-
stance x does not depend on the value of its feature z;.

Proposition 4. Determining the features that are considered
as useless by C for a given class is in P whenever L satisfies
CD, FO, and EQ.

Proof. x; is irrelevant for y; if and only if 3X.(X | y;) is
independent from z; (Lang, Liberatore, and Marquis 2003).
This amounts to testing whether (3X.(X | y;)) | z; and
(3X.(X | yj)) | ~; are equivalent, or not. This can be done
in polynomial time when L satisfies CD, FO, and EQ. [

When considering Boolean features, this proposition co-
heres with a result reported in (Shih, Choi, and Dar-
wiche 2018a), showing that identifying irrelevant features
is tractable when an OBDD representation of 3X.(X | y;) is
provided.

Identifying monotone/anti-monotone features (IMO).
In many applications, it is believed that increasing the value
of some feature does not change the membership to some
class. Dually, one might also expect that decreasing the
value of another feature does not change the membership
to that class. For example, if a given fruit with a non-green
color is recognized as an apple, then switching its color to
green should not change the fact that it is still an apple. By
contrast, if a fruit with sweet taste is recognized as a grape,
then it is reasonable to expect that it would remain a grape
fruit if its taste was sour (i.e., not sweet).

In more formal terms, a classifier C' is monotone (resp.
anti-monotone) for a given class y;, with respect an input

feature x;, if for any input instance @ such that C(x) =
y with y; = 1 implies that C(x[z; < 1]) = vy’ (resp.
C(x[x; + 0]) = y) with yj = 1.%

Proposition 5. Checking whether the classifier is monotone
(or anti-monotone) for a class y; with respect to an input
feature x; is in P whenever L satisfies CD, FO, and SE.

Proof. At the semantics level, conditioning a propositional
representation ¢ by a literal £ (resp. —f) consists first in
selecting the models w of ¢ over Var(yp) where £ is assigned
to 1 (resp. 0), then in forgetting ¢ in the result (which leads to
add to this set of models every interpretation that coincides
with one of the w but is such that ¢ is assigned to 0 (resp.
1) in it). Using symbols, ¢ | © = I{z}.(¢ A) and ¢ |
T = I{z}.(p A T). Accordingly, if C is not monotonic
(resp. anti-monotonic) for y; with respect to x;, then there is
amodel of 3X.(X | y;) which is not a model of 3X.(X | y;)
conditioned by x; (resp. T;). Thus, checking whether C' is
monotonic (resp. anti-monotonic) for y; w.r.t. x; amounts

to testing whether 3X.(X | y;) E (3X.(Z | y;)) | z; (resp.
3X.(X | y;) E (3X.(2 | y;)) | T;). This can be done in
polynomial time when L satisfies CD, FO, and SE. O

In our running example, one can check that the random
forest R is monotonic for the class GRA with respect to the
feature SW. We mention in passing that the notion of mono-
tonicity has already been considered in (Shih, Choi, and Dar-
wiche 2018a) for binary classifiers (i.e., when m = 1).

Determining how much classes are close to each other
(MCJ, MCH). In multi-label classification, the user may
have some beliefs about the extent to which the classes of Y’
are close to each other. For example, it can be expected that
the class of apples is at least as close to the class of grape
fruits as to the class of bananas. Thus, it is interesting to
determine whether or not the closeness of classes (as they are
identified by the predictor) is compatible with those beliefs.
Such a consideration requires a formal characterization of
the notion of “similarity”.

A simple, yet poorly informative notion of similarity is
ordinal and takes the form of a set of pre-orders <y, over Y,
one for each class j € {1,---,m}. By writing yx <,, v,
we mean that y;, is at least as close to y; as to y;. Thus,
the user may believe that APP <z, BAN. Of course, it is
expected that y; <,. y; whatever y; € Y. Clearly enough,
every cardinal similarity o between classes of Y (i.e., a sym-
metric mapping associating a non-negative number with a
couple of classes), induces an ordinal similarity given by
Yk <y, yi if and only if o (yk, y;) > o(y1, y;)-

Several cardinal similarities can be defined and evaluated
from 3. A first one is given by the Jaccard index J(yy, y;):
it is the n