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Asimple solution for the uniqueness problem of the wave superposition method is proposed in this paper.Many authors have pointed out the discrete set of wavenumbers for which the solution of the underlying integral equations is not unique. So far, the usual solutions are theoretically sophisticated and/or numerically disadvantageous. Here, by adding some sources interior to the virtual surface defined by the wave superposition method, the uniqueness problem can be easily removedwith lowcomputational effort. Furthermore, dealing with simple monopoles, this method is well-suited for practical applications.

Introduction

The boundary integral equations have been thoroughly studied since the 1960s for analyzing acoustic radiation and scattering from anya rbitrary vibrating body.A pplied in an infinite domain, Boundary Element Methods (BEMs)a re recognized to be more efficient than Finite Element Methods (FEMs), especially through the reduction of the computational dimension of the problem by one. Furthermore, the Sommerfeld condition is automatically satisfied so that the external domain doesn'tn eed to be bounded. The twom ajor drawbacks of the BEMs lie on numerical computation of the Helmholtz integral equation: the treatment of singular integrals and the nonuniqueness solutions at the eigenfrequencies of the corresponding Dirichlet interior problem. The latter problem is of primary influence on BEM results as fictitious eigenvalues density raises quickly with the frequency. Several approachs have been proposed in order to eliminate the non-uniqueness problem. Three typical ones are the CHIEF method presented by Shenck [START_REF] Schenck | Improvedintegral formulation for acoustic radiation problems[END_REF], the Burton-Miller method [START_REF] Burton | The application of integral equation methods to the numerical solution of some exterior boundary-value problems[END_REF] and the Null-field method [START_REF] Jones | Integral equations for the exterior acoustic problem[END_REF]. The CHIEF method is based on the Helmholtz integral equation on the surface of the radiating body combined with Helmholtz equation for some interior points. The resulting overdetermined set of equations is usually solved by the least-square approach. The Burton-Miller approach, inspired by Panich formulation [START_REF] Panich | On the question of solvability of the exterior boundary value problems for the wave equation and Maxwell'se quations[END_REF], forms alinear combination of the Helmholtz boundary integral equation and its normal derivative,p roviding also av alid solution at any frequencyb ut leading to hyper-singular integrals which can be handle following Guiggani algorithm [START_REF] Guiggiani | Ag eneral algorithm for the numerical solution of hypersingular boundary integral equations[END_REF][START_REF] Silva | Anumerical imof ahypersingular boundary element method applied to 3D time-harmonic acoustic radiation problems[END_REF]. The Null-field method, which is combined with the Helmholtz integral surface equation [START_REF] Stupfel | Combined integral equation and null-field method for the exterior acoustic problem[END_REF], uses the known bilinear expansion for the simple wave source to express the integral relation in aset of equations leading to aunique solution.

Another BEM related approach is the Wave Superposition Method (WSM): as imple numerical technique for free-field radiation and scattering problems, originally formalized by Koopmann [START_REF] Koopmann | Am ethod for computing acoustic fields based on the principle of wave superposition[END_REF]. The principle of the WSM can be found in the literature under various denominations as the Method of Fundamental Solutions [START_REF] Kondapalli | Analysis of acoustic scattering in fluids and solids by the method of fundamental solutions[END_REF] (MFS), the sources simulation method [START_REF] Kress | On the simulation source technique for exterior problems in acoustics[END_REF], the auxiliary [START_REF] Ya Ng | Ab oundary integral equation method using auxiliary interior surface approach for acoustic radiation and scattering in twodimensions[END_REF] or equivalent [START_REF] Johnson | An equivalent source technique for calculating the sound field inside an enclosure containing scattering objects[END_REF] sources method. The main aspects of the most usual methods dealing with sound source reconstruction can be found in ar ecent review [START_REF] Magalhaes | Sound sources reconstruction techniques: ar eviewo ft heir evolution and newtrends[END_REF]. While different in theoretical aspects, all theses formulations are based on the idea that the real body is substituted by as et of elementary sources located in its interior,s ot he global acoustic field of interest can be approximated by the sum of the fields due to each sources. Being astraightforward direct method, the WSM offers several advantages. First, computational cost is lower than BEM or FEM. Second, the WSM constitutes an efficient and economical simulation technique for practical applications. As as etback to the simplicity of this principle, the determination of the source strengths leads to numerical and analytical difficulties, extensively discussed overt he past twod ecades. Following the first WSM stability analysis [START_REF] Song | Numerical errors associated with the method of superposition for computing acoustic fields[END_REF], numerous alternativesh avee merged to overcome one of the major drawbacks of the method: the non-uniqueness of solutions at fictitious resonant frequencies [START_REF] Wilton | Aclarification of nonexistence problems with the superposition method[END_REF]. To solvethis issue, one elegant solution is to use ahybrid combination of single and double layer potentials [START_REF] Jeans | The wave superposition method as arobust technique for computing acoustic fields[END_REF] as the Burton-Miller formulation. This method still one of the most reliable [START_REF] Marburg | Cat'se ye radiation with boundary elements: comparative study on treatment of irregular frequencies[END_REF] even for high frequencies, butt he use of such an analytical sophistication may compromise practical applications. Aside the optimal sources placements studies [START_REF] Wang | Ar etracted boundary integral equation for exterior acoustic problem with unique solution for all wave numbers[END_REF][START_REF] Song | Numerical errors associated with the method of superposition for computing acoustic fields[END_REF], numerical schemes as Tikhonovr egulation or Singular Va lues Decomposition (SVD)were also successfully applied [START_REF] Sarkissian | Method of superposition applied to patch near-field acoustic holography[END_REF][START_REF] Fahnline | Anumerical solution for the general radiation problem based on the combined methods of superposition and singular-value decomposition[END_REF] to improve WSM results, butalso somewhat overlooked as as olution for the non-uniqueness problem. Indeed, only asevere regulation or high SVD truncation allows to smoothen enough the resonant responses. Thus, and as ac ounterpart of this significant change in sources to field positions dependencies, the WSM error rises to an unacceptable level. Another attempt wastoadd an appropriate damping to the virtual source system by the mean of acomplexradius vector [START_REF] Yu | Wave superposition method based on virtual source boundary with complexradius vector for solving acoustic radiation problems[END_REF]. Though this technique can insure the unique solutions for all wave numbers if enough damping is introduced, choosing the complexradius vector is adifficult task, as too much damping will deteriorate the method accuracy.

The aim of this paper is to present am erged formulation of the twoconceptions behind the superposition methods. The first is the discretization of the interior form of Helmholtz integral equation and the second is the search of fundamental solutions for randomly placed sources. The performance of the proposed method at critical wave numbers and its application in accurate free-field radiation prediction are then evaluated through numerical experiments. 

General theory

p (r) + k 2 p (r) = 0 r ∈ Σ, (1) 
where p is the pressure at point r in the surrounded fluid Σ (assuming an implicit e -jωt dependence). This equation is associated with Neumann boundary condition on the surface Γ,

∂p (r) ∂n = jωρv n (r) r ∈ Γ, (2) 
in which ∂n denotes normal differentiation at the point r in the direction from the interior region Ω toward Γ, v n (r) is the normal component of the velocity at point r and ρ is the fluid density modulus. The pressure must also satisfy the radiation condition lim

R→∞ S R ∂p (r) ∂r 0 -jkp (r) 2 r=R dS = 0, (3) 
where r 0 is the radial distance from the origin of coordinates and S R is asphere of radius R centered at the origin and surrounding r and Γ. The single-layer potential seeks to represent p as

p (r) = Γ σ (r s ) G (r, r s ) dΓ r s r ∈ Σ, ( 4 
)
where G is the free-space Green'sfunction and σ is adensity function on Γ.A pplying the boundary condition of a givennormal pressure on Γ,leads to the boundary integral equation

- 1 2 σ (r) + Γ σ (r s ) ∂G (r, r s ) ∂n dΓ r s = ∂p (r) ∂n r ∈ Γ. (5)

The Wave Superposition Method

The simple idea behind this method is that the acoustic field of ac omplexr adiator (cf. Figure 1) can be reconstructed as as uperposition of individual simple sources.

The equivalencyo ft he WSM to the Helmholtz integral formulation has been shown by Koopman [START_REF] Koopmann | Am ethod for computing acoustic fields based on the principle of wave superposition[END_REF], thus validating the superposition integral:

p (r) = jωρ Ω q (r s ) G (r, r s ) dΩ (r s ) r ∈ Γ ∪ Σ, (6) 
ρ is the density of the medium, ω is the angular frequency of the harmonic vibration of the surface Γ defining the interior region Ω.T he source strength is denoted by q (r s ), evaluated at r s inside Ω.

To reduce equation ( 6) to anumerical form, it'sconvenient to assume the sources distributed on Γ inside Ω.I f this surface is divided into N sufficiently small elements, we can approximate the normal velocity on the surface of the radiator,

u n (r) ≈ N i=1 Q i ∂G (r, r s ) ∂n r r ∈ Γ r s ∈ Γ , ( 7 
)
where Q i is the volume velocity of the simple source. Since u n (r) is known, Q i is giveninmatrix form by

Q = [D] -1 u n . ( 8 
)
After finding the source strength vector Q,t he pressure field is calculated from

p (r) = jωρ N i=1 G (r, r s ) Q i r ∈ Γ ∪ Σ r s ∈ Γ , (9) 
thanks to the linearized Euler equation

jωρu n (r) = ∂p(r) ∂n r . ( 10 
)
While there is much scope for discussion on the number and location of the interior sources for optimum accuracy, the method is claimed to be superior to the usual boundary integral formulation of the exterior acoustic problem since the source and collocation points neverc oincide, there are no problems associated with singularity.H owever,the superposition integral exhibits non-uniqueness at critical wave numbers, revealed by the layer potential formulations of the WSM principle.

The Method of Fundamental Solutions

Forthis method, equation ( 6) is still satisfied, because the sources can be placed anywhere inside the radiator.S o, on numerical aspect, the MFS is an another version of the WSM as the source intensities satisfy the same equation [START_REF] Fairweather | The method of fundamental solutions for scattering and radiation problems[END_REF],

u n (r) = M i=1 A i ∂G (r, r s ) ∂n r r ∈ Γ r s ∈ Ω, (11) 
Here, aleast-square functional of this equation can be minimized [START_REF] Kondapalli | Analysis of acoustic scattering in fluids and solids by the method of fundamental solutions[END_REF], to obtain the best positions for the fictitious sources providing the optimal solutions. Another optimal MFS positioning has been recently proposed using the image method [START_REF] Chen | Equivalence between Trefftz method and method of fundamental solution for the annular Green'sfunction using the addition theorem and image concept[END_REF].

The difference between these the WSM and the MFS approaches is that the randomly distributed sources lead to higher condition number,u nsuitable for effective numerical calculation, butt he MFS does not exhibit critical wave numbers, except for some special sources positioning [START_REF] Chen | Using the method of fundamental solutions in conjunction with the degenerate kernel in cylindrical acoustic problems[END_REF]. Thus, and apart from these particular cases, this method cannot be written in terms of alayer potential because these sources do not respect the Helmholtz integral positioning requirements. However, the MFS allows the system of equation to be overdetermined by ag reater number of collocation points.

Non-uniqueness

Considering the vibration cavity of the Figure 1, the three main types of the WSM established on av irtual surface Γ placed in Ω (with interior region Ω and exterior region Σ ), are as follows:

(1) Single-layer potential integral (2) Double-layer potential integral

p (r) = Γ σ (r s ) G (r, r s ) dΓ r s , r ∈ Γ ∪ Σ. (12)
Γ µ (r s ) ∂G (r, r s ) ∂n r s dΓ r s = p (r) , if r ∈ Σ p (r) + µ(r) 2 , if r ∈ Γ (13) 
(3) Hybrid combination

Γ γ (r s ) G (r, r s ) + α ∂G (r, r s ) ∂n r s dΓ r s (14) = p (r) , if r ∈ Σ p (r) + γ(r) 2 , if r ∈ Γ
in which G (r, r s ) is the free-space Green'sfunction evaluated between the observation point and the source, located respectively at r and r s .Onthe virtual surface Γ ,Green's theorem leads to the Helmholtz boundary integral equation for interior region and its differentiated form.

Considering the case of the Single Layer Potential formulation (WSM-SLP), Jeans [START_REF] Jeans | The wave superposition method as arobust technique for computing acoustic fields[END_REF] shows that if the excited wave number k equals or is close to an interior Dirichlet eigenvalue, equation ( 12) has anon-unique solution. Fort he Double Layer Potential formulation (WSM-DLP), non-uniqueness for equation ( 13) occurs at interior Neumann eigenvalues. The Hybrid combination (WSM-H, equation 14)e nsures aunique solution with an imaginary α because ar eal coefficient define an interior Robin eigenproblem.

Figure 2s hows the Mean Squared Error (MSE)o btained with the previous formulations and for an infinite cylinder (radius R). This estimator is defined as

MSE = N i=1 |P2 i -P1 i | 2 N i=1 |P1 i | 2 , ( 15 
)
where P 2isthe reconstructed pressure and P 1its known values. The velocity distribution on the surface is generated by ap oint source located at 1.1a of the center (a = 0.1R). This figure highlights the fictitious frequencies arising from the classic WSMs, and the solution obtained by the WSM-H and with the MFS where the sources (N = M = 100)a re located randomly on the inscribed circle (radius a). These eigenfrequencies for single-layer potential formulation are such that

J n (ka) = 0,n = 0 , 1 , 2 ,... ( 16 
)
and for double-layer-potential

J n (ka) = 0,n = 0 , 1 , 2 ,... ( 17 
)
where J is the Bessel function and J its derivative.W ith the WSM approach, adirect determination of the sources strength is made, it thus differs from the minimization process usually employed in fundamental solutions determination.

Combined Wave Superposition Method

To achieve uniqueness, we propose to merge the rigorous formalism underlying the WSM with the ease of choice for MFS sources locations. From the numerical formulation of WSM and MFS, we can write

[D WSM ][ D MFS→WSM ] [D WSM→MFS ][ D MFS ] {Q} {A} = {u n } WSM {u n } MFS , ( 18 
)
where

[D WSM ]i st he classic WSM dipole, [D MFS ]t he MFS coefficient matrix, [D MFS→WSM ]t he coefficient matrix between MFS sources and WSM collocation points and [D WSM→MFS ]t he coefficient matrix between WSM sources and the MFS collocation points.

The basic idea here is to keep asufficient butsmall MFS terms number because those sources (refereed for the rest of the paper as the complementary sources)a re incorporated in WSM formulation only for achieving uniqueness at critical wave numbers and not for improving the global accuracy. The resulting formulation of equation ( 18) is named the Combined WSM (CWSM)asitcombines MFS sources with the WSM formulation. The main difficulty with this method is, as for CHIEF,t he selection of interior points away from the internal standing wavesn odes of the corresponding Dirichlet problem. The step-by-step method proposed by Petrov [START_REF] Petrov | An adaptation of auxiliarysources method for stationary acoustic problems[END_REF] for the source coordinates calculation could be an efficient algorithm to solvet his particular problem.

Numerical investigations

Ill-conditionning and regularization

Basic rank-revealing decompositions showt he rankdeficient nature of numerical problems defined by superposition methods. Fort he previous defined problem, the Figure 3shows that only the first singular values (zone I) of the influence matrix ([D]inequation 8) are clearly relevant while additional values improvedslightly the results (zone II)and others add numerical noise (zone III). Thus, one common wayt oi mprove sources methods is to perform aT runcated SVD [START_REF] Hansen | The truncated SVD as amethod for regularization[END_REF]. Applied to the formulations previously presented, results of Figure 4, with af actor of 10 4 between the max and min singular values taken into account, exhibit areal improvement for the MFS butc an be of consequence for the WSM results, without improving the solutions at eigenfrequencies. It must be remembered here that these critical wave numbers have nothing to do with ill-conditioning buta re due to the nature of WSM method. Nevertheless, the number of singular value to takei nto account is not at rivial task, as optimal WSM solutions (Figure 2) are recoveri nt his case with only twomore singular values.

Other direct regularization methods likeT ikhonovregularization have also been tested on superposition formulations, producing comparable or higher errors [START_REF] Sarkissian | Method of superposition applied to patch near-field acoustic holography[END_REF].

Fictitious eigenfrequencies

In order to demonstrate the accuracyo ft he proposed method (equation 18), the cylinder of the section 1.3 is reused, with 20 sources subtracted from the primary WSM sources network (N = 80)and disposed on an inner circle of radius b = 0.95a = 0.095R to form the complementary sources network (M = 20). Simple SVD inversion scheme is used to solvee quation [START_REF] Wang | Ar etracted boundary integral equation for exterior acoustic problem with unique solution for all wave numbers[END_REF].F igure 5s hows the improvement brought by the CWSM (applied to the SLP form)a tt he critical wave numbers. However, with this configuration, the improvement is not optimal.

One efficient solution is to dispatch the complementary sources randomly,a sa ny basic MFS do. Figure 6h ighlights the benefits of this configuration for aw ider band of frequencies. Here, the CWSM matches the hybrid formulation accuracy, while saving athird of the computation time [START_REF] Benthien | Nonexistence and nonuniqueness problems associated with integral equation methods in acoustics[END_REF].

Theoretically,i ti ss u ffi cient to have ac omplementary source on an on-zero nodal line to overcome the uniqueness problem. But usually,this task is non-trivial because of non-regular geometry or while computing at high frequencies. As aconsequence, the randomization of complementary sources appears to be good compromise between the computational cost of CWSM and its accuracy. Following the usual rule of discretization of four subdivisions per wavelength [START_REF] Benthien | Nonexistence and nonuniqueness problems associated with integral equation methods in acoustics[END_REF], experiments have shown satisfying results for an umber of complementary sources approximately equal to atenth of the WSM sources.

Alast 2D application is performed on an infinite cylinder of rectangular section (cf. Figure 7a)toinvestigate the reliability of the CWSM at high frequencies.

Figure 7b shows the results for ka from 22 to 23.5, the CWSM performed as well as the previous cases. Thus, its accuracydepends solely of the classic frequencycriterion, setting the maximum recommended distance between two WSM sources.

3D Application

The method is nowa pplied to as phere of radius R.S uperposition surface is set on ai nterior centered sphere of radius a = 0.1R.Figure 8shows the MSE for the surface pressure reconstruction with classic WSM and with the CWSM, for av elocity distribution generated by as ingle point source at 1.1a of the center.Asfor the planar examples, uniqueness of solutions is achievedwith M ≈ N/10 internal sources at random position (N = 2450).

More sophisticated geometries and surface velocity distributions can be carried out using this approach. Nevertheless, as the classical WSM, the accuracyofthe CWSM can be altered for geometries with corners (difficulties to takeinto account the discontinuity at tangent n).

Conclusion

The proposed combination of the wave superposition method and some internal sources provides au nique solution at anyfrequencywith simple radiating monopoles. The computational cost for this Combined Wave Superposition Method is almost equivalent to the single layer potential formulation of the WSM. The positions of the superposition sources remain subject to the usual rules of thumb and the added source are preferentially placed at random positions. This distribution is the easiest way to avoid source placements at nodal lines, and to achieve uniqueness solutions for lowtomid frequencies. As aconsequence, if these nodal lines are known, the number of complementary sources can be optimized.
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  Figure 1shows the geometry of the radiation problem. the well-known Helmholtz differential equation governs the propagation in finite fluid domain Σ,
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 1 Figure 1. Vibrating body and the virtual sources.
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 2 Figure 2. Critical wave numbers for three WSM formulations and the MFS.
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 3 Figure 3. Singular Va lue Decomposition of influence matrix.
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 4 Figure 4. Truncated SVD influence on precision.

Figure 5 .

 5 Figure 5. Complementary CWSM sources uniformly disposed.
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 6 Figure 6. Random disposition of the complementary sources.
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 78 Figure 7. Reliability of the CWSM at high frequencies.
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