
HAL Id: hal-03203211
https://univ-artois.hal.science/hal-03203211

Submitted on 20 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Effect of Mesh-to-Mesh Projection on the Magnetic
Tooth Forces Calculation in Electrical Machines

Raphael Pile, Guillaume Parent, Yvonnick Le Menach, Jean Le Besnerais,
Thomas Henneron, Jean-Philippe Lecointe

To cite this version:
Raphael Pile, Guillaume Parent, Yvonnick Le Menach, Jean Le Besnerais, Thomas Henneron, et al..
Effect of Mesh-to-Mesh Projection on the Magnetic Tooth Forces Calculation in Electrical Machines.
2020 International Conference on Electrical Machines (ICEM), Aug 2020, Gothenburg (virtual), Swe-
den. pp.2500-2506, �10.1109/ICEM49940.2020.9271016�. �hal-03203211�

https://univ-artois.hal.science/hal-03203211
https://hal.archives-ouvertes.fr


Effect of Mesh-to-Mesh Projection on the Magnetic
Tooth Forces Calculation in Electrical Machines

Raphaël PILE, Guillaume PARENT, Yvonnick LE MENACH, Jean LE BESNERAIS,
Thomas HENNERON, and Jean-Philippe LECOINTE

Abstract—Magnetic forces calculation for the electromag-
netic noise and vibration analysis in electrical machines (eNVH)
is a key issue for an accurate modelling of magneto-mechanical
interactions. An accurate method to compute magnetic forces
consists in applying Virtual Work Principle (VWP). However,
the magnetic force result depends intrinsically on the elec-
tromagnetic mesh which is generally not adapted to perform
mechanical simulations. Thus, it may be necessary to perform
mesh-to-mesh projection onto the mechanical mesh. In this
paper, a 2D Ritz-Galerkin mesh-to-mesh projection is performed
with a 12S10P Surface Permanent Magnet Machine (SPMSM).
Only surface force density is considered. The novelty of the
paper is to study the accuracy of this projection with respect to
integrated tooth force. The results show that the mesh-to-mesh
projection could be inaccurate in the tangential direction while
accurate in the radial direction.

Index Terms—electrical machines, finite element, magnetic
forces, mesh-to-mesh projection, vibrations.

I. INTRODUCTION

Electromagnetic Noise, Vibration & Harshness (eNVH) in
electrical machines is a growing issue related to automotive,
health and comfort. This is due to the spreading use of
electrical machines to replace internal combustion engines.
As a consequence, the troubleshoot of eNVH issues at all
design stages become an unavoidable step. In particular, the
magneto-mechanical coupling is still an active research field.

A key point is the magnetic force computation. The air-
gap Maxwell tensor method is widely used to estimate the
magnetic force based on the air-gap magnetic field knowledge
for eNVH simulations [1]. However, the air-gap Maxwell
tensor method does not represent a physical local force, but a
physical global force when integrated along a closed contour
in the air-gap. Moreover saturation can induce volume force
density inside materials resulting in issues where applying
force calculated with the Maxwell tensor [2]. Thus, for certain
topologies, it will become necessary to use more precise
methods to calculate magnetic forces.
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Fig. 1. Flux density and flux lines at no-load [3].

Instead, the Virtual Work Principle (VWP) can be used
to compute accurately the local force on a Finite Element
(FE) mesh [4]. The VWP calculations give a nodal resultant
force which depends on the vicinity of the mesh [5]. This
is an important restriction because the mesh used for elec-
tromagnetic model is not suitable for mechanical problem
solving. Indeed, the electromagnetic mesh compared to the
mechanical mesh is generally too thin on the tip of the teeth,
and sometimes too coarse on the yoke. In this paper, a very
thin magnetic mesh is used in order to accurately compute
the magnetic forces.

The most accurate method to compute the equivalent
magnetic forces on the mechanical mesh requires two nu-
merical operations: first the magnetic force density must
be computed, then this force density is projected on the
mechanical mesh by a mesh-to-mesh projection approach (for
example Ritz-Galerkin projection) [5]–[8]. However, previous
works on the subject have validated this approach with a
criterion adapted to the eNVH context.

Tooth forces are commonly used to study eNVH is-
sues [9], because they ease mechanical model loading and
physical interpretations through Fourier series development.
In the event that distributed forces are to be used as in [8], this
paper proposes to quantify the errors introduced by the mesh-
to-mesh projection by comparing lumped tooth force values
before and after projection. It defines an accuracy criterion
for this type of projection which is adapted to the eNVH
context.

The application is performed on a 12 slots and 10 poles
(12S10P) Surface Permanent Magnet Synchronous Machine
(SPMSM). An illustration of the magnetic flux density is
presented in Fig. 1: flux density lines with high amplitude
crossing ferromagnetic-air interface are linked to magnetic
forces, such that a concentration of magnetic force on the tip
of the teeth is expected. Thus, only magnetic surface force
are considered in this work. The machine is an open-access



testbench and all information can be obtained from [3]. This
paper is a first step in order to propose a workflow based on
the VWP to troubleshoot eNVH issues.

II. MAGNETIC FORCES PROJECTION

A. Force Density Calculation

According to [4], the resultant magnetic force F is (related
to the spatial direction s ∈ {x,y, z}) on a node can be
calculated with a balance of magnetic co-energy on the
elements e surrounding this node:

F is =
∑
∀e|i∈e

∫
e

(
−BT · J−1 ·

∂J
∂s
·H+

µ

2
|H|2 |J−1|

∂|J|
∂s

)
dV (1)

where H is the magnetic field, B the magnetic flux density,
and J the Jacobian matrix of each element. This integration
is illustrated in Fig. 2. F is is expressed in Newton (or Newton
per unit length in the case of a 2D calculation) and is
proportional to the size of the surrounding elements: bigger
elements implies more integrated magnetic co-energy.

𝐹𝑥
𝑖

𝐹𝑦
𝑖

Fig. 2. Illustration of Virtual Work Principle integration on a node.

This is an issue when considering eNVH optimisation: a
high number of mechanical simulation must be performed,
and the mechanical numerical model must be accurately
fitted. Since the magnetic mesh is often inappropriate for
the mechanical simulation (too much elements and mesh
density unsuitable to mechanical fitting), then it is common
to perform a mesh-to-mesh projection using Ritz-Galerkin
method for instance [5], [6]. Nevertheless, F is cannot be
interpolated since it is the amplitude associated with a dirac
function defined with respect to the point of application. The
usual method to solve this issue is to compute an equivalent
magnetic force density [5], [6]. The two step (computing
density and applying mesh-to-mesh projection) are detailed
in the Appendix V

To the authors knowledge, the error for resultant magnetic
tooth force due to projection has not been studied in the
literature. As a consequence, the Section III proposes to
quantify these errors by comparing tooth forces before and
after projection for the application case presented in Section
II-B.

B. Application with 12S10P SPMSM

The studied topology is the same as in [3]. The magnetic
field is solved using 2D non-linear magneto-static Finite
Element Analysis (FEA) with MANATEE-FEMM coupling
[10]. In this simulation, the magnetic saturation is very low
such that only surface force can be considered. As expected,

Fig. 3. Magnetic force spectrum computed with Maxwell Tensor at no-load.

Fig. 4. Example of magnetic mesh (left) and a mechanical mesh with
Nθ = 8 angular divisions on the tooth tip (right).

the main magnetic force harmonic is at 2fs = 92 [Hz]
as shown in Fig. 3. This frequency is used to test the
proposed approach of mesh-to-mesh projection as it is known
to be responsible for vibro-acoustic issues [3]. Moreover, the
highest wave number r = 10 at 2fs is the one most likely
to introduce errors with sharp variations of the force density
between nodes. The magnetic field at no-load is solved over
120 time steps during a full rotation of the rotor. A sliding-
band technique [11] is used such that the same mesh is
kept at every time step. A comparison between the magnetic
and mechanical mesh is presented in Fig. 4. The magnetic
mesh has been highly refined to serve as a reference for
forces calculation, but it is certainly not optimal (especially
in the yoke). Unlike the magnetic mesh, the elements of the
mechanical mesh are regularly spaced.

The magnetic forces are computed according to (1) for
every time step. Then the time Fourier transform is com-
puted for each nodal force. Thus, the magnetic nodal forces
associated with frequency 2fs can be extracted as shown in
Fig. 5.

The next step is to compute the magnetic surface force
density. This requires to select all the ”edges” at the airgap-
stator interface, and to built the corresponding basis of shape
functions. At first, shape functions of order 1 are used
(standard for 2D magnetic FEA), which are expressed in the
reference element (see (14) in appendix). Then the matrix
[A] can be build and the linear system (5) can be solved.
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Fig. 5. Magnetic nodal forces Fs calculated with the VWP at 2fs.
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Fig. 6. Magnetic surface force density fs on the magnetic mesh at 2fs.

The result is presented in Fig. 6: compared to Fig. 5, the
distribution of force is smoothed as it is now displayed as
a field. The dominant wavenumber n = 10 predicted by the
air-gap Maxwell Tensor theory in Fig. 3 can be observed by
counting all the maxima in Fig.6.

Finally the mechanical mesh is read to get the new surface
elements for the considered surface force. Thus, the shape
functions in the reference element are the same as in (14).
Then (11) and (13) can be calculated before solving (10). An
example of the results computed with the mechanical mesh
from Fig.4 is presented in Fig. 7.

III. MAGNETIC TOOTH FORCE PROJECTION

A. Objective

The goal of this section is to study the accuracy of the
mesh-to-mesh projection with respect to tooth forces. Tooth
forces are defined as the sum of all nodal forces per tooth,
and applied in the middle of the tooth tip as shown in Fig. 8.
In all the following, the reference is the value of the tooth
force computed on the magnetic mesh.

Indeed, tooth forces are commonly used to perform
magneto-mechanical coupling [2], [9]. It is a powerful tool
to have a first idea of the main eNVH sources. The mesh-to-
mesh projection may improve the accuracy of the magneto-
mechanical coupling. However, it is necessary to have at least
a correct conservation of tooth forces and torque before any
use of the results of mesh-to-mesh projection. This paper
proposes to compare tooth forces before and after performing
the mesh-to-mesh projection. An example of tooth force
distribution is given in Fig. 8.

In order to simplify the parametrization of the mechanical
mesh, Nθ is defined as the number of divisions on the tip of
the teeth. The other parameters of the mesh are calculated
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Fig. 7. Magnetic surface force density f̂s on the mechanical mesh at 2fs.
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Fig. 8. Magnetic tooth forces on the mechanical mesh at 2fs

from Nθ such that:

Nr,yoke = floor{Nθ(Rsy − (Rsbo + Hs))/Hs + 1}
Nr,teeth = 2Nθ
Nθ,slot = floor{1.2Nθ}

(2)

with Nr,yoke the number of divisions in the yoke thickness,
Nr,teeth the number of divisions in the teeth height, and Nθ,slot
the number of angular divisions in the slots. The different
possible results are illustrated in Fig. 9.

B. Sensitivity to Gauss Points

The first value to drive the precision is the number of
Gauss points used in (13). This study is performed with
the magnetic mesh in Fig. 4 and several mechanical mesh
defined by the number of angular divisions Nθ. First the
torque deviation after projection is illustrated in Fig. 10.

The direction of the magnetic forces is important to
predict the resulting vibrations. In order to ease the physical
interpretation, the magnetic forces are generally split into
radial and tangential tooth forces defined from the radial
direction in the middle of each tooth tip. The results are
presented in Fig. 11 for the radial tooth force, and in Fig. 12
for the tangential tooth force. The projection has a more
significant impact on the direction of the magnetic force: if
the error on the radial force stay below 4% for all cases,
the error on tangential force can reach up to 15% when the
number of Gauss point is low. The error in the radial direction
could correspond to 20log10(1.04) = 0.35 [dB] in a vibro-
acoustic study, while the error in the tangential direction
could correspond to 1.2 dB. But with a high projection error,
there is a risk of introducing new purely numerical spatial
harmonics which can excite unexpected mechanical modes.
This particular subject will be discuss in future research work.

The differences between radial and tangential errors can
be explained by their spatial distribution: the tangential force



Fig. 9. Example of mechanical mesh with Nθ = 2, Nθ = 4, and Nθ = 9
angular divisions on the tooth tip.
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Fig. 10. Relative error for torque on the mechanical mesh compared to
magnetic mesh.

are concentrated very close from the corners. Then the pre-
vious Gauss quadrature must be very accurate in this area to
correctly capture the strong variations in the tangential force
density. The radial force is more evenly distributed on tooth
tip such that these error have less impact. In order to keep
the error as small as possible, the choice of the number of
Gauss points must be made according to the ratio of the mesh
size. In this case, the thickest mechanical mesh with Nθ = 2
angular divisions per tooth tip has approximately a size ratio
of 1 for 6.5 elements compared to the magnetic mesh. In
theory, two Gauss points are needed in each magnetic element
to accurately compute the integrals [13]. But here 13 Gauss
points does not ensure an exact integration because the Gauss
points of the mechanical mesh do not generally match with
the Gauss points of the magnetic mesh. This is illustrated by
the small local increases in error along every plots in Fig. 10-
11-12.

Nevertheless, the error can be fairly reduced by increasing
the number of Gauss points [7]. The computation cost of each
Gauss point is pretty low because it does not influence the
size of the system (10) to be solved. Thus a margin can be
taken at relatively low cost.

C. Sensitivity to Shape Function

The shape functions used to calculate the force density on
the mechanical mesh were chosen arbitrarily. It is therefore
conceivable to artificially increase the order of these func-
tions to see the effect on tooth force projection error. The
mathematical definition of the order 2 used in the application
is provided in the Appendix V. The comparison between
the error from each order of shape function is presented in
Fig. 13: there is no effect of the target shape function order
on the accuracy for tooth force calculation, as it does not
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Fig. 11. Relative radial tooth forces error on the mechanical mesh compared
to magnetic mesh.
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Fig. 12. Relative tangential tooth forces error on the mechanical mesh
compared to magnetic mesh.

add any information to the solved system. The target shape
function only have an impact on the calculation time. The
errors can only be reduced with the interpolation of the force
density (13).

Similarly, the shape function on the magnetic mesh are
arbitrary chosen. However, it is not possible to increase the
order of these shape function with classical order 2 such as
(15) because the result of the VWP cannot be interpolated
on intermediary nodes. The only remaining possibility is to
increase the order of the used polynomials while keeping an
element with two nodes. As example, one could build polyno-
mial shape function defined on only 2 node per element. The
mathematical definition of this pseudo-order 2 is provided
in the Appendix V. Nevertheless, these polynomials lack
appropriate mathematical properties to get a better accuracy
on the field calculation, therefore also for the tooth forces
calculation as observed in Fig. 14. One idea to explore would
be to look for test functions in (7) ensuring the conservation
of the nodal resultant forces from the magnetic mesh.

D. Sensitivity to Mesh Size

The third parameter to drive the precision is the mechani-
cal mesh size. This study is performed by adjusting the mesh
size as a function of angular division, while keeping the shape
functions of order 1 for both meshes.

For the tooth forces, the results are presented in Fig. 16
for the radial direction, and in Fig. 17 for the tangential
direction. In both cases, there is again a convergence of the
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Fig. 13. Relative error for radial/tangential tooth forces on the mechanical
mesh compared to magnetic mesh using different shape function orders on
the target mechanical mesh (Nθ = 2).
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Fig. 14. Relative error for radial/tangential tooth forces on the mechanical
mesh compared to magnetic mesh using different shape function orders on
the source magnetic mesh (Nθ = 2).

error with the fineness of the mechanical mesh. However, this
solution is much more expensive because not only it increases
the size of the linear system (10) to be solved, but it also
increases the computation time for solving the mechanical
problem. It leads to the solving of two systems of complexity
proportional to N3 with N the number of unknowns [14].

IV. CONCLUSION

Noise and vibration from electromagnetic excitations in
electrical machines rely on the accuracy of magnetic force
calculation. Not only the magnetic force must be accurately
computed on the magnetic model, but the results must be
accurately projected onto the mechanical model.

In this paper the Ritz-Galerkin mesh-to-mesh projection
technique was studied from a new angle: the accuracy for
radial and tangential tooth forces was compared before and
after projection. The sensitivity to the number of Gauss
points, to nodal shape functions, and to mesh size were
highlighted. It shows that most of the mesh-to-mesh projec-
tion errors concern tangential force: the parameters adequate
for radial force projection might lack of accuracy regarding
tangential force. One of the remaining issues to work on
is the risk of exciting natural modes with numerical noise
introduced/amplified by the projection.

This study is a first step before studying magneto-
mechanical coupling considering the relation between local
force density and equivalent tooth forces. Future works will
address mesh-to-mesh projection depending on the loading
conditions (open-circuit, full-torque or field-weakening). Ad-
ditionally, changing the loading conditions might introduce
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Fig. 15. Relative error depending on the mesh size for torque after mesh-
to-mesh projection.
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Fig. 16. Relative radial tooth forces error on the mechanical mesh compared
to magnetic mesh depending on the relatives mesh size.

saturation effects, which raise the issue of magnetic volume
force density effect on the vibro-acoustic results.

V. APPENDIX

A. Calculating Force Density

Considering that nodal resultants F is on a mesh comes
from a continuous force field fs defined on a discrete shape
function basis ωi associated to the same mesh such that:

fs(x) =

N∑
k=1

ωk(x)fs,k (3)

Then the link between F is and fs is the integration of the
force field interpolated by all the shape functions [5]:

N∑
k=1

fs,k

∫
Dmag

ωiωk dτ = F is (4)

where Dmag is the domain of definition in the magnetic source
mesh, and N the total number of nodes. Considering all the
possible combinations of i and k, (4) leads to a linear matrix
system of size N to be solved:

[A][fs] = [Fs] (5)

with
Ai,k =

∫
Dmag

ωiωk dτ (6)

Note that the choice of the basis ωi is arbitrary. A natural
choice for this basis ωi is to use the electromagnetic FEA
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shape functions, which means for this study linear nodal
shape functions.

At this point, the physical dimension fs,k depends on
the types of elements which are considered. On one hand,
fs,k is a surface force density when considering only surface
elements in 3D (or edge elements in 2D). On the other
hand, fs,k can be a volume force density considering volume
elements in 3D (or facet elements in 2D). The choice depends
on the loading condition of the electrical machines: with
low magnetic saturation, magnetic forces concentrate at the
ferromagnetic-air interface such that the surface force model
is more accurate. However, a highly saturated case creates
resultant forces from (1) inside the volume which can be
then converted into volume force density.

B. Mesh-to-Mesh Projection

The goal of this section is to discuss the method to project
the discrete magnetic force field fs,k on the mechanical mesh
as a new discrete field f̂s,k. The criteria for the choice
of methods concern precision, conservation of forces and
calculation time.

Most of the mesh-to-mesh projection techniques rely on
the Galerkin method because it ensures the uniqueness of
the solution. Moreover the error is orthogonal to the chosen
subspace [7], [15] and this ensures an accuracy that decreases
with the size of the target mesh. The Galerkin method allows
to obtain a new field distribution f̂s,k on the mechanical mesh
using a weak-formulation:

〈ψ, f̂s,k〉 = 〈ψ, fs,k〉 (7)

where ψ is a test function that belongs to a Sobolev space, and
〈·, ·〉 a scalar product which corresponds to the same Sobolev
space. With this weak-formulation, an error minimization of
‖f̂s−fs‖ is achieved in the sense of the norm defined on the
Sobolev space. In this case, the choice of L2 for the Sobolev
space is adapted for the conservation of the total force [6]:

‖f̂s‖L2 =

∫
Dmech

f̂2s dτ (8)

Indeed the integration of nodal forces (4) implicitly uses a

Gauss points on mechanical mesh

Mechanical mesh nodes
Magnetic mesh nodes

Gauss points on magnetic mesh

Fig. 18. Gauss quadrature between two 1D non-matching meshes.

L2 scalar product:

〈f̂s,1, f̂s,2〉L2 =

∫
Dmech

f̂s,1f̂s,2 dτ (9)

Moreover, the input for the mechanical simulation is
directly the projected force density (not its gradi-
ent/divergence/rotational). Therefore, the use of Hilbert
spaces instead of L2 is useless in the context of force
projection.

The test function ψ must be chosen wisely in order to
avoid ill-conditioned problem. Thus, the Ritz-Galerkin is
often preferred [5]–[7]: the test function is also the target
shape function basis of the mechanical mesh ψ = φi.

Then, the previous weak-formulation can be written as
another linear matrix system to be solved:

[C][f̂ ] = [f ] (10)

with

Ci,k =

∫
Dmech

φiφk dτ (11)

and

fi =

N∑
k=1

fs,k

∫
Dmech

φiωk dτ (12)

where Dmech is the domain of definition in the mechanical
target mesh. The matrix [C] is symmetric positive definite
matrix so the problem (10) has a unique solution.

The calculation of each integral is performed using the
Gaussian quadrature [13] on the mechanical mesh. Thus, the
integration of (11) is accurate since Gaussian quadrature is
exact for polynomials functions. However, the integration of
(12) is not exact as illustrated in Fig. 18: seen by a mechanical
mesh element, the force density field on the magnetic mesh
is C1 piece-wise such that the Gaussian quadrature is only
an approximation.

But, artificially increasing the number of Gauss points
allows to reduce significantly the integration error with a low
computational cost [7]. This solution is preferred because it
is independent of the type of target and source meshes. Then,
(12) can be approximated with a ”high” Ng number of Gauss
points such that:

fi ≈
N∑
k=1

fs,k

Ng∑
m=1

φi(xm)ωk(xm)pm (13)

with xm the Gauss points and pm Gauss weights.



C. Shape function

Linear shape functions of the reference element of order
1 are defined as ∀x ∈ [−1, 1] [12]:{

ω1(x) = (1− x)/2
ω2(x) = (1 + x)/2

(14)

Linear shape functions of the reference element of order 2
are defined as ∀x ∈ [−1, 1] [12]:

ω1(x) = −(1/2)(1− x)x
ω2(x) = (1/2)(1 + x)x

ω3(x) = (1 + x)(1− x)
(15)

The polynomial ”pseudo-order 2” shape functions are
defined as ∀x ∈ [−1, 1]:{

ω1(x) = (1− x2)/2
ω2(x) = (1 + x2)/2

(16)
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