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Abstract

We define and evaluate a new preprocessing technique for propositional model
counting. This technique leverages definability, i.e., the ability to determine that
some gates are implied by the input formula Σ. Such gates can be exploited to
simplify Σ without modifying its number of models. Unlike previous techniques
based on gate detection and replacement, gates do not need to be made explicit in
our approach. Our preprocessing technique thus consists of two phases: comput-
ing a bipartition 〈I, O〉 of the variables of Σ where the variables from O are defined
in Σ in terms of I, then eliminating some variables of O in Σ. Our experiments
show the computational benefits which can be achieved by taking advantage of
our preprocessing technique for model counting.

Keywords: definability, model counting.

1. Introduction

Propositional model counting (also known as the #SAT problem) is the task of
computing the number of models of a given propositional formula Σ. This prob-
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lem and its direct generalization, weighted model counting,1 are central to many
AI problems including probabilistic inference [1, 2, 3, 4] and forms of planning
[5, 6]. They have also many applications outside AI, like in SAT-based automatic
test pattern generation, for evaluating the vulnerability to malicious fault attacks
in hardware circuits (see e.g., [7]).

However, propositional model counting (as well as WMC, which can be re-
duced to #SAT [8]) are computationally hard (they are #P-complete problems
[9, 10, 11]), actually much harder in practice than the satisfiability problem (SAT).
The power offered by the ability to count efficiently and, dually, the difficulty
to do it, are well-reflected by Toda’s theorem, showing that PH ⊆ P#P, i.e., ev-
ery problem from the polynomial hierarchy PH can be solved in polynomial time
provided that a #P oracle is available [12]. Nevertheless, the significance of #SAT

explains why much effort has been spent for the last decade in developing new al-
gorithms for model counting (either exact or approximate), which prove practical
for larger and larger instances, see e.g., [13, 14, 15, 16, 17, 18].

In this paper, we present a new preprocessing technique for improving ex-
act model counting from the computational side. Preprocessing techniques are
nowadays acknowledged as computationally valuable for a number of automated
reasoning tasks, especially SAT solving and QBF solving [19, 20, 21, 22, 23, 24,
25, 26, 27]. As such, they are now embodied in state-of-the-art SAT solvers,
like Glucose [28] which takes advantage of the SatELite preprocessor [22],
Lingeling [29] which has an internal preprocessor, and Riss [30] which takes
advantage of the Coprocessor preprocessor [31].

Our approach elaborates on previous preprocessing techniques [32] that can
be exploited for improving the model counting task from a computational stand-
point. Among them is gate detection and replacement. Basically, every variable
y of the input formula Σ that turns out to be defined in Σ in terms of other vari-
ables X = {x1, . . . , xk} can be replaced by the corresponding gate ΦX, while
preserving the number of models of Σ. Indeed, whenever a partial assignment
over the variables of X is considered, either it is jointly inconsistent with Σ or
in every model of Σ that extends this partial assignment, y has the same truth
value. Literal equivalences, AND/OR gates and XOR gates can be detected (ei-

1In weighted model counting (WMC), each literal is associated with a real number, the weight
of an interpretation is the product of the weights of the literals it sets to true, and the weight of a
formula is the sum of the weights of its models. Accordingly, WMC amounts to model counting
when each literal has weight 1.
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ther syntactically or using Boolean constraint propagation). The corresponding
preprocessing techniques are integrated into a preprocessor, called pmc. The em-
pirical results reported in [32] clearly show that huge computational benefits can
be achieved through the detection and the replacement of gates. However, pmc
remains limited due to the small number of families of gates which are targeted
(literal, AND, XOR gates and their negations).

In order to fill the gap, we present in this paper a preprocessing technique to
model counting that exploits in a much more aggressive way the gates that can be
found in the input formula Σ. The key idea underlying this preprocessing tech-
nique is that one does not need to identify the gates themselves but determining
that they exist is enough. To be more precise, it proves sufficient to detect that
some definability relations between variables hold, without needing to identify
the corresponding gates. This distinction is of tremendous importance for two
reasons. On the one hand, the search space for the possible gates ΦX is very large:
it contains 22k

elements up to logical equivalence, when X contains k variables.
On the other hand, in the general case, the size of any explicit gate ΦX of y in Σ
is not polynomially bounded in |Σ| + |X| unless NP ∩ coNP ⊆ P/poly (which is
considered unlikely in complexity theory) [33].

What this paper mainly gives is the description and the evaluation of a new
preprocessor for model counting, called B + E. The preprocessor B + E associates
with a given CNF formula Σ a CNF formula Φ which has the same number of mod-
els as Σ, but is at least as simple as Σ with respect to the number of variables and
the number of clauses. Requiring the input Σ to be a CNF formula is not a major
restriction since any propositional circuit Σ can be turned in time linear in its size
into a CNF formula having the same number of models, thanks to Tseitin’s trans-
formation [34]. Indeed, this transformation consists in adding gates to the input so
that the new variables which are introduced are defined from the original ones. By
the way, it is worth noting that other CNF translations, like Plaisted/Greenbaum’s
one [35], cannot be used. Indeed, Plaisted/Greenbaum’s transformation preserves
the satisfiability of the input circuit (and actually a bit more, namely the set of
logical consequences of Σ over its set of variables) but not its number of models.

Example 1. For instance, using Tseitin’s transformation, the input DNF formula
Σ = (a ∧ b) ∨ (b ∧ c) is associated with the CNF formula s0 ∧ (¬s0 ∨ s1 ∨ s2)
∧(s0 ∨ ¬s1) ∧(s0 ∨ ¬s2) ∧(¬s1 ∨ a) ∧(¬s1 ∨ b) ∧(s1 ∨ ¬a ∨ ¬b) ∧(¬s2 ∨ b)
∧(¬s1∨c) ∧(s2∨¬b∨¬c). This CNF formula is equivalent to s0∧[s0 ↔ (s1∨s2)]
∧[s1 ↔ (a ∧ b)] ∧[s2 ↔ (b ∧ c)], and it has precisely the same number of models
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over its set of variables as Σ over {a, b, c}, viz 3. Using Plaisted/Greenbaum’s
transformation, Σ is associated with the CNF formula s0∧(¬s0∨s1∨s2)∧(¬s1∨a)
∧(¬s1 ∨ b) ∧(¬s2 ∨ b) ∧(¬s1 ∨ c). This CNF formula is equivalent to s0 ∧ [s0 →
(s1 ∨ s2)] ∧[s1 → (a ∧ b)] ∧[s2 → (b ∧ c)], which has 5 models (and not 3) over
its set of variables.

Interestingly, the CNF format is the one considered by state-of-the-art model
counters. As its name suggests it, B + E consists of two parts: B which aims to
determine a Bipartition 〈I, O〉 of the variables of Σ such that every variable of O
is defined in Σ in terms of the remaining variables (in I), and E which aims to
Eliminate in Σ some variables of O.

More in detail, the contribution of the paper consists of the presentation of
the algorithms B and E, a property establishing the correctness of the prepro-
cessing technique used, and some empirical evidence showing the computational
improvements achieved by B + E compared to the case when no preprocessor is
used upstream, and also to the case when pmc is used. This paper significantly ex-
tends the results presented in [36], by providing several new contributions. Some
of them are theory-oriented, including the identification of the complexity of de-
ciding whether a definability bipartition is a subset-minimal one, and the proof
that the bipartition component of our preprocessor actually computes a subset-
minimal definability bipartition. Other contributions consist of empirical results;
thus, some empirical evidence related to the use of d4 [37] as a downstream model
counter has been added. Compared to [36], we also consider the use of B + E
for approximate compilation with controllable variables, report some additional
experimental results concerning classical planning benchmarks, and discuss the
connections between approximate compilation with controllable variables and the
projected model counting task [38, 39]. In addition, we show our approach as
closely related to the notion of independent support used for approximate model
counting. Especially, we compare the bipartitioner B used in our approach with
the one (called MIS) used in [40].

The benchmarks used, the implementation (binary code) of B + E, and detailed
empirical results are available online on www.cril.fr/KC/.

The rest of the paper is organized as follows. Section 2 gives some background
on propositional definability. In Section 3, we introduce our preprocessor B + E
and prove that the preprocessing technique it implements is correct. Section 4
presents results from our large scale experiments, showing B + E as a competitive
preprocessor for model counting, especially when compared with pmc. Some
other related work is discussed in Section 6. Finally, Section 7 concludes the
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paper and lists some perspectives for further research.

2. Propositional Logic and Definability

The formal setting of our study is classical propositional logic (see e.g., [41]).
Let LP be the propositional language defined inductively from a non-empty, finite
set P of propositional variables, the usual connectives (¬, ∨, ∧,↔, etc.) and in-
cluding the Boolean constants > and ⊥. Formulae are interpreted in the classical
way. The cardinality of a set S of formulae is denoted by #(S). An interpretation
ω is a mapping from P to {0, 1}. An interpretation ω is a model (resp. a coun-
termodel) of a formula Σ ∈ LP if and only if ω makes Σ true (resp. false) in the
usual truth functional way. Whenever a formula has a model, it is said to be con-
sistent (or satisfiable). In the remaining case, it is inconsistent (or unsatisfiable).
When a formula has no countermodel, it is a valid formula. For any pair of for-
mulae Σ1 and Σ2, Σ2 is a logical consequence of Σ1, noted Σ1 |= Σ2, whenever
every model of Σ1 is a model of Σ2; Σ1 and Σ2 are logically equivalent, noted
Σ1 ≡ Σ2, whenever they have the same models. For any formula Σ from LP ,
Var(Σ) is the set of variables from P occurring in Σ, and ‖Σ‖ is the number of
models of Σ over Var(Σ).

Among the formulae are the literals, the terms, the clauses and the CNF for-
mulae. A literal ` is a propositional variable x (in this case, ` is a positive literal),
or a negated variable ¬x (in this case, ` is a negative literal). When ` is a literal
over x, i.e., ` = x or ` = ¬x, its complementary literal ∼` is given by ∼` = ¬x
if ` = x and ∼` = x if ` = ¬x. var(`) denotes the variable upon which ` is built,
i.e., var(x) = var(¬x) = x. A term is a conjunction of literals or >, and a clause
is a disjunction of literals or ⊥. Terms and clauses are also viewed as sets of liter-
als when it is convenient (the empty set corresponds to > when the set of literals
must be interpreted as a term – the empty conjunction of literals – and to ⊥ when
it must be interpreted as a clause – the empty disjunction of literals). > is the sole
valid term, and ⊥ is the sole inconsistent clause. A canonical term γX over X is a
consistent term in which every variable from X appears (either as a positive literal
or as a negative one, i.e., as a negated variable). A CNF formula is a conjunction
of clauses, also viewed as a set of clauses when this is convenient.

Let X be any finite subset of P . The conditioning of a formula Σ by a consis-
tent term γ is the formula Σ | γ obtained by substituting in Σ for every literal `
of γ such that var(`) = x every occurrence of x by ⊥ (resp. >) if ` is a negative
(resp. a positive) literal.
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Example 2. Suppose that Σ is the CNF formula (a∨d)∧(a∨b)∧(¬b∨c) and that
γ = ¬a∧ b. Then Σ | γ is the formula (⊥∨ d)∧ (⊥∨>)∧ (¬>∨ c). This formula
can be simplified in polynomial time into the equivalent CNF formula d ∧ c using
simple laws of Boolean calculus.

A formula ϕ is independent of a set X of variables if and only if ϕ is equivalent
to a formula ψ such that Var(ψ) ∩ X = ∅. ∃X.Σ denotes a formula from LP
equivalent to the forgetting of X in Σ, i.e., the strongest logical consequence of Σ
(up to logical equivalence), that is independent of X [42]. ”Logically strongest”
means that for every formula ϕ that is independent of X and such that Σ |= ϕ, we
have ∃X.Σ |= ϕ. The formula ∃X.Σ can be defined inductively as follows:

• ∃∅.Σ = Σ,

• ∃{x}.Σ = (Σ | ¬x) ∨ (Σ | x),

• ∃X′ ∪ {x}.Σ = ∃X′.(∃{x}.Σ).

When Σ =
∧k

i=1 δi is a CNF formula and X = {x} ∪ X′, a formula equivalent
to ∃X.Σ can be computed in a recursive way by eliminating x in Σ, obtaining
thus a new CNF formula equivalent to ∃{x}.Σ, in which the variables of X′ are
then eliminated. Eliminating x in Σ basically amounts to applying the resolution
principle: ∃{x}.Σ is equivalent to the CNF formula consisting of the clauses δi of
Σ such that Var(δi) ∩ X = ∅ conjoined with all the resolvents on x of the clauses
of Σ.

Example 3. As a matter of illustration, suppose that Σ is the CNF formula (a ∨
d)∧ (a∨ b)∧ (¬b∨ c) and that X = {b}. Then ∃X.Σ is the formula ((a∨ d)∧ (a∨
⊥)∧ (¬⊥∨ c))∨ ((a∨ d)∧ (a∨>)∧ (¬>∨ c)). This formula is equivalent to the
CNF formula (a ∨ d) ∧ (a ∨ c) obtained by eliminating b in Σ: the clause a ∨ d of
Σ which does not contain b is kept, and the resolvent a ∨ c of a ∨ b and ¬b ∨ c on
b is conjoined to it.

Observe that, by construction, the set of variables of ∃Var(Σ).Σ is empty, so
that the formula ∃Var(Σ).Σ either is inconsistent or is valid, and this can be tested
in linear time from ∃Var(Σ).Σ. Since ∃Var(Σ).Σ is valid precisely when Σ is
consistent, eliminating in a CNF formula Σ every variable occurring in it is a way
to decide its satisfiability: it is the Davis-Putnam’s algorithm for SAT [43] (we will
return to it in Section 6).
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Let us now recall the two (equivalent) forms under which the concept of de-
finability in (classical) propositional logic can be encountered:

Definition 1 (Implicit Definability). Let Σ ∈ LP , X a finite subset of P , and
y ∈ P . The formula Σ implicitly defines the variable y in terms of X if and only
if for every canonical term γX over X, we have γX ∧ Σ |= y or γX ∧ Σ |= ¬y.

Definition 2 (Explicit Definability). Let Σ ∈ LP , X a finite subset of P , and
y ∈ P . The formula Σ explicitly defines the variable y in terms of X if and only
if there exists a formula ΦX ∈ LX such that Σ |= (ΦX ↔ y). In such a case, ΦX
is called a definition (or gate) of y on X in Σ, y is the output variable of the gate,
and X are its input variables.

Let us illustrate the two notions of implicit definability and explicit definability
using a simple example.

Example 4. Let Σ be the CNF formula consisting of the following clauses:

a ∨ b,
a ∨ c ∨ ¬e,
a ∨ ¬d,
b ∨ c ∨ ¬d,

¬a ∨ ¬b ∨ d,
¬a ∨ ¬c ∨ d,
¬a ∨ ¬b ∨ c ∨ ¬e,
¬a ∨ b ∨ ¬c ∨ ¬e,

a ∨ e,
b ∨ c ∨ e,
¬b ∨ ¬c ∨ e.

Variables d and e are implicitly defined in Σ in terms of X = {a, b, c}. For instance,
the canonical term γX = a ∧ b ∧ ¬c is such that γX ∧ Σ |= d ∧ ¬e. On the other
hand, γ ′X = ¬a ∧ ¬b ∧ ¬c is such that γ ′X ∧ Σ is inconsistent. Variables d and e
are also explicitly defined in Σ in terms of X = {a, b, c} since Σ implies

d↔ [a ∧ (b ∨ c)] and e↔ [¬a ∨ (b↔ c)].

What happens in this example is not fortuitous due to the following theorem:

Theorem 1 ( [44]). Let Σ ∈ LP , X a finite subset of P , and y ∈ P . The formula
Σ implicitly defines the variable y in terms of X if and only if Σ explicitly defines
y in terms of X.
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Since implicit definability and explicit definability coincide, one can simply
say that y is defined in terms of X in Σ. More generally, we state that a subset Y
of variables from P is defined in terms of X in Σ when every variable y ∈ Y is
defined in terms of X in Σ.

An interesting consequence of Theorem 1 is that it is not mandatory to point
out a gate ΦX of y on X in order to prove that such a gate exists. Indeed, it is
enough to show that Σ implicitly defines y in terms of X to do the job, and this
problem is ”only” coNP-complete [33]. To prove it, we can take advantage of the
following result (Padoa’s theorem), restricted to propositional logic and recalled
in [33]; this theorem gives an entailment-based characterization of (implicit) de-
finability:

Theorem 2 ([45]). For any Σ ∈ LP and X a finite subset of P , let Σ′X be the
formula obtained by substituting in Σ every occurrence of a propositional variable
z from Var(Σ) \X by a new propositional variable z′. Let y ∈ P . If y 6∈ X, then Σ
(implicitly) defines y in terms of X if and only if Σ∧Σ′X∧y∧¬y′ is inconsistent.2

3. A New Preprocessing Technique for Model Counting

3.1. The B + E Preprocessor
Instead of detecting gates and replacing them in Σ in order to remove output

variables, our preprocessing technique consists in detecting output variables, then
in forgetting them in Σ. Thus, the first objective is to find a definability bipartition
〈I, O〉 of Σ. The notion of definability bipartition is given by:

Definition 3 (Definability Bipartition). Let Σ ∈ LP . A definability bipartition
of Σ is a pair 〈I, O〉 such that I ∪ O = Var(Σ), I ∩ O = ∅, and Σ defines every
variable o ∈ O in terms of I.

The most interesting bipartitions are those for which I is ”minimal” to some
extent. Two notions of minimality can be considered here, since the minimality of
I can be evaluated either at the set of variables itself, or as the cardinality of this
set. Thus, a definability bipartition 〈I, O〉 of a formula Σ will be said to be

• a subset-minimal bipartition of Σ if and only if every pair 〈I′, O′〉 such that
I′ ∪ O′ = Var(Σ), I′ ∩ O′ = ∅, and I′ ⊂ I is not a definability bipartition of
Σ,

2Obviously enough, in the remaining case when y ∈ X, Σ defines y in terms of X.
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• a smallest bipartition of Σ if and only if every pair 〈I′, O′〉 such that I′∪O′ =
Var(Σ), I′ ∩ O′ = ∅, and #(I′) < #(I) is not a definability bipartition of Σ.

Accordingly, 〈I, O〉 is a subset-minimal definability bipartition of Σ if and only
if I is a minimal defining family (or base) for O with respect to Σ [33].

Clearly enough, every smallest bipartition of Σ is a subset-minimal bipartition
of Σ, but not vice-versa. Furthermore, every formula Σ has a definability biparti-
tion since 〈I = Var(Σ), O = ∅〉 is a bipartition of Σ. This bipartition is a smallest
bipartition of Σ (hence a subset-minimal one) when every variable y ∈ Var(Σ) is
undefinable in Σ, which means that for every X ⊆ P , Σ defines y in terms of X if
and only if y ∈ X [33]. Since Var(Σ) is a finite set, this shows that every formula
Σ has a smallest (hence a subset-minimal) bipartition.

Then, in a second step, the objective is to forget variables from O in Σ so as to
simplify Σ. This leads to the two-step preprocessing algorithm B + E (B(ipartition),
then E(liminate)) given at Algorithm 1, and reported here for the sake of complete-
ness. The soundness of B + E is based on the following result:

Algorithm 1: B + E
input : a CNF formula Σ
output: a CNF formula Φ such that ‖Φ‖ = ‖Σ‖
O←B(Σ);1

Φ←E(O, Σ);2

return Φ3

Proposition 1. Let Σ ∈ LP . Let 〈I, O〉 be a definability bipartition of Σ. Let
E ⊆ O. Then ‖Σ‖ = ‖∃E.Σ‖.

Proof: Let E = {y1, . . . , ym} be a subset of O. Since every yi (i ∈ 1, . . . , m) is
definable in terms of I in Σ, there exists a formula Φ

yi
I over I such that

Σ |= (yi ↔ Φ
yi
I )

(i.e., a gate Φ
yi
I of yi on I in Σ exists).

Let Σ[yi ← Φ
yi
I ]i∈1,...,m be the formula obtained by replacing in Σ every oc-

currence of yi by Φ
yi
I . Let γI be a canonical term over I. If γI∧Σ is consistent, then

there exists a unique model ωγI of Σ over Var(Σ) that is a model of γI. Accord-
ingly, every model of Σ is fully characterized by its restriction over I, so that ‖Σ‖
is equal to the number of canonical terms γI over I such that γI ∧ Σ is consistent.
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Now, by construction, we have

Σ ≡
m∧

i=1

(yi ↔ Φ
yi
I ) ∧ Σ[yi ← Φ

yi
I ]i∈1,...,m.

Hence γI ∧ Σ is equivalent to

γI ∧
m∧

i=1

(yi ↔ Φ
yi
I ) ∧ Σ[yi ← Φ

yi
I ]i∈1,...,m.

Since γI is a canonical term over I and Var(Φyi
I ) ⊆ I for every i ∈ 1, . . . , m, we

have that γI∧Φ
yi
I is consistent if and only if γI |= Φ

yi
I , so that γI∧

∧m
i=1(yi ↔ Φ

yi
I )

is equivalent to γI ∧
∧m

i=1 y∗i where y∗i (i ∈ 1, . . . , m) is yi when γI |= Φ
yi
I and is

¬yi otherwise. Therefore,

γI ∧
m∧

i=1

(yi ↔ Φ
yi
I ) ∧ Σ[yi ← Φ

yi
I ]i∈1,...,m

is equivalent to

γI ∧ (
m∧

i=1

y∗i ) ∧ Σ[yi ← Φ
yi
I ]i∈1,...,m.

In addition, since Var(γI∧Σ[yi ← Φ
yi
I ]i∈1,...,m) ⊆ I, Var(

∧m
i=1 y∗i ) ⊆ O and I∩O =

∅, γI∧Σ is consistent if and only if γI∧Σ[yi ← Φ
yi
I ]i∈1,...,m is consistent. But since

γI is a canonical term over I and Var(Σ[yi ← Φ
yi
I ]i∈1,...,m) ⊆ I, this is precisely

the case when γI |= Σ[yi ← Φ
yi
I ]i∈1,...,m. Thus the number of canonical terms γI

over I such that γI ∧ Σ is consistent is equal to the number of models of Σ[yi ←
Φ

yi
I ]i∈1,...,m over I. Stated otherwise, we have ‖Σ‖ = ‖Σ[yi ← Φ

yi
I ]i∈1,...,m‖.

Since Var(Σ[yi ← Φ
yi
I ]i∈1,...,m)∩E = ∅, we have that ∃E.Σ which is equivalent

to

∃E.((
m∧

i=1

(yi ↔ Φ
yi
I ) ∧ Σ[yi ← Φ

yi
I ]i∈1,...,m),

is also equivalent to

(∃E.(
m∧

i=1

(yi ↔ Φ
yi
I ))) ∧ Σ[yi ← Φ

yi
I ]i∈1,...,m.
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Finally, since Var(Φyi
I ) ∩ E = ∅, we also have that ∃E.(

∧m
i=1(y ↔ Φ

yi
I )) is equiv-

alent to
∧m

i=1(∃yi.(yi ↔ Φ
yi
I )). But each ∃yi.(yi ↔ Φ

yi
I ) (i ∈ 1, . . . , m) is a valid

formula. Hence we have

∃E.Σ ≡ Σ[yi ← Φ
yi
I ]i∈1,...,m,

which implies that
‖∃E.Σ‖ = ‖Σ[yi ← Φ

yi
I ]i∈1,...,m‖,

and thus that ‖Σ‖ = ‖∃E.Σ‖. �

Example 5 (Example 4 cont’ed). No literal equivalences, AND/OR gates or XOR
gates are logical consequences of Σ. Nevertheless, since Σ implies

d↔ [a ∧ (b ∨ c)] and e↔ [¬a ∨ (b↔ c)]

a definability bipartition of Σ is 〈{a, b, c}, {d, e}〉. Now, eliminating d and e in
Σ using the resolution principle leads to the generation of two clauses a ∨ c and
a∨ b∨ c (the other resolvents that are produced are valid clauses, hence they can
be omitted). Therefore, a CNF formula equivalent to ∃{d, e}.Σ can be computed
as the conjunction of:

a ∨ b, a ∨ c, a ∨ b ∨ c,

which can be simplified further into (a ∨ b) ∧ (a ∨ c). This CNF formula has
only 5 models over {a, b, c}. From Proposition 3, this is also the case of Σ over
{a, b, c, d, e}.

The ability to identify any subset O of the full set of output variables in the bi-
partition generation phase, and to consider only a subset E of O in the elimination
phase are two important features for the efficiency purpose.

On the one hand, computing a subset-minimal definability bipartition of Σ
turns out to be computationally easier than computing a smallest definability bi-
partition of Σ. Indeed, given a definability bipartition 〈I, O〉 of Σ, determining
whether it is a subset-minimal one does not require to check that each of the (ex-
ponentially many) subsets of I does not define in Σ every variable of Var(Σ). To
be more precise, it is enough to consider only the (linearly many) subsets I \ {x}
with x ∈ I (see the proof of Proposition 2). Thus, only one source of complex-
ity (coming from the definability test) must be dealt with when one looks for a
subset-minimal definability bipartition. Formally:
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Definition 4 (SUBSET-MINIMAL BIPARTITION).
SUBSET-MINIMAL BIPARTITION is the following decision problem:

• Input: a CNF formula Σ, and a definability bipartition 〈I, O〉 of Σ.

• Question: is 〈I, O〉 a subset-minimal bipartition of Σ?

Proposition 2. SUBSET-MINIMAL BIPARTITION is NP-complete.

Proof:

• Membership in NP. We first show that a given definability bipartition 〈I, O〉
of Σ is not a subset-minimal one if and only if there exists x ∈ I such that
〈I \ {x}, O ∪ {x}〉 is a definability bipartition of Σ, which is precisely the
same as stating that there exists x ∈ I such that I \ {x} defines in Σ every
variable of Var(Σ) (1). Clearly, by definition, a definability bipartition 〈I, O〉
of Σ is not a subset-minimal one if and only if there exists J ⊂ I such that
J defines in Σ every variable of Var(Σ) (2). Obviously, (1) implies (2) (just
take J = I \ {x}). Conversely, we also have that (2) implies (1), due to
the monotonicity property offered by definability [33]. This property states
that if J defines in Σ every variable of Var(Σ), then every superset of J also
defines in Σ every variable of Var(Σ). Indeed, if (2) holds, then for any J ⊂ I
such that J defines in Σ every variable of Var(Σ), there exists x ∈ I such that
J ⊆ I ∪ {x}; thanks to the monotonicity property, we get that for any such
J, the superset I ∪ {x} of J also defines in Σ every variable of Var(Σ), and
(1) is satisfied.

As a consequence, a given definability bipartition 〈I, O〉 of Σ is a subset-
minimal bipartition of Σ if and only if O ∪ {x} is not defined in terms of
I \ {x} in Σ whatever x ∈ I. Thus, deciding whether a given definabil-
ity bipartition 〈I, O〉 of Σ is a subset-minimal bipartition of Σ amounts to
solving #(I) independent instances (one for each possible x ∈ I) of the NON-
DEFINABILITY problem given by

– Input: a formula Σ, and two sets of variables I \ {x} and O ∪ {x}.
– Question: is O ∪ {x} not defined in terms of I \ {x} in Σ?

The complementary problem to NON-DEFINABILITY, namely DEFINABIL-
ITY, has been shown coNP-complete [33], hence NON-DEFINABILITY ∈
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NP. Consequently, the problem consisting of deciding given 〈Σ, I, O〉 whe-
ther 〈Σ, I\{x}, O∪{x}〉 (where x belongs to I) belongs to NON-DEFINABI-
LITY is in NP as well.

Let REPEATED-NON-DEFINABILITY be the language defined as the union
for all integers k > 0 up to #(P) (the number of variables in the language
LP ) of the languages k-REPEATED-NON-DEFINABILITY taking as inputs
k-tuples (where k is fixed) gathering instances of the NON-DEFINABILITY

problem.

Consider now the following mapping: with any instance of SUBSET-MINI-
MAL BIPARTITION given by Σ, I = {x1, . . . , xk}, and O, we associate
the k-tuple 〈〈Σ, I \ {x1}, O ∪ {x1}〉, . . . , 〈Σ, I \ {xk}, O ∪ {xk}〉〉 where
each 〈Σ, I \ {xi}, O ∪ {xi}〉 (i ∈ {1, . . . , k}) is an instance of the NON-
DEFINABILITY problem. This mapping is a polynomial-time many-one
reduction from SUBSET-MINIMAL BIPARTITION to REPEATED-NON-DEFI-
NABILITY.

Since the Cartesian product of languages from NP is in NP, for any fi-
nite k, k-REPEATED-NON-DEFINABILITY belongs to NP. Hence, the finite
union REPEATED-NON-DEFINABILITY of such languages belongs to NP as
well. Finally, since NP is closed under polynomial-time many-one reduc-
tions, SUBSET-MINIMAL BIPARTITION belongs to NP, and this concludes
the proof (membership part).

• NP-hardness. One reduces SAT, the satisfiability problem for CNF formu-
lae, which is the canonical NP-complete problem [46], to SUBSET-MINIMAL

BIPARTITION. Let α be a CNF formula. We associate with it in polynomial
time the instance given by Σ = α ∨ new where new is a fresh variable (not
occurring in Var(α)), I = Var(Σ) and O = ∅. Clearly, 〈I, O〉 is a definabil-
ity bipartition of Σ. We now show that it is a subset-minimal bipartition of
Σ precisely when α is consistent. Consider first any variable x ∈ Var(α).
(Σ | x) ∧ (Σ | ¬x) is consistent since every interpretation satisfying new
is a model of it. Thus x is undefinable in Σ. Hence, in any definability
bipartition of Σ, Var(α) must be a subset of the set of input variables. Fur-
thermore, (Σ | new) ∧ (Σ | ¬new) ≡ α. Hence, new is undefinable in Σ
precisely when α is consistent. Thus, if α is consistent, then 〈Var(Σ), ∅〉
is the unique definability bipartition of Σ; therefore, it is a subset-minimal
bipartition of Σ. In the remaining case when α is inconsistent, we have
Σ ≡ new, thus 〈Var(α), {new}〉 is a definability bipartition of Σ, showing
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that 〈Var(Σ), ∅〉 is not a subset-minimal bipartition of Σ.

�

Clearly enough, the complexity of SUBSET-MINIMAL BIPARTITION identi-
fied in Proposition 2 coheres with Theorem 24 from [33], showing that checking
whether a given set X of variables is a minimal defining family for a variable y
with respect to Σ is NP-complete.

On the other hand, while forgetting variables in Σ obviously leads to reducing
the number of variables occurring in it, it may also lead to an exponential increase
of its size. This is why one refrains from eliminating in the CNF formula Σ every
variable of O but focuses instead on a subset E of O, containing those variables for
which the elimination step will not increase the size of Σ (similar to what is done
with the NiVER approach [20]), or only by a negligible factor. More generally,
the elimination of an output variable from O is committed (i.e., this variable is
considered to belong to E) only if the size of Σ after the elimination of this vari-
able in Σ remains small enough, once some additional preprocessing techniques
have been applied. Among the equivalence-preserving preprocessing techniques
of interest are occurrence simplification [21] and vivification [23] (already con-
sidered in [32]), which aim to shorten some clauses (for occurrence simplification
and vivification), and to remove some clauses (for vivification). The removal of
subsumed resolvents can also be achieved at each step.

Let us now detail successively the two steps of B + E, namely B (computing a
bipartition 〈I, O〉 of Σ), and E (eliminating in Σ some variables from O).

3.2. B(ipartition)
Algorithm 2 shows how a bipartition 〈I, O〉 of Var(Σ) is computed by B in

a greedy fashion. At line 1, backbone(Σ) computes the backbone of Σ (i.e.,
the set of all literals implied by Σ). This backbone is computed using the algo-
rithm backboneSimpl reported in [32]. backbone(Σ) also initializes O with
the variables of the backbone of Σ (indeed, a literal ` belongs to the backbone
of Σ precisely when var(`) is defined in Σ in terms of ∅). Boolean constraint
propagation is also done on Σ completed by its backbone (this typically leads to
simplifying Σ). While the variables of the backbone can be simplified away in Σ
by fixing their values, they are nevertheless kept in O in order to ensure that the set
O of variables returned by B is such that 〈I, O〉 is a bipartition of Var(Σ). At line 2,
the set V of remaining variables occurring in Σ (after simplification) is sorted by
considering their number of occurrences from less to more frequent. The rationale
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Algorithm 2: B
input : a CNF formula Σ
output: a set O of output variables, i.e., variables defined in Σ in terms of

I = Var(Σ) \ O
〈Σ, O〉← backbone(Σ);1

V← sort(Var(Σ));2

I←∅;3

foreach x ∈ V do4

if defined?(x, Σ, I ∪ succ(x, V),max#C) then5

O←O ∪ {x};6

else7

I←I ∪ {x};8

return O9

for this ordering heuristics lies in the fact that if x is not very frequent in Σ, then
it is not linked to many other variables, so that the likelihood of Σ to define x in
terms of a small number of variables is supposed to be low. Accordingly, when x
is a least frequent variable in Σ, one tests first whether Σ defines or not x in terms
of all the other variables, which is the most favorable case for classifying x as
an output variable (this is due to the monotonicity of the definability relation with
respect to the set of input variables, i.e., the fact that if Σ defines x in terms of a set
X of variables, then Σ also defines x in terms of any superset of X [33]). At line
4, defined? takes advantage of Padoa’s method (Theorem 2) for determining
whether x is defined in Σ in terms of I ∪ succ(x, V), where succ(x, V) is the
set of all variables of V that appear after x in V. defined? takes advantage of
a SAT solver solve based on a conflict-driven clause learning (CDCL) architec-
ture (see [47, 48, 49]) for achieving the (un)satisfiability test required by Padoa’s
method. In our implementation, the input of solve is the CNF formula Σ∧Σ′∅∧∧

z∈Var(Σ)((¬sz∨¬z∨z′) ∧(¬sz∨z∨¬z′)), completed by assumptions: for every
z belonging to I ∪ succ(x, V), the unit clause sz associated with z is added as an
assumption to the CNF formula (its effect is to make z equivalent to its copy z′);
then, x and ¬x′ are also added as assumptions. Interestingly, clauses that are learnt
at each call to solve are kept for the subsequent calls. defined? is parameter-
ized by max#C which bounds the number of clauses that can be learnt. When no
contradiction has been found before max#C is reached, defined? returns false
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(i.e., x is considered as not defined in Σ in terms of I ∪ succ(x, V), while this
could be questioned had a larger bound be considered).

Clearly enough, the number of output variables found by B cannot be guar-
anteed to be as large as possible (or equivalently, the number of input variables
found by B is not guaranteed to be as small as possible). This is due to the fact
that the insertion of a variable in I at line 8 of B cannot be questioned by the ex-
ecution of a subsequent instruction of this algorithm. But, as already explained,
this lack of optimality is on purpose, for the sake of efficiency. Indeed, in B, the
number of calls to solve does not exceed the number of variables occurring in
Σ. Nevertheless, one can ensure that :

Proposition 3. Let Σ be a CNF formula. The set O computed by B is such that
〈I, O〉 where I = Var(Σ) \ O is a subset-minimal definability bipartition of Σ.

Proof: First of all, every variable x of Var(Σ) such that x or ¬x belongs to the
backbone of Σ is such that x is defined in Σ in terms of ∅. Thus, any subset-
minimal definability bipartition 〈I, O〉 of Σ must guarantee that those variables x
belong to O. This is ensured in B by the instruction at line 1.

Let us now focus on the remaining set V of variables. In B, the variables
x ∈ V are considered from the ones having the smallest number of occurrences
in Σ (after simplification) to those having the greatest number of occurrences in
Σ (after simplification). However, the result stated in Proposition 3 actually holds
whatever the ordering<with respect to which the variables of V are visited. Thus,
we prove by induction on k = #(succ(x, V)) that every variable x put into O at
line 6 of B is defined in Σ in terms of I. The base case is when k = 0 so that
x is the last variable of V with respect to <. In that case, succ(x, V) = ∅ so
that x is put into O when the test at line 5 is evaluated to true, i.e., when x is
defined in Σ in terms of I, and we are done. Suppose now that the property holds
for k = p ≥ 1 and let us show that it still holds for k = p + 1. So, let x be
the variable of V such that #(succ(x, V)) = p + 1. Line 5 of B ensures that x
is put into O when the corresponding test is evaluated to true. At the step when
x is processed, the current value of I is the set Ix which contains the variables
that will be in I at the end of the execution of B and are before x with respect
to <. Thus, assuming that prec(x, V) denotes the set of variables of V that are
considered before x with respect to <, we have Ix = I ∩ prec(x, V) and x is
put into O when defined?(x, Σ, Ix ∪ succ(x, V),max#C) is evaluated to true,
i.e., when x is defined in Σ in terms of Ix ∪ succ(x, V). But Ix ∪ succ(x, V) =
(I ∩ prec(x, V)) ∪ succ(x, V) = (I ∩ prec(x, V)) ∪ (I ∩ succ(x, V)) ∪ (O ∩
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succ(x, V)) = (I ∩ (V \ {x})) ∪ (O ∩ succ(x, V)). Furthermore, if x is put in
O, then x does not belong to I. Therefore, in this case, we have that x is defined
in Σ in terms of Ix ∪ succ(x, V) = I ∪ (O ∩ succ(x, V)). Now, by induction
hypothesis, every variable y ∈ succ(x, V) belongs to O if and only if y is defined
in Σ in terms of I. Thus, all the variables y from O ∩ succ(x, V) can be removed
from I ∪ (O ∩ succ(x, V)) while preserving the fact that x is defined in Σ. We
get that if x is put into O at line 6 of B, then x is defined in Σ in terms of I. This
implies that every variable in O is defined in Σ in terms of I, hence the pair 〈I, O〉
returned by B is a definability bipartition of Σ.

Finally, it remains to prove that this definability bipartition 〈I, O〉 is subset-
minimal. Towards a contradiction, suppose that there exists x ∈ I such that 〈I \
{x}, O ∪ {x}〉 is a definability bipartition of Σ. Since x has been put into I by
B, it must be the case that defined?(x, Σ, Ix ∪ succ(x, V),max#C) has been
evaluated to false, i.e., x is not defined in Σ from (I ∩ prec(x, V)) ∪ succ(x, V).
Furthermore, we have that I \ {x} = I ∩ (prec(x, V) ∪ succ(x, V)) = (I ∩
prec(x, V))∪ (I∩succ(x, V)) ⊆ (I∩prec(x, V))∪succ(x, V). However, if x
is not defined in Σ from (I∩ prec(x, V))∪ succ(x, V), then x cannot be defined
in Σ from a subset I \ {x} of it. This contradicts the fact that 〈I \ {x}, O ∪ {x}〉 is
a definability bipartition of Σ. �

Note that it would be easy to derive an ”anytime” version of B without ques-
tioning the fact that its output O is such that 〈I = Var(Σ) \ O, O〉 is a definabil-
ity bipartition of Σ. Indeed, when the time limit under consideration would be
reached, it would be enough to put into I every variable that has not been put into
O at this point.

Interestingly, the correctness of B (as given by Proposition 3) does not require
any assumption on the representation of Σ (i.e., Σ is not necessarily a CNF for-
mula from LP ). Thus, the approach followed (i.e., find a definability bipartition
of Σ, then eliminate some output variables) is sound when the input is not a CNF
formula, and in such a case, it can be less demanding from a computational stand-
point than the case when CNF inputs are considered. Consider for instance the
case when Σ is a DNF formula. While computing ‖Σ‖ is still #P-complete when
Σ is a DNF formula, the definability problem (determine whether Σ defines a given
x in terms of a given X) and the variable elimination problem can be solved in (de-
terministic) polynomial time (see Lemma 27 in [33] and Propositions 17 and 18 in
[42]). Thus, when Σ is a DNF formula, it makes sense to consider a more aggres-
sive strategy for computing a definability bipartition (since each definability test
is not very time consuming, one can try to minimize the cardinality of I), and to
eliminate every variable from O in the variable elimination step (this can be done
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in linear time in the size of Σ and can reduce significantly the size of Σ). However,
this does not imply that exploiting duality and computing ‖Σ‖ for a CNF formula
Σ as 2#Var(Σ) – ‖¬Σ‖ is always a good idea from a computational point of view.
Indeed, even if a DNF formula equivalent to ¬Σ can be computed in time linear in
the size of Σ, it is in general not the case that Σ and ¬Σ define the same variables.
Thus, it can easily be the case that a definability bipartition of Σ with a ”small”
I exists, while every variable of Var(Σ) is undefinable in ¬Σ. For instance, con-
sider Σ =

∧n
i=1 xi. Every xi (i ∈ {1, . . . , n}) belongs to the backbone of Σ so that

〈∅, Var(Σ)〉 is a definability bipartition of Σ such that I = ∅ is of smallest cardinal-
ity; conversely, every xi (i ∈ {1, . . . , n}) is undefinable in ¬Σ which is equivalent
to

∨n
i=1 ¬xi.

3.3. E(liminate)
Algorithm 3 shows how variables from O are eliminated in Σ by E. P contains

variables x from O that are candidates for elimination, so that the elimination of
x is possibly postponed in the process. P is initialized with the full set O (line 2).
The main loop at line 3 is repeated by considering the variables from P as can-
didates for elimination, while the elimination of at least one variable is effective
(line 16). At line 4, the set E of variables that will be tentatively eliminated during
the iteration is initialized with P, and P is reset to ∅. At line 5, the clauses of Φ are
successively vivified (i.e., one tries to remove them and/or to shorten them) using
a slight variant of the vivification algorithm vivificationSimpl reported in
[32]. Vivification [23] is a preprocessing technique which aims to reduce the in-
put CNF formula, i.e., to remove some clauses in it and some literals in the other
clauses while preserving equivalence, using Boolean constraint propagation. To
be more precise, given a clause δ = `1 ∨ . . . ∨ `k of Σ, two rules are used in
order to determine whether δ can be removed from Σ or simply shortened. Thus,
for each clause δ of Σ the literals `j+1 of δ are successively considered and the
question is to determine whether they should be added or not to the current sub-
clause δ′ = `1 ∨ . . . ∨ `j of δ (where δ′ is initialized as the empty clause). On the
one hand, if for any j ∈ {0, . . . , k – 1}, one can prove using Boolean constraint
propagation that Σ \ {δ} |= δ′, then for sure δ is entailed by Σ \ {δ} so that δ
can be removed from Σ. On the other hand, if one can prove using Boolean con-
straint propagation that Σ \ {δ} |= δ′ ∨ ∼`j+1, then `j+1 can be removed from δ
without questioning equivalence. The additional parameter E is used to sort the
literals within the clauses of Σ so that the literals over E are put first (i.e., one tries
to eliminate occurrences of literals over E in priority). At line 6, one enters into
the inner loop that operates while there are remaining variables in E. At line 7,
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Algorithm 3: E
input : a CNF formula Σ and a set of output variables O ⊆ Var(Σ)
output: a CNF formula Φ such that Φ ≡ ∃E.Σ for some E ⊆ O
Φ←Σ;1

iterate←true; P←O;2

while iterate do3

E←P; P←∅; iterate←false;4

Φ←vivificationSimpl(Φ, E);5

while E 6= ∅ do6

x←select(E, Φ);7

E←E \ {x};8

Φ←occurrenceSimpl(Φ, x);9

if #(Φx)× #(Φ¬x) > max#Res then10

P←P ∪ {x}11

else12

R←removeSub(Res(x, Φ), Φ);13

if #((Φ \ Φx,¬x) ∪ R) ≤ #(Φ) then14

Φ←(Φ \ Φx,¬x) ∪ R;15

iterate←true;16

else17

P←P ∪ {x}18

return Φ19
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a variable x is selected in E for being possibly eliminated by counting the num-
ber #(Φx) of clauses of Φ where x appears as a positive literal, and the number
#(Φ¬x) of clauses of Φ where ¬x appears as a negative literal; x is retained if it
minimizes #(Φx)×#(Φ¬x), which is an upper bound of the number of resolvents
that the elimination of x in Φ may generate. At line 8, x is removed from E. Then,
at line 9, one tries first to eliminate in Φ some occurrences of variable x using
occurrenceSimpl. occurrenceSimpl is a restriction of the algorithm for
occurrence simplification reported in [32], where instead of considering the whole
set of literals occurring in Φ, we just focus on those in {x,¬x}. At line 10, one
recomputes #(Φx)×#(Φ¬x) and checks whether it exceeds or not a preset bound
max#Res. If this is the case, then we possibly postpone the elimination of x in
Φ at the next iteration by adding it to P (line 11). Otherwise, we compute the set
Res(x, Φ) of all non-valid resolvents of clauses from Φ on x and we remove from
it using removeSub every clause that is properly subsumed by a clause of Φ or
another clause from Res(x, Φ); the resulting set of clauses is R (line 13). At line
14, we test whether the elimination of x in Φ, obtained by removing from Φ its
subset Φx,¬x of the clauses into which variable x occurs (either as a positive literal
or as a negative literal), and adding the resolvents from R, leads or not to increas-
ing the number of clauses in Φ. If so, then we possibly postpone the elimination
of x in Φ at the next iteration by adding it to P (line 18). If not, the elimination of
x in Φ is committed (line 15).

The worst-case time complexity of Algorithm E is in O(|O|2 · |Σ|3). Indeed,
the inner loop is executed only if at least one variable has been eliminated at
the previous step, hence every variable of O cannot be considered more than a
quadratic number of times as a candidate for being eliminated. The worst-case
time complexity of Boolean constraint propagation is linear in the input size [50],
but quadratic when the set of clauses considered by solve is implemented using
watched literals [49], which is the case in our implementation.3 Under this as-
sumption, the vivification algorithm used in the outer loop has a time complexity
that is cubic in its input size, and the occurrence simplification algorithm used
in the inner loop has a time complexity that is cubic in the size of its input. At
each step, the size of the CNF formula under consideration can only increase by a
constant term, which can be neglected.

It is easy to show that Algorithm E is correct:

3In practice, it typically runs in sublinear time in the input size.
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Proposition 4. Let Σ be a CNF formula and O be a set of variables of Σ. The
CNF formula Φ computed by E is such that Φ ≡ ∃E.Σ for some E ⊆ O.

Proof: The result comes directly from three observations:
(1) the fact that vivificationSimpl is an equivalence-preserving prepro-
cessing technique, (2) the variables x that are eliminated belong to O (see lines 2,
4 and 7 of E), and (3) ∃x.Σ is equivalent to the formula obtained by adding first
to Σ all resolvents on x of the clauses of Σ, then removing in the resulting set all
the clauses containing x as a variable. This is performed by the instructions at
lines 13 and 15 of E (the additional suppression of valid or subsumed resolvents
achieved by removeSub is harmless since it is equivalence-preserving). �

Again, it would be easy to derive an ”anytime” version of E without ques-
tioning its correctness. Indeed, when the time limit under consideration would be
reached, it would be enough to stop the elimination process at this point (i.e., not
considering the variables of O that are in E or in P).

4. Empirical Results

Let us now present the experiments which have been done for evaluating B + E
and comparing it with pmc, our previous preprocessor for model counting.

4.1. Empirical Setting
In our experiments, we have considered 703 CNF instances from the SATLIB4

and other repositories (for instance, the benchmarks from the BN family (Bayesian
networks) come from http://reasoning.cs.ucla.edu/ace/). All the
benchmarks used in our experiments can be downloaded from http://www.
cril.univ-artois.fr/KC/bpe2.html. They are gathered into 8 data
sets, as follows: BN (192), BMC (Bounded Model Checking) (18), Circuit (41),
Configuration (35), Handmade (58), Planning (248), Random (104), Qif (7) (Quan-
titative Information Flow analysis - security).

All the experiments have been conducted on a cluster of Intel Xeon E5-2643
(3.30 GHz) quad core processors with 32 GiB RAM. The kernel used was CentOS
7, Linux version 3.10.0-514.16.1.el7.x86 64. The compiler used was gcc version
5.3.1. Hyperthreading was disabled, and no cache share between cores was al-
lowed. A time-out of 1h and a memory-out of 7.6 GiB has been considered for

4www.cs.ubc.ca/˜hoos/SATLIB/index-ubc.html
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each instance. We set max#Res to 500. We took advantage of the runsolver5

tool [51] for controlling the resources used by the SAT solver solve used in our
experiments, namely the incremental version of Glucose described in [52] (run
with its default setting).

As a matter of comparison, we have considered the pmc preprocessor for
model counting, described in [32] and available on www.cril.fr/KC/. To be
more precise, we considered pmc equipped with the #eq combination of prepro-
cessing techniques, which combines backbone simplification, occurrence elimi-
nation, vivification and gates detection and replacement. pmc equipped with #eq
proved empirically as a very efficient preprocessor for model counting [32].

We evaluated the impact of B + E (for several values of max#C) by coupling
it with exact model counters. We considered the search-based model counters
Cachet6 [53] and SharpSAT7 [54], run with their default settings. Though
compilation-based approaches do much more than model counting (since they
compute equivalent, compiled representations of the input CNF formula Σ and
not only the number of models of Σ), some of them appear as competitive for
the model counting purpose. Thus, we also took advantage of such compilers,
namely C2D8 [55, 56] and d49 [37]. Those compilers generate a Decision-DNNF
representation Σ∗ of the input Σ. The size of Σ∗ is exponential in the size of Σ
in the worst case, but the number of models of Σ conditioned by any consistent
term γ can be computed efficiently from Σ∗ in every case. And when γ is >, one
gets the number of models of Σ. C2D has been invoked with the following options
-count -in memory -smooth all, which are suited when C2D is used as
a model counter. d4 has been invoked with its default options.

4.2. Results
Table 1 makes precise the number of instances (out of 703) solved within

1h by each of the model counters Cachet, SharpSAT, C2D and d4 (first col-
umn), when no preprocessing technique has been applied (second column), pmc
(equipped with #eq) has been applied first (third column), and finally B + E(Σ)
for several values of max#C has been applied first (the remaining columns). The

5www.cril.fr/˜roussel/runsolver
6www.cs.rochester.edu/˜kautz/Cachet/
7sites.google.com/site/marcthurley/sharpsat
8reasoning.cs.ucla.edu/c2d/
9www.cril.univ-artois.fr/KC/d4.html
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preprocessing time is taken into account in the computations (it is part of the 1h
CPU time allocated per instance).

model counter no preproc. pmc 10 100 1000 ∞
Cachet 525 558 586 588 594 602
SharpSAT 507 537 575 581 586 593

C2D 547 602 605 613 616 625
d4 583 607 614 615 617 622

Table 1: Number of instances solved within the time limit depending on the preprocessing tech-
nique used.

The results reported in Table 1 show the benefits that can be achieved by ap-
plying B + E before using a model counter. Globally speaking, B + E leads to
better performance than pmc. Since the best performances of B + E are achieved
for max#C =∞, we focus on this parameter assignment in the rest of the paper.

The cactus plots given in Figure 1 illustrate the performances of Cachet
(Fig. 1a), SharpSAT (Fig. 1b), C2D (Fig. 1c) and d4 (Fig. 1d), possibly em-
powered by pmc or by B + E. For each value t on the y-axis (a model counting
time, in seconds) and each dot of a curve for which this value is reached on the
y-axis, the corresponding value on the x-axis makes precise how many instances
have been solved by the approach associated with the curve within a time limit
of t (which includes the preprocessing time, when a preprocessing technique has
been used). For the sake of readability, only 10% of the dots have been printed.
Again, the plot clearly shows that preprocessing the instances is computationally
valuable whatever the downstream model counter, and that B + E is typically a
better preprocessor than pmc.

Table 2 aims to give a more precise view of the importance of achieving a
preprocessing step, in terms of the number of instances solved, and of the relative
performance of the two preprocessors used (pmc and B + E), for each of the four
model counters used downstream. Each cell of the table gives the number of wins
corresponding to the preprocessing technique r associated with its row vs. the one
c associated with its column. A win is an instance that has been solved by the
model counter under consideration (given the time and memory limits considered
in the experiments) when equipped with the preprocessing technique made precise
by r but not solved when this model counter was equipped with c. The table
shows, for instance, that Cachet equipped with B + E has been able to solve 80
instances that Cachet ”alone” (i.e., when no preprocessing technique has been
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Figure 1: Performances of Cachet, SharpSAT C2D and d4 depending on the preprocessing
technique used (B + E, pmc, none).

applied first) was unable to solve (of course, for the same time-out and memory-
out values, as made precise above). The other way around, Cachet ”alone” has
been able to solve 3 instances that Cachet equipped with B + E was unable to
solve.
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Cachet no preproc. pmc B + E
no preproc. 0 6 3

pmc 39 0 3
B + E 80 47 0

SharpSAT no preproc. pmc B + E
no preproc. 0 15 3

pmc 45 0 3
B + E 89 59 0

C2D no preproc. pmc B + E
no preproc. 0 3 1

pmc 58 0 3
B + E 75 22 0

d4 no preproc. pmc B + E
no preproc. 0 4 3

pmc 27 0 4
B + E 41 19 0

Table 2: Comparison of the three preprocessing techniques (”no preprocessing technique”, pmc,
and B + E) for several model counters. Each cell of the table gives the number of wins corre-
sponding to the preprocessing technique r associated with its row vs. the one c associated with
its column. A win is an instance that has been solved by the model counter under consideration
when equipped with the preprocessing technique made precise by r but not solved when this model
counter was equipped with c.
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Clearly enough, the results reported in Table 2 show that adding a preprocess-
ing step is in general useful, and that B + E typically performs better than pmc,
even if those observations cannot be lifted to each instance taken separately. The
fact that a preprocessing technique does not always help is easy to understand
since, for instance, it can be the case that no reductions of the input instance are
feasible (this is often the case when this instance has already been preprocessed).
Thus, when no gates exist in the input CNF formula, the time used to search for
them is just wasted (and this wasted time can be much higher when B + E is used,
compared to pmc since, so to say, B + E has the potential to ”find out” many more
gates than the ones pmc can discover in the input).

B + E vs. no preprocessing technique. In order to determine how much applying
B + E leads to reduce the input CNF formula Σ compared to the case when no
preprocessing technique is used, we considered two measures for assessing the
reduction of Σ: #var(Σ), the number of variables of Σ, and #lit(Σ), the number
of literals occurring in Σ (i.e., the size of Σ).10 The rationale for considering
the number of variables and the number of literals of a CNF formula Σ is that
the complexity of counting the number of models of Σ depends on both of them:
the smaller the better. A significant decrease of #var(Σ) or #lit(Σ) may thus ex-
plain (but is not enough to guarantee) an improved performance of the subsequent
model counting process.

Another measure that would also make sense to consider is the treewidth of
the primal graph associated with Σ. Treewidth is a structural parameter that is
widely used in the complexity analysis of graph algorithms. Especially, count-
ing the number of models of a CNF formula Σ is fixed-parameter tractable when
the parameter is the treewidth of the primal graph associated with Σ [57]. How-
ever, we refrained from computing this measure (while we did it in [32]), because
computing its value is NP-hard and we did not find any satisfying piece of soft-
ware for achieving such a computation in reasonable time given the sizes of the
instances considered in our experiments, which can be huge. For instance, the
instance comm p10 p t5 from the Planning family which has been solved by
B + E+Cachet, by B + E+SharpSAT, and by B + E+C2D within the allocated
resource bounds, but not by the other approaches, is over 8979 variables and con-
tains 36995 clauses.

Empirically, the results are presented on the two scatter plots reported in Fig-

10We could consider the number #cl of clauses in the CNF formula as an alternative measure.
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Figure 2: Reductions achieved by B + E in terms of number of variables and in terms of the size of
the formula (comparison with the case when no preprocessing technique has been applied). Each
point corresponds to an instance Σ, its x-coordinate corresponds to the value of the measure (#var
or #lit) when no pre-processing is used, while its y-coordinate corresponds to the value of the same
measure on B + E(Σ).

ure 9a, and Figure 9b. In these figures, each point corresponds to an instance
Σ, its x-coordinate corresponds to the value of the measure (#var or #lit) when
no pre-processing is used, while its y-coordinate corresponds to the value of the
same measure on B + E(Σ) (with max#Conflicts = ∞). The scales used for
both coordinates are logarithmic.

Clearly enough, using B + E often leads to large reductions for both measures.
The benefits appear as very significant for instances from the Planning family, the
BMC family, and, to some extent, for the BN family. As to #lit reduction, we
can observe that for some benchmarks it is, so to say, ”negative”, that is, the size
of the output CNF formula is sometimes slightly larger than the size of the input.
This comes from the fact that E only ensures that the number of clauses does not
increase whenever a variable is eliminated (which is not the same as guaranteeing
that the number of literals will not increase).

We have also evaluated how much B + E leads to reduction of the overall
model counting time compared to the case when no preprocessing technique is
used. The results are presented on the four scatter plots (with logarithmic scales)
reported in Figure 3a, Figure 3b, Figure 3c, and Figure 3d for the ”direct” model
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counters Cachet and SharpSAT and the compilation-based counters C2D and
d4 considered downstream.

Each point corresponds to an instance Σ (a CNF formula), its x-coordinate
corresponds to the time (in seconds) required to compute ‖Σ‖ by calling the model
counter on it, while its y-coordinate corresponds to the time required to compute
‖Σ‖ by computing B + E(Σ) (with max#Conflicts=∞) first, then calling the
model counter on the resulting CNF formula. Again, whatever the downstream
model counter, applying B + E appears as useful in many cases, when the overall
model counting time can be significantly reduced. This is particularly the case for
the model counter C2D, for which improvements are obtained very often (actually,
for 624 instances over 703). This comes from the fact that the cutsets of the nodes
of the decomposition tree of B + E(Σ) used by C2D for guiding the decomposition
process and generating a Decision-DNNF representation are typically of smaller
size than the cutsets of the nodes of the decomposition tree of Σ.

In our experiments, we have also measured the preprocessing times. Table 3
indicates for several time limits (in seconds) the number of benchmarks (out of
703) for which B + E has returned a CNF formula within the time limit.

time limit (in seconds) number of instances preprocessed
≤ 1 436
≤ 5 465
≤ 10 558
≤ 100 647
≤ 1000 673
≤ 3600 683

Table 3: Number of instances preprocessed by B + E within a given amount of time.

More than 79% of the instances have been preprocessed in less than 10s, show-
ing that B + E is quite efficient in practice. The instances that B + E was unable
to preprocess within 3600s or those for which more than 100s have been spent
do not belong to a specific family. The smallest instance that has not been pre-
processed by B + E within 3600s contains ”only” 7480 clauses. Conversely, B + E
was able to preprocess very large instances within 100s (one of them contains
111682 clauses).

Figure 4 makes precise for each instance the preprocessing time used by B + E
with respect to the total run time needed to ”solve” it (i.e., to count its num-
ber of models) using C2D downstream (the compilation-based model counter that
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Figure 3: Performances of the model counters depending on the preprocessing technique used
(B + E vs. no preprocessing technique). Each point corresponds to an instance Σ, its x-coordinate
corresponds to the time (in seconds) required to compute ‖Σ‖ by calling the model counter on it,
while its y-coordinate corresponds to the time required to compute ‖Σ‖ by computing B + E(Σ)
first, then calling the model counter on the resulting CNF formula.

29



100

101

102

103

100 101 102 103

B
+
E
(Σ
,∞

)

c2d(B+ E(Σ,∞))

Qif
Handmade
Planning
Circuit

Configuration
Random

BMC
BN

Figure 4: Preprocessing time with respect to the total run time needed to solve an instance when
C2D is used downstream.

proved to be the most efficient counter in our experiments, in terms of the number
of instances ”solved”, when it was equipped with B + E, see Table 1). Each point
corresponds to an instance Σ (a CNF formula), its y-coordinate corresponds to
the time (in seconds) required to compute B + E(Σ), while its x-coordinate corre-
sponds to the time required to compute ‖B + E(Σ)‖ using C2D.

One can observe on Figure 4 that the time required by C2D to count the number
of models of its input is often significantly higher than the time used by B + E(Σ)
for generating this input from Σ (this is quite salient for many instances from the
Planning family). For other instances (especially those from the Random family),
much of the total run time is spent by B + E, but one cannot conclude from it
that using B + E for preprocessing those instances was a bad idea. Indeed, the
preprocessing times can be (relatively) long – i.e., represent a large part of the
overall computation times – just because B + E does almost all the job (it may
happen that the simplification of the instance is so important that the downstream
model counter has almost nothing to do afterwards).

B + E vs. pmc. In order to compare B + Ewith our previous preprocessor pmc, we
computed similar measurements as in the previous paragraph, but this time, using
pmc to preprocess the instances. Considering the values of the two measures
#var(Σ) and #lit(Σ), we wanted first to compare the reductions achieved by B + E
upstream with the ones achieved by pmc.
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Figure 5: Reductions achieved by B + E in terms of number of variables and in terms of the size
of the formula (comparison with pmc). Each point corresponds to an instance Σ, its x-coordinate
corresponds to the value of the measure (#var or #lit) when pmc is used, while its y-coordinate
corresponds to the value of the same measure on B + E(Σ).

The results are presented on the two scatter plots reported in Figure 5a, and
Figure 5b. In these figures, each point corresponds to an instance Σ, its x-coordinate
corresponds to the value of the measure (#var or #lit) when pmc is used, while its
y-coordinate corresponds to the value of the same measure on B + E(Σ) (with
max#Conflicts =∞). The scales used for both coordinates are logarithmic.

Clearly enough, using B + E instead of pmc often leads to large reductions
for both measures. The benefits appear as very significant for instances from the
Planning family, the BMC family, and to some extent for the BN family. We can
observe on Figure 5 that using pmc instead of B + E leads sometimes to remove
more variables and/or more literals in the formula, but this does not happen very
frequently, and typically, the reductions achieved in such cases are not so huge.

We have also evaluated how much B + E leads to reduce the overall model
counting time compared to the case when pmc is used instead. The results are
presented on the four scatter plots (with logarithmic scales) reported in Figure
6a, Figure 6b, Figure 6c and 6d for the ”direct” model counters Cachet and
SharpSAT and the compilation-based counters C2D and d4 considered down-
stream. Again, each point corresponds to an instance Σ (a CNF formula), its x-
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coordinate corresponds to the time (in seconds) required to compute ‖Σ‖ by call-
ing first pmc on it and then the model counter on the resulting CNF formula, while
its y-coordinate corresponds to the time required to compute ‖Σ‖ by computing
B + E(Σ) (with max#Conflicts= ∞) first, then calling the model counter on
the resulting CNF formula.

We can observe that whatever the downstream model counter among the four
ones we have considered, B + E appears typically as a better preprocessor than
pmc in the sense that it leads typically to improved performances (smaller com-
putation times). The rightmost parts of the two scatter plots cohere with the results
reported in Table 1, showing a number of instances that can be solved by any of
the model counters when B + E has been applied first, while they cannot be solved
within the time limit of 1h when pmc is used instead. Of course, the computational
benefits that are reported on these plots are less impressive than those offered by
B + E compared to the case when no preprocessing technique is applied (pmc is
quite a ”good” preprocessor in many cases).

Detailed results on some instances. Finally, Tables 4 and 5 report some detailed
results for a sample of the instances used in the experiments. In the two tables, the
five leftmost columns characterize the instances used (by providing respectively,
its family, the name of the instance, its number of variables #var, its number of
clauses #cl, its size #lit in number of literals).

In Table 4, column ”time B+E” gives the overall preprocessing time, which
is the sum of the time ”time B” needed to find a bipartition 〈I, O〉, plus the time
”time E” required by the elimination. Columns ”#input”, ”#output”, and ”#elim”
give respectively the number of variables of I, of O, and the number of variables
from O that have been forgotten or assigned during the elimination step. Finally,
the last three columns indicate the number of variables #var, the number of clauses
#cl, and the size #lit in number of literals of the output CNF formula (the reduc-
tions achieved can thus be computed by subtracting those values from the corre-
sponding ones for the input CNF formula). It can be observed that the number
of variables in the output CNF formula can be strictly lower than the number of
variables in the input CNF formula Σ, minus the number of variables from O that
have been forgotten or assigned during the elimination process. This comes from
the fact that the elimination step can lead to remove some additional variables. As
a matter of illustration, suppose that Σ = (¬a∨b)∧(a∨¬b) and that the bipartition
〈{a}, {b}〉 has been found. Eliminating b in Σ leads to remove the two clauses in
Σ so that the output CNF formula is the empty conjunction of clauses. Hence, two
variables have been removed, and not just one (while the cardinality of O is 1).
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Figure 6: Performances of the model counters depending on the preprocessing technique used
(B + E vs. pmc). Eeach point corresponds to an instance Σ, its x-coordinate corresponds to the
time (in seconds) required to compute ‖Σ‖ by calling first pmc on it and then the model counter
on the resulting CNF formula, while its y-coordinate corresponds to the time required to compute
‖Σ‖ by computing B + E(Σ) first, then calling the model counter on the resulting CNF formula.
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In Table 5, after the description of the input CNF instance Σ (five first columns),
one can find three groups of columns, corresponding to the model counting task of
Σ for three scenarios: no preprocessing technique (group Σ), use of pmc (group
pmc(Σ)), and use of B + E (group B + E(Σ)). Within in each group, one can
find the time (in seconds) needed by each one of the four counters Cachet,
SharpSAT, C2D and d4 for making its job (it includes the preprocessing time, if
any). ”TO” means that a time out has been reached, and ”MO” that the process has
aborted due to insufficient memory. When a preprocessing technique took place
(groups pmc(Σ) and B + E(Σ)), columns ”time pmc” and ”time B+E” indicate
(respectively) the time spent by the application of the preprocessing technique.
Columns #var, #cl, #lit indicate (respectively) the number of variables, number of
clauses, and size of the CNF formula that has resulted from the application of the
preprocessing technique and then be used as input of the model counters.



Benchmark Informations B+E(Σ,∞)
Family Name #var #cl #lit time B+E time B time E #input #output #elim #var #cl #lit
BN 50-10-9-q 460 720 1921 0.03 0.02 0.00 361 99 42 196 340 1261
BN 90-50-9-q 12300 19600 34149 16.86 16.85 0.00 9806 2494 1959 390 709 2426
BN blockmap 05 01.net 1411 2737 5413 0.02 0.01 0.00 14 1397 1027 19 28 65
BN blockmap 22 03.net 119003 247486 504902 57.15 36.09 21.05 261 118742 93182 585 1640 4915
BN fs-01.net 32 38 74 0 0.00 0.00 13 19 9 11 12 28
BN fs-19.net 65930 113924 260642 698.32 696.68 1.63 27949 37981 28025 32889 52573 131575
BN mastermind 03 08 04.net 4720 10920 23608 0.46 0.44 0.01 216 4504 4119 216 180 376
BN mastermind 10 08 03.net 5887 12901 28468 1.60 1.55 0.04 918 4969 4604 1093 1444 3383
BN or-50-5-1-UC-10 100 250 653 0.00 0.00 0.00 42 58 47 4 1 4
BN or-100-20-10-UC-10 200 500 1309 0.00 0.00 0.00 84 116 91 18 5 19
BN sat-grid-pbl-0010 110 191 738 0.00 0.00 0.00 102 8 4 102 143 521
BN sat-grid-pbl-0030 930 1771 7018 0.61 0.61 0.00 922 8 5 922 1697 6671
Config C129 FR 1888 7404 23769 0.13 0.13 0.00 703 1185 21 554 2643 7998
Config C140 FC 1828 5451 14572 0.10 0.10 0.00 605 1223 13 472 1793 5887
Config C140 FV 1843 8056 33705 0.12 0.12 0.00 671 1172 17 539 2173 6948
Handmade 5 100 sd schur 500 26860 78510 289.65 289.63 0.01 388 112 98 388 11669 52832
Handmade ais6 61 581 1351 0.00 0.00 0.00 12 49 8 53 361 1105
Handmade fphp-015-020 300 4965 10200 0.01 0.01 0.00 285 15 15 285 4665 13110
Handmade lang12 576 13584 28134 42.59 42.55 0.04 134 442 102 384 4872 12142
Handmade lang23 2116 96370 196489 2522.80 2522.13 0.67 633 1483 322 1495 38141 93997
Handmade ls10-normalized 657 4761 10017 2277.82 2277.81 0.00 440 217 81 576 4680 16290
Planning blocks right 2 p t5 406 1901 5407 0.02 0.01 0.00 65 341 299 107 678 2210
Planning blocks right 6 p t6 3337 30517 82699 58.59 58.11 0.48 545 2792 1554 1784 22512 65591
Planning bomb b5 t1 p t5 564 1086 2796 0.01 0.01 0.00 228 336 300 0 0 0
Planning bomb b20 t5 p t10 14100 28025 75525 34.27 34.07 0.20 6575 7525 7250 0 0 0
Planning coins p01 p t5 872 2353 5901 0.06 0.06 0.00 303 569 532 176 560 1256
Planning coins p10 p t10 3898 9879 24559 1.43 1.42 0.01 1505 2393 2294 634 2443 5569
Planning comm p10 p t10 17539 75516 191696 25.44 24.85 0.59 3853 13686 10353 6402 37147 104679
Planning emptyroom d4 g2 p t5 188 584 1532 0.00 0.00 0.00 28 160 152 44 168 576
Planning hanoi5 1931 14468 35856 0.00 0.00 0.00 0 1931 16 0 0 0
Planning logistics.a 828 6718 17915 0.05 0.04 0.00 153 675 489 265 1078 3129
Planning medium 116 953 2133 0 0.00 0.00 1 115 35 0 0 0
Planning prob001.pddl 939 3785 7727 0.02 0.02 0.00 183 756 168 209 444 1061
Planning prob012.pddl 2324 31857 64476 0.51 0.49 0.01 681 1643 701 850 4681 10551
Planning uts k10 p t6 13047 89563 215484 39.94 39.41 0.53 2580 10467 6366 3880 54591 121740
Planning uts k10 p t10 21451 148891 358620 2281.53 2280.69 0.84 4260 17191 10130 6920 93351 211340
BMC bmc-galileo-9 63624 326999 852078 22.72 19.85 2.87 169 63455 30641 2238 11032 42720
BMC bmc-ibm-1 9685 55870 149914 1.91 1.87 0.03 1033 8652 2809 392 1002 3616
BMC bmc-ibm-13 13215 65728 174164 0.32 0.31 0.01 145 13070 2986 29 30 150
BMC cnt06.shuffled 762 2469 6753 0.00 0.00 0.00 0 762 5 0 0 0
BMC cnt10.shuffled 20470 68561 187229 0.02 0.02 0.00 0 20470 17 0 0 0
Circuit 3bitadd 32 8704 32316 89472 158.56 158.56 0.00 8704 0 0 4480 26475 70341
Circuit alu2 gr rcs w8.shuffled 4080 83902 170864 86.22 86.20 0.02 4064 16 2 4078 83900 172438
Circuit c432.isc 196 514 1258 0.00 0.00 0.00 36 160 160 0 0 0
Circuit c880.isc 417 1060 2466 0.00 0.00 0.00 60 357 357 0 0 0
Circuit c880 gr rcs w7.shuffled 4592 61745 126770 23.26 23.26 0.00 4585 7 1 4591 61744 127153
Circuit c1355.isc 555 1546 3610 0.06 0.06 0.00 41 514 461 94 304 1080
Circuit c7552.isc 3185 8588 19808 0.29 0.28 0.00 208 2977 2977 5 5 18
Circuit ssa7552-038 1501 3575 11823 0.07 0.06 0.00 179 1322 1055 239 475 1536
Circuit ssa7552-160 1391 3126 10151 0.05 0.04 0.00 133 1258 1017 180 330 1112
QIF 10random 587 1685 4157 0.01 0.01 0.00 129 458 379 0 0 0
QIF binsearch.32 4473 14011 35245 1.64 1.42 0.21 391 4082 3788 227 87 600
QIF binsearch.32.pp 251 1917 7304 0.00 0.00 0.00 32 219 218 0 0 0
QIF mixdup 309 452 1092 0.00 0.00 0.00 161 148 76 0 0 0
QIF sum.32 639 1708 4356 0.02 0.02 0.00 129 510 438 0 0 0
Random uf250-01 250 1065 3195 168.94 168.94 0.00 249 1 0 250 1065 3195
Random uf250-0100 250 1065 3195 0.21 0.21 0.00 103 147 93 143 338 868
Random wff.3.75.315 75 315 945 0 0.00 0.00 10 65 55 10 11 22
Random wff.4.100.500 100 500 2000 0.00 0.00 0.00 100 0 0 100 500 2000

Table 4: Effectiveness of B + E in terms of preprocessing time and of reduction achieved — some
instances.



Benchmark Informations Σ pmc(Σ) B + E(Σ)
Family Name #var #cl #lit Cachet SharpSAT c2d d4 time pmc #var #cl #lit Cachet SharpSAT c2d d4 time B+E #var #cl #lit Cachet SharpSAT c2d d4
BN 50-10-9-q 460 720 1921 TO 1149.58 2.38 2.52 0.01 239 412 1508 65.54 28.28 1.49 1.10 0.03 196 340 1261 64.43 20.24 1.06 0.67
BN 90-50-9-q 12300 19600 34149 TO MO TO 1848.38 8.05 1094 2117 6761 TO MO 20.08 34.03 16.86 390 709 2426 40.49 27.47 34.88 26.04
BN blockmap 05 01.net 1411 2737 5413 0.46 0.20 12.72 0.24 0.03 33 92 247 0.72 0.47 5.28 0.41 0.02 19 28 65 0.58 0.98 5.16 0.38
BN blockmap 22 03.net 119003 247486 504902 74.13 1075.92 1370.26 338.56 81.50 5413 18167 47548 86.43 90.36 490.64 87.03 57.15 585 1640 4915 122.17 117.76 573.83 1553.54
BN fs-01.net 32 38 74 0.49 0.44 0.66 0.24 0.00 11 12 28 0.73 0.45 0.74 0.42 0 11 12 28 0.53 0.93 0.61 0.25
BN fs-19.net 65930 113924 260642 TO MO TO TO 403.49 26950 52934 127148 TO MO TO MO 698.32 32889 52573 13157 TO MO TO TO
BN mastermind 03 08 04.net 4720 10920 23608 3.75 MO 53.45 9.30 0.24 750 2533 6799 3.82 1.50 22.43 2.71 0.46 216 180 376 1.10 1.57 17.37 3.43
BN mastermind 10 08 03.net 5887 12901 28468 45.26 MO 105.30 2555.43 0.86 1776 4497 11791 19.26 MO 43.79 46.45 1.60 1093 1444 3383 2.76 3.08 30.06 5.51
BN or-50-5-1-UC-10 100 250 653 0.57 0.51 1.55 0.52 0.00 4 1 4 0.64 0.45 0.91 0.43 0.00 4 1 4 0.51 0.02 0.54 0.19
BN or-100-20-10-UC-10 200 500 1309 TO MO MO MO 0.00 18 5 19 0.70 0.46 0.74 0.46 0.00 18 5 19 0.99 0.06 0.50 0.39
BN sat-grid-pbl-0010 110 191 738 0.62 0.50 1.67 0.27 0.00 102 71 188 0.71 0.40 1.39 0.48 0.00 102 143 521 0.63 0.99 1.61 0.14
BN sat-grid-pbl-0030 930 1771 7018 TO MO MO 651.30 0.11 922 669 1867 TO MO 4.45 27.70 0.61 922 1697 6671 TO MO MO 3.42
Config C129 FR 1888 7404 23769 71.49 42.46 44.72 109.55 0.08 555 2711 8076 308.27 MO 122.80 17.62 0.13 554 2643 7998 162.90 11.58 23.82 12.21
Config C140 FC 1828 5451 14572 11.69 2.59 33.20 4.97 0.05 469 1781 5804 5.87 1.92 43.14 10.72 0.10 472 1793 5887 4.60 2.52 14.12 4.52
Config C140 FV 1843 8056 33705 21.94 22.67 TO 160.04 0.09 540 2115 6491 18.58 15.95 16.37 16.97 0.12 539 2173 6948 12.59 14.97 30.50 7.57
Handmade 5 100 sd schur 500 26860 78510 TO MO TO MO 0.79 486 12155 35263 TO MO TO MO 289.65 388 11669 52832 TO MO TO TO
Handmade ais6 61 581 1351 0.56 0.65 0.98 0.33 0.00 59 390 935 0.50 0.58 0.99 0.55 0.00 53 361 1105 0.59 0.17 0.99 0.40
Handmade fphp-015-020 300 4965 10200 TO MO TO TO 0.08 300 4965 10200 TO MO TO TO 0.01 285 4665 13110 TO MO MO MO
Handmade lang12 576 13584 28134 3300.24 3061.78 TO 210.83 0.11 198 4724 9970 947.49 1272.12 1360.22 48.28 42.59 384 4872 12142 1999.86 TO 1269.40 185.92
Handmade lang23 2116 96370 196489 TO TO MO TO 1.93 759 37515 77169 TO TO TO TO 2522.80 1495 38141 93997 TO TO TO TO
Handmade ls10-normalized 657 4761 10017 TO TO TO TO 0.04 657 4761 10017 TO TO TO TO 2277.82 576 4680 16290 TO TO TO TO
Planning blocks right 2 p t5 406 1901 5407 0.71 0.37 5.86 0.43 0.02 189 1078 2966 0.58 0.59 4.05 0.64 0.02 107 678 2210 0.65 1.08 3.48 0.43
Planning blocks right 6 p t6 3337 30517 82699 TO MO TO TO 1.52 2467 24643 61245 TO MO TO TO 58.59 1784 22512 65591 TO MO TO MO
Planning bomb b5 t1 p t5 564 1086 2796 1.00 0.30 9.33 0.34 0.01 180 208 590 0.93 0.54 2.03 0.52 0.01 0 0 0 0.91 0.11 1.67 0.28
Planning bomb b20 t5 p t10 14100 28025 75525 0.92 1.23 228.69 2.37 5.49 6750 7100 20450 6.10 5.85 86.52 5.49 34.27 0 0 0 16.79 46.36 40.40 21.62
Planning coins p01 p t5 872 2353 5901 TO MO 13.55 35.51 0.10 390 1173 3069 TO MO 7.11 19.30 0.06 176 560 1256 0.58 1.07 6.21 0.29
Planning coins p10 p t10 3898 9879 24559 TO MO MO MO 0.48 2051 6556 16491 TO MO MO MO 1.43 634 2443 5569 2.48 1.82 20.06 2.59
Planning comm p10 p t10 17539 75516 191696 TO MO MO TO 5.90 11209 61138 156145 TO MO TO MO 25.44 6402 37147 10467 TO MO MO MO
Planning emptyroom d4 g2 p t5 188 584 1532 0.69 0.28 2.95 0.35 0.00 108 323 892 0.52 0.52 1.82 0.51 0.00 44 168 576 0.52 0.04 1.30 0.31
Planning hanoi5 1931 14468 35856 TO TO TO 0.88 1.46 0 0 0 1.63 3.39 1.55 1.70 0.00 0 0 0 1.90 0.58 6.95 0.64
Planning logistics.a 828 6718 17915 2.64 0.41 TO 10.15 0.05 285 1082 2805 1.08 0.61 6.16 0.80 0.05 265 1078 3129 1.53 0.19 5.62 0.82
Planning medium 116 953 2133 0.57 0.30 1.72 0.27 0.00 0 0 0 0.83 0.46 0.24 0.46 0 0 0 0 0.72 0.40 1.01 0.24
Planning prob001.pddl 939 3785 7727 0.67 0.61 12.11 0.31 0.01 255 531 1128 0.52 0.51 5.70 0.46 0.02 209 444 1061 0.78 1.03 4.23 0.19
Planning prob012.pddl 2324 31857 64476 57.44 8.92 1453.89 681.12 0.44 1018 5576 11494 155.10 5.33 184.59 117.48 0.51 850 4681 10551 75.49 10.20 284.51 314.93
Planning uts k10 p t6 13047 89563 215484 TO MO TO MO 4.93 7627 68520 153437 TO MO TO MO 39.94 3880 54591 12174 TO MO TO MO
Planning uts k10 p t10 21451 148891 358620 TO MO TO MO 10.88 12671 114438 256483 TO MO TO MO 2281.53 6920 93351 21134 TO MO TO TO
BMC bmc-galileo-9 63624 326999 852078 313.56 42.24 TO 203.68 87.89 4524 93463 260369 140.41 93.33 TO 1179.31 22.72 2238 11032 42720 41.00 43.61 TO 215.41
BMC bmc-ibm-1 9685 55870 149914 15.40 2.14 260.64 7.55 1.24 1242 2855 7370 2.19 2.21 33.62 1.86 1.91 392 1002 3616 3.11 3.67 27.07 4.50
BMC bmc-ibm-13 13215 65728 174164 TO 114.12 TO 8.83 2.77 172 745 2105 5.34 5.20 43.09 5.14 0.32 29 30 150 4.67 5.19 47.80 5.25
BMC cnt06.shuffled 762 2469 6753 1.34 0.20 11.64 0.39 0.01 0 0 0 0.67 0.46 0.81 0.42 0.00 0 0 0 0.48 1.07 2.54 0.33
BMC cnt10.shuffled 20470 68561 187229 TO MO TO 20.10 2.63 0 0 0 17.71 16.05 16.39 16.63 0.02 0 0 0 16.76 17.15 87.61 11.69
Circuit 3bitadd 32 8704 32316 89472 TO MO TO TO 19.61 4480 24323 55214 TO TO TO MO 158.56 4480 26475 70341 TO MO TO TO
Circuit alu2 gr rcs w8.shuffled 4080 83902 170864 TO MO TO TO 1.29 4080 83902 170864 TO MO TO TO 86.22 4078 83900 17243 TO MO TO TO
Circuit c432.isc 196 514 1258 0.73 0.68 2.50 0.31 0.00 93 266 733 0.53 0.55 1.69 0.43 0.00 0 0 0 0.63 1.09 1.32 0.15
Circuit c880.isc 417 1060 2466 TO MO 25.79 242.89 0.01 142 404 1141 15.97 4.32 2.84 2.00 0.00 0 0 0 0.57 1.04 1.48 0.14
Circuit c880 gr rcs w7.shuffled 4592 61745 126770 TO MO TO TO 1.16 4592 61745 126770 TO MO TO TO 23.26 4591 61744 12715 TO MO TO TO
Circuit c1355.isc 555 1546 3610 TO MO 11.61 162.36 0.03 175 854 2297 TO MO 18.93 124.67 0.06 94 304 1080 60.66 82.50 1.96 0.91
Circuit c7552.isc 3185 8588 19808 TO MO 1014.39 TO 0.26 819 3158 10113 TO MO 50.87 MO 0.29 5 5 18 1.19 1.41 10.63 1.66
Circuit ssa7552-038 1501 3575 11823 0.72 0.40 14.06 0.34 0.03 263 532 1548 0.57 0.59 5.05 0.57 0.07 239 475 1536 1.29 0.15 5.41 0.40
Circuit ssa7552-160 1391 3126 10151 0.63 0.34 12.66 0.32 0.02 208 413 1236 0.31 0.99 5.27 0.50 0.05 180 330 1112 0.80 0.75 4.59 0.31
QIF 10random 587 1685 4157 0.60 0.61 6.40 0.58 0.03 41 301 883 0.61 0.35 1.81 0.61 0.01 0 0 0 0.17 0.81 1.87 0.57
QIF binsearch.32 4473 14011 35245 TO MO TO MO 0.55 292 1022 2710 2.14 1.17 10.94 1.10 1.64 227 87 600 2.01 3.11 14.43 21.46
QIF binsearch.32.pp 251 1917 7304 0.82 6.07 25.15 0.68 0.04 65 595 1606 0.49 0.60 1.59 0.58 0.00 0 0 0 0.08 0.21 1.30 0.54
QIF mixdup 309 452 1092 0.59 0.53 2.07 0.52 0.00 0 0 0 0.57 0.59 0.11 0.51 0.00 0 0 0 0.69 0.59 0.59 0.30
QIF sum.32 639 1708 4356 3.92 MO MO 148.64 0.01 213 714 2386 TO MO 4.96 1.03 0.02 0 0 0 0.24 0.83 1.81 0.61
Random uf250-01 250 1065 3195 194.54 106.22 1746.68 21.79 13.92 250 1065 3195 83.07 117.83 1739.28 30.50 168.94 250 1065 3195 272.81 302.32 1950.96 176.48
Random uf250-0100 250 1065 3195 34.10 24.74 119.89 7.75 8.34 124 218 501 10.05 9.82 10.94 9.91 0.21 143 338 868 10.67 10.78 12.58 7.43
Random wff.3.75.315 75 315 945 0.59 0.21 1.39 0.34 0.00 9 9 18 0.38 0.45 1.11 0.38 0 10 11 22 0.52 0.62 0.92 0.30
Random wff.4.100.500 100 500 2000 TO MO MO MO 0.00 100 500 2000 TO MO MO MO 0.00 100 500 2000 TO MO MO MO

Table 5: Effectiveness of B + E in terms of the overall model counting task — some instances.



The results reported in Table 4 and Table 5 confirm the observations already
made in light of the previous tables and figures. Mainly, using a preprocessing
technique can be useful in terms of the simplification of the input instance and
of the overall CPU time needed to achieve its model counting task (whatever the
model counter), but this is not always the case. And B + E often leads to better
performance than pmc, but, again, this is not always the case. More specifically,
the two tables show that the reduction of the input CNF instance achieved by
the preprocessing step (in terms of number of variables, number of clauses or
size) can be very small (even null) but is quite large in some cases. When the
reduction is large, the time needed to count models can be significantly lowered,
but it increases for some instances. The time spent by B can be high even if the
corresponding number of variables in the set O of output variables found is small.
The time spent by E is typically small (but it is not the case when many variables
are to be eliminated). The time required by B + E can be much higher than the one
used by pmc, but it is not always the case.

5. Definability and Approximate Compilation

5.1. Definability and Exact Compilation
While B + E can be considered upstream to a Decision-DNNF compiler, like

C2D or d4, when used as a model counter (as we explained it in Section 4), we
cannot take advantage of B + Eto boost such a compiler when used for equivalence-
preserving compilation. Indeed, B + E is not an equivalence-preserving prepro-
cessing technique. Therefore, whenever B + E(Σ) is not equivalent to Σ, the
Decision-DNNF representation of B + E(Σ) computed by the compiler will not be
equivalent to Σ. Especially, while it is possible to count efficiently the number
of models of a Decision-DNNF representation (and, more generally, of a d-DNNF
representation) of Σ conditioned by any consistent term over Var(Σ), this possi-
bility is lost if a Decision-DNNF representation of B + E(Σ) is computed instead.
Indeed, in such a case, one cannot take account anymore of any conditioning of
the variables that have been forgotten by B + E.

Example 6 (Example 4 cont’ed). As a matter of illustration, consider again our
running example. A Decision-DNNF representation of B + E(Σ) = (a∨ b)∧ (a∨ c)
is given by a ∧ ite(b, c,>), represented on Figure 7 (the node labelled by b is a
decision node, i.e., an if ... then ... else ... (ite) node, where ite is a ternary
connective whose semantics is given by ite(x, y, z) = (¬x∧y)∨(x∧z). Conditioning
this representation by d ∧ e does not change it, and the number of models of it is
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∧

a b

c >

Figure 7: A Decision-DNNF representation equivalent to B + E(Σ).

equal to 3. Contrastingly, conditioning Σ by d ∧ e leads to a formula equivalent
to a ∧ b ∧ c, thus having a single model.

In order to address this issue, a (tentative) approach would be to keep in ad-
dition to a Decision-DNNF representation Σ∗ of B + E(Σ) all the gates Φx

I of the
variables x ∈ O on I in Σ that have been forgotten by E. Indeed, if 〈I, O〉 is a defin-
ability bipartition of Σ and E a subset of O such that for every x ∈ E, Φx

I is a gate
of x on I in Σ, then (∃E.Σ)∧ (

∧
x∈E(x↔ Φx

I )) is equivalent to Σ (hence, no infor-
mation would be lost). The fact that Σ implies (∃E.Σ)∧ (

∧
x∈E(x↔ Φx

I )) is obvi-
ous. The other way around, let us consider a model ω of ∃E.Σ over Var(Σ). Then
there necessarily exists a model ω′ of Σ over Var(Σ) such that ∀xi ∈ Var(Σ) \ E,
ω(xi) = ω′(xi) (see Corollary 5 in [42]). Since every variable from I belongs to
Var(Σ) \ E, for each x ∈ E, ω is a model of Φx

I if and only if ω′ is a model of Φx
I .

Since ω is a model of
∧

x∈E(x ↔ Φx
I ), we must also have that ω(x) = ω′(x) for

each x ∈ E. Stated otherwise, ω = ω′, hence ω is a model of Σ.
It turns out that this approach is not satisfying, for two reasons. On the one

hand, the computation of the gates Φx
I can be very demanding: the computation

time can be huge, and above all, the sizes of the gates Φx
I can be huge as well

(i.e., not polynomially bounded in |Σ| + #(I) [33]) which is problematic, even in
the case the computation time could be neglected because it is an off-line compi-
lation time. On the other hand, the resulting pair consisting of a Decision-DNNF
representation Σ∗ of ∃E.Σ and a conjunction

∧
x∈E(x ↔ Φx

I )〉 of gates (one per
variable in E) cannot be considered as a valuable compiled form of Σ: in the
general case, it is NP-hard to determine the satisfiability of a conjunction of a
Decision-DNNF formula α with a conjunction κ of equivalences x ↔ Φx

I with
x 6∈ Var(α) and Var(Φx

I ) ⊆ Var(α), after its conditioning by a consistent term
γ. Hardness is still the case when the gates Φx

I have a simple structure and are
of small size (e.g., clauses or terms containing at most 3 literals). This can be
easily shown via the following reduction from SAT. Let β =

∧m
i=1 δi be a CNF
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formula over x1, . . . , xn. Let Σ =
∧m

i=1(yi ⇔ δi) where y1, . . . , ym are fresh vari-
ables, distinct from x1, . . . , xn. Clearly enough, 〈{x1, . . . , xn}, {y1, . . . , ym}〉 is
a definability bipartition of Σ. Take E = O. The formula ∃E.Σ is valid, which
can be represented by a Decision-DNNF formula α consisting of the (decompos-
able) conjunction of n Decision-DNNF representations of valid clauses xi ∨ ¬xi
(i ∈ {1, . . . , n}). Obviously enough, we have Σ ≡ α ∧ Σ. Consider now the
consistent term γ =

∧m
i=1 yi. By construction, β is equivalent to Σ|γ, hence β is

satisfiable if and only if Σ|γ is satisfiable, and this completes the proof.

5.2. From Exact Compilation to Approximate Compilation: The Case of Control-
lable Variables

Interestingly, it makes sense to exploit the ”Bipartition, then Eliminate” ap-
proach at work in B + E in the case when the set of variables of Σ can be par-
titioned into a set C of controllable variables (those that may be conditioned at
some point for solving the problem under consideration and must be protected for
this reason) and the remaining set Var(Σ) \ C of variables (e.g., some auxiliary
variables introduced for the encoding purpose). Indeed, in such a case, one can
identify a simple condition under which B + E(Σ) is query-equivalent to Σ over C
[58], meaning that

∃(Var(Σ) \ C).B + E(Σ) ≡ ∃(Var(Σ) \ C).Σ

or equivalently, that for every formula ϕ such that Var(ϕ) ⊆ C, we have Σ |= ϕ if
and only if B + E(Σ) |= ϕ. This condition is made precise in Proposition 5.

Proposition 5. Let Σ be a CNF formula and C be a finite subset of P . If the
bipartition 〈I, O〉 of Σ computed by B is such that C ⊆ I, then B + E(Σ) is query-
equivalent to Σ over C.

Proof: By definition of forgetting, ∃(Var(Σ) \ C).Σ is query-equivalent to Σ over
C. By construction, B + E returns a CNF formula equivalent to ∃E.Σ where E ⊆ O.
Hence, we have ∃(Var(Σ)\C).B + E(Σ) ≡ ∃(Var(Σ)\C).(∃E.Σ). When C ⊆ I, we
have C∩O = ∅ since 〈I, O〉 is a bipartition of Σ. Hence, E ⊆ (Var(Σ)\C), showing
that ∃(Var(Σ)\C).(∃E.Σ) is equivalent to ∃(Var(Σ)\C).Σ, and this completes the
proof. �

Ensuring that the condition C ⊆ I is satisfied is not very demanding: it is
enough to slightly modify B in such a way that the variables of the backbone of Σ
that belongs to C are not put into O at line 1, that I is initialized with C at line 3,
and that x takes its values in V\C at line 4. When the condition C ⊆ I is satisfied,
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compiling ∃(Var(Σ) \ C).B + E(Σ) leads to an approximate compilation [59] of
Σ on C, where all (but only) the consequences of Σ over C are guaranteed to be
preserved.

The significance of Proposition 5 comes from that fact that in a number of
AI applications such a set C of controllable variables can be pointed out. For
instance, in model-based diagnosis, each variable of the propositional description
of the system to be diagnosed can be forgotten when it does not correspond to an
observation of the system and it does not encode the fact that a component of the
system is faulty (or dually, that it works correctly), see e.g., [55].

5.3. Application to Planning
Another application area for which Proposition 5 can be useful is planning.

The classical planning setting. In classical planning, inputs take the form of tu-
ples P = (F, A, S, G), where F is a finite set of fluents, A is a set of deterministic
actions with possibly conditional effects, S is a complete truth assignment of ini-
tial fluents in F (a description of the state of the system at start), and G is a partial
assignment of final fluents in F representing the goal situation. A plan π for P
is a sequence π of sets of actions, one per time point between 0 and N – 1, that
maps the initial state S to a goal state (i.e., a model of G). In order to solve P,
we can encode it into a corresponding CNF formula ΣP over the set of variables
(
⋃N

i=0{fi | f ∈ F})∪{ai | a ∈ A, i = 0, . . . , N – 1}. ΣP can be viewed as a compact
representation of the transition model associated with A. In this encoding, fi is
true if and only if fluent f holds at time point i, and ai is true if and only if action
a holds at time point i. Since only deterministic actions are considered in A, the
truth value of every fluent fi (f ∈ F, i ∈ 1, . . . , N) is fully determined in ΣP as
soon as the truth values of the variables {f0 | f ∈ F}∪⋃N–1

i=0 {ai | a ∈ A} are fixed
(i.e., as soon as the initial state and the plan under consideration are specified).
Focusing on C = {f0 | f ∈ F} ∪ {fN | f ∈ F} ∪ {ai | a ∈ A, i = 0, . . . , N – 1} in-
stead of its superset Var(ΣP) is enough for solving efficiently a number of issues
of interest, once an approximate compiled form consisting of a Decision-DNNF
representation of B + E(ΣP) has been computed. For instance, we can determine
in polynomial time whether a plan π exists for any S and G given on-line, we can
enumerate such plans with polynomial delay, and we can also count in polynomial
time how many π exist.

Some experiments. In order to determine the extent to which using B + E on ΣP
before compiling it into a Decision-DNNF can be useful, we performed a number
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of experiments, focusing on the 530 planning instances used in [60] and available
on www.cril.fr/KC/. Those instances cover a range of different planning
benchmarks, with varying horizon length. “blocks-n” refers to the famous blocks-
world domain with n blocks. “bomb-m-n” is another popular domain involving
m bombs, n toilets, and 2 actions (“dunking” a bomb into a toilet, and “flushing”
a clogged toilet). “comm-m-n” is an IPC5 problem about communication signals
with m stages, n packets, and 5 actions. “emptyroom-n” is about navigating a
robot in an n × n empty grid. Finally, “safe-n” is about opening a safe with n
possible combinations.

All instances described in PDDL were translated into CNF theories using the
DIMACS format, and then compiled using C2D and/or d4. For each instance,
the set of controllable variables C consist of the variables corresponding to the
actions in A (whatever the instant when they occur), the variables corresponding
to the initial state S (all the fluents at time 0), and those corresponding to the goal
(all the fluents at time N). B has been modified to ensure that C ⊆ I in the resulting
bipartition, as explained above (which is mandatory to guarantee that no variable
in C has been eliminated).

Figure 8 (a–b–c–d) contains scatter plots showing the impact of using B + E as
a preprocessor before compiling the encodings ΣP of the instances into Decision-
DNNF representations. Each point corresponds to a planning instance. The two
compilers C2D (a–b) and d4 (c–d) have been considered. Both the compilation
times (a–c) in seconds and the sizes of the compiled forms (b–d) in number of
edges have been measured. As usual, the times reported include the preprocessing
times if any.

The scatter plots in Figure 8 show that in general some computational benefits
are obtained when using B + E. They concern both the compilation times and
the sizes of the compiled form, whatever the downstream compiler. Especially,
within the ressources allocated (1h CPU time and 7.6 GiB memory), C2D has
been able to solve 423 instances without any preprocessing technique and 451
instances when B + E was used first as a preprocessor, while d4 has been able
to solve 422 instances without preprocessing technique and 443 instances when
B + E was used first as a preprocessor.

5.4. Projected Model Counting
To close the section, it is worth mentioning that approximate compilation with

controllable variables, as described before, is strongly connected to the projected
model counting task, as considered in [38, 39, 61].
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Figure 8: Evaluation of the preprocessor B + E on planning benchmarks where a set of variables
is protected.

Projected model counting asks to count solutions of a Boolean representation
Σ with respect to a given set of projected variables C, where multiple solutions that
are identical when restricted to the projected variables count as only one solution.
Stated otherwise, the objective is to compute ‖∃(Var(Σ) \ C).Σ‖ from Σ and C ⊆
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P . Obviously, the projected model counting problem is a generalization of the
model counting one (take C = Var(Σ)), and its complexity is known to be even
harder than the one of #SAT, namely complete for the class #NP [62]. Projected
model counting is useful for a number of problems, especially for planning, and
also for SAT-based analysis and quantification of information flow in programs
[63]. Several projected model counters have been developed accordingly [39].

Clearly enough, generating an approximate compilation of Σ when C is the
set of controllable variables is an approach for determining ‖∃(Var(Σ) \ C).Σ‖.
Indeed, ‖∃(Var(Σ) \C).Σ‖ can be computed in polynomial time from a Decision-
DNNF representation of ∃(Var(Σ)\C).Σ or (equivalently) of ∃(Var(Σ)\C).B + E(Σ),
provided that C ⊆ I is ensured. Whenever the equivalence

∃(Var(Σ) \ C).Σ ≡ ∃(Var(Σ) \ C).B + E(Σ)

holds, ‖∃(Var(Σ) \ C).Σ‖ can be easily derived from ‖∃(Var(Σ) \ C).B + E(Σ)‖
(to get the former, just multiply the latter by 2r where

r = #((Var(Σ) \ Var(B + E(Σ)) ∩ C)

is the number of variables of C that have been removed from Σ by running the
preprocessor B + E on it). As a consequence, if C is the set of variables onto
which Σ must be projected, then B + E(Σ) can be used instead of Σ as the input
of the projected model counter under consideration, provided that it is ensured
that C is a subset of the variables I computed by B. Since the variables from the
corresponding set O have anyway to be forgotten from Σ, an alternative to letting
the whole forgetting job to be achieved by the projected model counter is to use
E in addition during a preprocessing step. Due to the reduction of the instance Σ
achieved by the B + E preprocessor both with respect to the number of variables
and to the number of clauses, it can easily be the case that the performance of the
projected model counter used downstream is improved.

More generally, it turns out that, when the goal is ”only” to compute the
value ‖∃(Var(Σ) \ C).Σ‖ but no approximate compilation of Σ on C is expected
to be generated, the condition C ⊆ I imposed on the bipartition found by B
can be relaxed. Indeed, as a direct consequence of Craig/Lyndon interpolation
theorem [64], for every variable y ∈ C, a formula ΦC is a gate of y on C in
∃(Var(Σ) \ C).Σ if and only if ΦC is a gate of y on C in Σ. Stated otherwise, the
gates of ∃(Var(Σ) \ C).Σ that contain only variables of C are precisely the gates
of Σ that contain only variables of C. Thanks to this result, such gates can be
identified from Σ without needing to compute explicitly ∃(Var(Σ) \ C).Σ, which
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would be prohibitive in the general case (variable elimination is often expensive
when many variables are to be eliminated). When the gates have been identi-
fied, the corresponding output variables y can be forgotten from Σ since we have
‖∃(Var(Σ)\C).Σ‖ = ‖∃y.(∃(Var(Σ)\C).Σ)‖ = ‖∃(Var(Σ)\C).(∃y.Σ)‖. The elim-
ination of y in Σ can be achieved by using E or just by removing y from C and
letting the projected model counter finish the job. Interestingly, B can be easily
modified to identify gates on C with output variables in C: at line 2, it is enough
to replace Var(Σ) by Var(Σ)∩C (which is the set of variables of ∃(Var(Σ)\C).Σ).
Once a definability bipartition of the variables of Var(Σ) ∩ C has been computed,
there are two options: either B stops and returns the set of output variables, or the
loop at line 4 is executed once more, V being set this time to Var(Σ) \ C; in the
latter case, gates on Var(Σ) with output variables in Var(Σ) \ C can be identified,
so that the corresponding output variables can be (tentatively) eliminated using E.
Finally, the output variables y ∈ Var(Σ) \ C that have been found by B and not
eliminated by E can be exploited when the projected model counter considered
downstream is based on top-down search with detection of disjoint components:
though, in the general case, one has ‖∃y.Σ‖ 6= ‖Σ | ¬y‖ + ‖Σ | y‖, the equation
‖∃y.Σ‖ = ‖Σ | ¬y‖+‖Σ | y‖ holds whenever y is defined in terms of Var(Σ)\{y}
in Σ. Thus, the constraint of searching on priority variables first (those of C) that
is at the core of some projected model counters (especially, DsharpP) [39] can
be relaxed by adding to the priority variables those that are definable in the current
formula. This gives to the projected model counter the opportunity of being more
efficient via an earlier discovery of disjoint components.

6. Other Related Work

Before concluding, let us compare our approach with some additional related
work, concerning the two key mechanisms at work in B + E, namely variable elim-
ination and definability bipartition.

6.1. Variable Elimination
Variable elimination (i.e., computing ∃X.Σ from X and Σ) is a fundamen-

tal automated reasoning task. First of all, it is the approach on which the good
old Davis-Putnam’s algorithm for solving SAT was based [43]. In AI, it has many
applications in various domains (including planning, diagnosis, belief update, rea-
soning under inconsistency, etc., see [42] for details). In the area of formal verifi-
cation, variable elimination also finds applications in unbounded model checking,
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information flow analysis, predicate abstraction, etc (see e.g., [65]). In car con-
figuration, it proves useful for projecting the feasible solutions (the models of a
given constraint) onto the customer codes (i.e., forgetting the manufacturer con-
trol codes) [66]. More generally, in every domain where propositional encodings
are exploited, variable elimination is an important issue. Thus, it is not surprising
that variable elimination gave rise to an extensive literature and that a number of
approaches have been proposed so far for this purpose.

Some approaches take advantage of the fact that variable elimination can be
achieved in polynomial time when the input formula Σ is a DNF formula. Ba-
sically, starting with a CNF formula Σ, those approaches consist in enumerating
(using a SAT solver) implicants of Σ which are then projected onto Var(Σ) \ X,
resulting in terms γ over Var(Σ) \ X (see [67, 68]). By construction, each such γ
is an implicant of ∃X.Σ. Each time such a γ is found, a clause equivalent to ¬γ is
added to Σ and the process is repeated up to exhaustion (i.e., when the resulting
Σ becomes inconsistent). The disjunction of all the γ that have been generated is
a DNF formula D equivalent to ∃X.Σ. In order to keep the size of D sufficiently
small (if possible), focusing on prime implicants (as in [69]) or even on shortest
implicants (as in [65]) prove useful.

If a CNF formula C equivalent to ∃X.Σ is expected, then the DNF formula D
must be turned into CNF. Several techniques can be used to this end. One of them
consists in computing incrementally an OBDD representation of the DNF formula
D: starting with an OBDD representation R equivalent to > (R consists of a single
node 1), each time a term γ is generated, an OBDD representation of it is disjoined
with the current OBDD representation R, leading to a new OBDD representation
[70]. The time needed by each step is in O(|γ| · |R|). Then, when no additional
γ is to be considered, the OBDD representation R is turned into a CNF formula,
by following all paths leading to the 0 sink (corresponding to terms which are
implicants of ¬∃X.Σ) and generating their negations (which are thus implicates
of ∃X.Σ). Their conjunction is, by construction, a CNF formula C equivalent to
∃X.Σ.

Another approach to compute C from D consists in exploiting duality. First,
since D is a DNF formula, we can compute in linear time from it a CNF representa-
tion of ¬D. Then we can apply once more the same process as above, with X = ∅
and ¬D instead of Σ. Thus, one generates using a SAT solver a DNF representation
of ¬D, by enumerating some implicants of it. Finally, we compute in linear time
from it a CNF representation of ¬¬D, that is a CNF representation C of D.

Because the languages DNF and CNF are incomparable with respect to suc-
cinctness [71], it can be the case that the translation to CNF leads to a formula
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the size of which is exponentially larger (resp. smaller) than the size of the DNF
formula. Furthermore, when one takes advantage of the OBDD-based approach,
since the language OBDD is incomparable with respect to succinctness with DNF,
it can also be the case that the OBDD obtained as an intermediate representation
has a size which is exponentially larger (resp. smaller) than the size of the DNF
formula, and since OBDD is also incomparable with respect to succinctness with
CNF, it can also be the case that the size of the output CNF is exponentially larger
(resp. smaller) than the size of the OBDD representation.

While all those approaches can be used for the variable elimination step, it
turns out that it would not make sense to take advantage of any of them given
our very objective (counting the number of models of ∃X.Σ). Indeed, those ap-
proaches are not incremental in essence (the variables are eliminated as a whole,
and not one by one). Clearly enough, it would not make sense to eliminate the
variables incrementally using them (by repeating the elimination process focus-
ing on a single variable at each step), since as soon as a DNF formula equivalent
to ∃x.Σ has been generated (with x the first variable of X to be eliminated), the
elimination of all the other variables of X can be achieved easily. Incremental-
ity is important since one wants to possibly avoid eliminating a variable would it
be too computationally expensive to do so. More importantly, the computational
effort spent for computing D is much more than one expects for a preprocess-
ing technique for model counting. Indeed, the DNF formula D is by construction
an irredundant, yet deterministic implicant cover of ∃X.Σ: on the one hand, re-
moving a term from D might not preserve the equivalence D ≡ ∃X.Σ, and on
the other hand the terms in D are pairwise inconsistent (if gammai denotes the
term generated at step i, then each γi is an implicant of ¬γ1 ∧ . . . ∧ ¬γi–1). As a
consequence, ‖D‖ = ‖∃X.Σ‖ can be computed in polynomial time from D. Ac-
cordingly, those approaches can be considered as compilation-based techniques
for model counting.

Other approaches rely on a substitute-then-simplify principle. Basically, ap-
plying this principle consists in considering the variables x of X successively and
for each of them, to replace Σ by (Σ | ¬x)∨(Σ | x) once simplified (using the laws
of Boolean calculus). By construction, the formula obtained once all the variables
have been eliminated is equivalent to ∃X.Σ. Clearly enough, such approaches
are incremental ones but in spite of it, they are not suited to our purpose: they
do not ensure that the output formula ∃X.Σ is in CNF format or in DNF format
(which is a requirement here since one wants to use a model counter downstream,
and existing model counters take CNF formulae as inputs). Indeed, when Σ is a
CNF formula, the formula generated is a disjunction of CNF formulae. Turning
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it into an equivalent CNF formula (or an equivalent DNF formula) may lead to
an exponential blowup (i.e., in the worst case, the size of the resulting formula is
exponential in the size of the given disjunction of CNF formulae).

A fundamental difference of our resolution-based algorithm E for variable
elimination compared to all those approaches is that E is not asked to always
succeed in eliminating all the given variables. Indeed, a variable x from X = O
is eliminated by E only if its elimination does not lead to increase the number
of clauses of the input CNF formula Σ. In order to maintain this number small
enough, some efficient preprocessing techniques (vivification and focused occur-
rence simplification) as well as a postprocessing technique (the removal of sub-
sumed resolvents) are exploited. Since variable elimination is incremental in our
approach, one can take advantage of an elimination ordering; the chosen order-
ing promotes the selection of variables minimizing the number of resolvents that
could be generated. The selection heuristics used is actually dynamic in the sense
that the elimination of a variable is possibly postponed.

6.2. Definability Bipartition
Finally, a paper describing an approach closely related to our own one, is [40].

In this work, the authors present a smart preprocessing technique for computing
an approximation of the number of models of a propositional formula Σ, with
some approximation guarantees. This goes through a notion of independent sup-
port of Σ. While the authors do not report any explicit connection with the notion
of definability, it turns out that a subset I of variables of Var(Σ) is an independent
support of Σ if and only if 〈I, Var(Σ) \ I〉 is a definability bipartition of Σ. Thus,
the authors are interested in computing a definability bipartition of Σ (just like us
in this paper) but not for the same purpose (one wants to compute the exact num-
ber of models of Σ). The key of their approach is that affine clauses over I (i.e.,
variables of I connected using occurrences of the XOR connective) are 3-universal
hash functions. As such, they can be exploited to compute an (ε, δ)-approximation
of ‖Σ‖, and this can be achieved without eliminating any variable of Var(Σ) \ I
in Σ (there is no need of E or any similar algorithm for this task). Basically, the
approach consists in focusing on randomly chosen parts11 of the search space
(the set of all interpretations over Var(Σ)) characterized by the interpretations that
satisfy the conjunction of the affine clauses that are considered; multiplying the
number of parts by the median number of the number of models of Σ in each of

11Of course, sufficiently many parts must be considered to ensure the expected confidence 1 – δ.
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those parts then gives an estimate of ‖Σ‖. In practice, considering affine clauses
with low density (i.e., based on a ”small” set I) leads to much improved perfor-
mances of the solvers used to count the number of models of Σ in each cell. This
justifies to look for ”small” independent sets.

To do the job, the authors exhibit a reduction from the problem of computing
an independent support of a CNF formula Σ to the problem of computing a group-
oriented unsatisfiable subset of clauses of a CNF formula. More generally, they
show that the problem of computing a subset-minimal (resp. a smallest) indepen-
dent support of Σ amounts to computing a GMUS, i.e., a group-oriented minimal
unsatisfiable subset (resp. an SGMUS, i.e., a minimum-sized group-oriented min-
imal unsatisfiable subset) of a formula that can be computed in time polynomial
in the size of Σ (see [40] for details). Formally, a GMUS (resp. SGMUS) of a set
∆ of propositional formulae can be defined as follows (see e.g., [72, 73]):

Definition 5 (GMUS, SGMUS). Let ∆ be the union (
⋃n

i=1 ∆i)∪Ω of (finite) sets
of propositional formulae, forming a partition, such that ∆ is unsatisfiable.

• A group-oriented minimal unsatisfiable subset (GMUS) (also referred to as
high-level MUS) of ∆ is a set of formulae Φ = (

⋃n
i=1 Φi) ∪ Ω such that:

– ∀i ∈ {1, . . . , n}, Φi ⊆ ∆i,

– Φ is unsatisfiable,

– ∀i ∈ {1, . . . , n}, Φ \ Φi is satisfiable.

• A minimum-sized group-oriented minimal unsatisfiable subset (SGMUS) of
∆ is a GMUS of ∆ of minimal cardinality.

The reduction used in [40] can be viewed as an extension of Padoa’s approach
(as reflected by Theorem 2) for checking the definability in Σ on I of the whole
set of variables Var(Σ) \ I (instead of doing it one variable after the other, as it is
the case in B). Since the concept of MUS (and its ”neighborhood”) has given rise
to an abundant literature (together with the implementation of several solvers) for
the past few years (see e.g., [72, 74, 75, 73, 52, 76, 77, 78]), the reduction gives the
opportunity to take advantage of GMUS and SGMUS extractors for implement-
ing pieces of software for computing independent supports of Σ that are subset-
minimal independent supports or among the smallest independent supports. Thus,
the solver MIS for computing subset-minimal independent supports is based on
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Figure 9: Comparison of the performance of the bipartitioners MIS and B.

the GMUS extractor MUSer2 [73], while the solver SMIS for computing smallest
independent supports is based on the SGMUS extractor forqes [78].

Using such a reduction has some pros and some cons. On the one hand, the
implementation effort is reduced. On the other hand, there is no way to set (even
partially) the ordering with respect to which the variables of Σ will be tested for
definability, i.e., as members of O. In order to compare the performances of B
and MIS, we have performed some additional experiments based on the 703 CNF
instances described before. The obtained results are reported in the two scatter
plots given in Figure 9. As usual, each point in those plots corresponds to a given
CNF instance Σ. On Figure 9a where the scales of both axes are logarithmic,
the x-coordinate of a point Σ is the time (in seconds) needed by B to compute a
definability bipartition of Σ, while the y-coordinate of Σ is the time needed by
MIS to do the same job. Figure 9b is about the proportion of variables found
as output variables by both approaches: the x-coordinate (resp. y-coordinate) of
a point Σ is the value of the ratio |O|

|Var(Σ)| when O is the set of output variables
found by B (resp. by MIS).

Figure 9a shows, on the one hand, that B is significantly faster than MIS.
Figure 9b shows, on the other hand, that the number of output variables (once
normalized) found by the two bipartitioners are quite close whenever the com-
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putation terminated. However, it finished in due time much more often when B
was used than when MIS was used. Interestingly, Figure 9b also shows that the
proportion of output variables exceeds 50% of the total number of variables for
many benchmarks, which explains why B + E is a useful preprocessing technique
in practice.

Finally, Figures 10a and 10b reports histograms that indicate (respectively)
for each of the two partitioners the number of instances Σ (the heights of the
rectangles on the y-axis) for which a ratio of |O|

|Var(Σ)| variables (given on the x-
axis) has been found.

Two main observations can be made from Figure 10. On the one hand, the
number of instances that have not been solved by MIS in due time is much larger
than the corresponding number for B. This coheres with what was observed on
Figure 9. On the other hand, B proves to be slightly better than MIS in the sense
that it often found slightly more output variables than MIS, especially when this
number is huge. Finally, Figure 10 shows more clearly than Figure 9b that a large
ratio of output variables (let us say, > 50%) can be found in a large number of
benchmarks (MIS found 466 such instances (over 703), while B found 577 such
instances).
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7. Conclusion

We have defined and evaluated a new preprocessing technique for counting the
models of a propositional CNF formula Σ. This technique consists in determining
first a definability bipartition of Σ into a set I of input variables and a set O of
output variables, then to eliminate in Σ some variables of O. The soundness of
this technique is based on standard theorems in classical logic by Beth and Padoa.
While those results are quite old, they prove useful for defining a quite effective
preprocessing technique to model counting.

More in detail, in order to evaluate the performances of our approach on CNF
formulae, we have designed and implemented a preprocessor B + E that is based
on it. B + E associates with a given CNF formula Σ a CNF formula B + E(Σ)
which has the same number of models as Σ, but is often simpler with respect
to the number of variables and size. We tested B + E over many benchmarks
from different data sets. Experiments have shown that for many instances Σ,
the overall computation time needed to calculate ‖B + E(Σ)‖ using state-of-the
art exact model counters is often much lower than the time needed to compute
‖Σ‖ with the same counters. This performance shift can be explained by the two
following facts: on the one hand, for many instances, a large number of gates
exist; on the other hand, such gates can be detected and eliminated using B + E.

In our experiments, we have also considered the possibility to combine the two
preprocessors pmc and B + E in sequence before model counting, in order to deter-
mine whether some synergetic effects can be obtained via an improved reduction
of the instances. Generally speaking, the results show only slight improvements
for the two combinations (pmc then B + E, and B + E then pmc), both in terms of
the reductions of the number of variables and of the size of the instances, and also
in terms of reduction of the subsequent model counting time (whatever the model
counter among the four used). For this reason, and since the paper is already quite
long, we refrained from reporting the corresponding results (they can be obtained
from the authors on demand).

This work opens a number of perspectives for further research. Considering
other heuristics in B for determining a definability bipartition and determining
how to tune the constants max#C and max#Res depending on the instance at
hand will deserve to be investigated.

Another perspective consists in trying to improve E by exploiting in it some
additional preprocessing techniques p. Indeed, it is not mandatory for p to be
equivalence-preserving. Actually, p can be exploited as soon as it satisfies the
equivalence ∃E.p(Σ) ≡ ∃E.Σ, which is less demanding than p(Σ) ≡ Σ. This
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is the case for instance for some specializations to variables from E of existing
preprocessing techniques, such as the pure output literal rule (removing every
clause containing a pure literal from E) or the output blocked clause elimination
rule (removing every clause containing a variable from E such that every resolvent
in Σ obtained by resolving on this variable is a valid clause) [79].

It would be also useful to evaluate the benefits that could be obtained in prac-
tice by considering more computationally demanding versions of B and of E when
the objective is to compute an approximate compilation of Σ on a set of control-
lable variables. Indeed, in such a case, both the B step and the E step are performed
off-line. Thus, it makes sense to spend some extra time (even if it is significant)
to compute a ”better” definability bipartition (especially, a smallest definability
bipartition) and to eliminate more output variables if this leads to a smaller com-
piled form. Some experiments will be conducted to try to figure out what a good
time/space trade-off could be.

Other perspectives concern the interface between definability, model counting
and projected model counting. When the objective is to compute ‖Σ‖, instead of
taking advantage of B + E followed by any model counter as discussed before, we
could instead use B followed by any projected model counter (where the projection
is onto I). The other way around, when the objective is to compute ‖∃(Var(Σ) \
C).Σ‖, we could refrain from using B and exploit E directly on Var(Σ) \ C and
Σ as a preprocessing for projected model counting. It would be interesting to
implement both approaches and to determine whether they are helpful in practice.
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