
HAL Id: hal-02505516
https://univ-artois.hal.science/hal-02505516

Submitted on 22 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Oxysterols and the NeuroVascular Unit (NVU): A far
true love with bright and dark sides

Julien Saint-Pol, Fabien Gosselet

To cite this version:
Julien Saint-Pol, Fabien Gosselet. Oxysterols and the NeuroVascular Unit (NVU): A far true love with
bright and dark sides. Journal of Steroid Biochemistry and Molecular Biology, 2019, 191 (105368),
�10.1016/j.jsbmb.2019.04.017�. �hal-02505516�

https://univ-artois.hal.science/hal-02505516
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


 1

Oxysterols and the NeuroVascular Unit (NVU): a far true love with bright and dark sides 

Julien SAINT-POL1* and Fabien GOSSELET1 
 

1University of Artois, Blood-Brain Barrier Laboratory (BBB Lab), EA2465, F-62300 Lens, FRANCE. 

*Corresponding author: julien.saintpol@univ-artois.fr 

 

 

 

Abstract: 

The brain is isolated from the whole body by the blood-brain barrier (BBB) which is located 

in brain microvessel endothelial cells (ECs). Through physical and metabolic properties 

induced by brain pericytes, astrocytes and neurons (these cells and the ECs referred to as 

the neurovascular unit (NVU)), the BBB hardly restricts exchanges of molecules between the 

brain and the bloodstream. Among them, cholesterol exchanges between these two 

compartments are very limited and occur through the transport of LDLs across the BBB. 

Oxysterols (mainly 24S and 27-hydroxycholesterol) daily cross the BBB and regulate 

molecule/cholesterol exchanges via Liver X nuclear Receptors (LXRs). In addition, these 

oxysterols have been linked to pathological processes in neurodegenerative diseases such as 

Alzheimer’s disease. Here we propose an overview of the actual knowledge concerning 

oxysterols and the NVU cells in physiological and in Alzheimer’s disease. 
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Introduction 

 

   Since their discovery, the opinion about oxysterols changed from cholesterol catabolites 

and wastes to key regulators of cell viability and proliferation, inflammatory processes, and 

cholesterol homeostasis. The brain and the peripheral cholesterol pools being separated by 

the blood-brain barrier (BBB), oxysterols, able to cross the BBB, are essential to control the 

in situ produced brain cholesterol pool and to maintain the brain and the neurovascular unit 

(NVU) cholesterol homeostasis. Moreover, oxysterols are the ‘sensors’ of both the 

peripheral and the central nervous system (CNS) cholesterol homeostasis and can, 

particularly for 24S-hydroxycholesterol (24S-OH-Chol) and 27-hydroxycholesterol (27-OH-

Chol), testifying to some neurodegenerative disorders such as Alzheimer’s disease (AD). In 

this review we describe the exchanges of oxysterols across the BBB, then shed the light on 

the mechanisms of cholesterol homeostasis controlled by oxysterols in the NVU. We also 

summarize their impacts on Aß peptide burden in brain and transport across the BBB. 

Finally, we discuss a new potential therapeutic approach in AD, based on the use of 24S-OH-

Chol.  

 

 

1. The Blood-Brain Barrier, a compulsory pathway for oxysterols between the blood and 

the brain 

 

  The brain homeostasis is maintained and highly controlled by a natural barrier located in 

the brain microvessels that drastically restricts and controls the exchanges of molecules and 

cells between the brain compartment from the bloodstream. This barrier is named the 

blood-brain barrier (BBB). The BBB phenotype (Figure 1) held by the endothelial cells (ECs) is 

characterised by: (i) the presence of different junction complexes between the ECs such as 

tight junctions and adherens junctions which limit the paracellular transport of compounds 

(ii) a reduced aspecific transcytosis, the latter is mainly driven by specific transporters or 

receptors through clathrin and/or caveolae-dependent transcytosis; (iii) a restricted free 

diffusion of compounds due to metabolic enzymes such as cytochrome p450 enzymes 

(CYPs), monoamine oxidase (MAO), endothelin-converting enzymes (ECEs), and efflux pumps 

(P-glycoprotein, Multidrug Resistance Proteins (MRPs), etc) (for review, (Sweeney et al. 

2019). The appearance and the maintenance of the BBB phenotype are due to the cell-cell 

communication between ECs and their neighbour cells in brain microvessels (brain pericytes, 
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astrocytes and neurons (Daneman et al. 2010)). These four cell types form a physiological 

and functional cell assembly referred to as the NeuroVascular Unit (NVU)(Muoio et al. 2014). 

   Through these control systems, the BBB also keeps the brain isolated from the 

bloodstream in terms of cholesterol metabolism, despite the important needs of cholesterol 

to ensure the neuronal functions (Saher et al. 2005). Indeed, brain represents 2% of the 

body weight but contains nearly 25% of the overall content of cholesterol, most of the 

cholesterol is enriched in axonal myelin sheets. Free cholesterol exchanges across the BBB 

are very limited (Chobanian and Hollander 1962, Chobanian et al. 1962, Spady et al. 1987, 

Wilson 1970), and are mediated by the Low-Density Lipoproteins (LDLs) transcytosis from 

blood to brain across the BBB (Candela et al. 2008, Dehouck et al. 1997). This low cholesterol 

intake from the bloodstream is compensated by a significant de novo synthesis of 

cholesterol in astrocytes that transfer this lipid to neurons by producing High-Density 

Lipoprotein (HDL)-like particles (a process detailed in the part 2.). CNS elimination of 

cholesterol is subsequently possible after its oxidation into 24S-OH-Chol by subsets of 

neurons expressing the enzyme CYP46A1. This oxysterol is mainly eliminated (6 mg/day) in 

the bloodstream through the BBB to be metabolised by the liver into bile acids (Figure 

2.A,(Bjorkhem 2006, Bjorkhem et al. 2019)). Thus, contrary to cholesterol and according to 

the hypothesis developed by Meaney and colleagues, oxysterols are able to cross the BBB 

thanks to the presence of a hydroxyl group on the carboxy-terminal tail of cholesterol 

molecule which provides a better diffusion through the plasma membrane by reducing the 

hydrophobic interaction with the phospholipids (Figure 2.B,(Meaney et al. 2002)). Despite 

that 24S-OH-Chol is mainly produced in brain, CYP46A1 is also expressed in brain capillary 

ECs, suggesting a small but existing local production of 24S-OH-chol at the BBB level 

(Schweinzer et al. 2011).  

27-hydroxycholesterol (27-OH-Chol), the major oxysterol in plasma and produced in the liver 

by the enzyme sterol-27 hydroxylase (or CYP27A1), is known to enter the brain (5 mg/day) to 

be metabolised by neurons (Cali and Russell 1991, Heverin et al. 2005, Lutjohann et al. 1996, 

Meaney et al. 2004). After modifications by the enzymes CYP7A1/B1, CYP47A1 and HSB3B7, 

27-OH-Chol is transformed into 7α-hydroxy-3-oxo-4-cholestenoic acid (7α-OH-4-CA), this 

metabolite then exits the brain (2 mg/day) to be used in liver for the production of primary 

bile acid (Figure 2.B,(Heverin et al. 2004, Meaney et al. 2007)). Therefore, the BBB is daily 

crossed by 24S-OH-Chol and 27-OH-Chol which are considered as ‘sensors’ of the cholesterol 
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homeostasis, and this barrier is responsible of the existence of physiological ratios of 24S-

OH-Chol/ 27-OH-Chol: 0.5 (1/2) in blood and in 10 (10/1) in brain (Leoni et al. 2003). In 

contrast, for some minor circulating oxysterols such as 25-hydroxycholesterol (25-OH-Chol), 

their concentration is too low to measure any transport across the BBB (lower than 10 

ng/mL, between 30 and 150 ng/mL for the major oxysterols such as 24S-OH-Chol and 27-OH-

Chol,(Griffiths et al. 2006)). However, the wide expression of the cholesterol 25-hydroxylase 

(CH-25-H), which converts cholesterol into 25-OH-Chol, could suggest a global production of 

25-OH-Chol and a possible transport across the BBB following concentration gradient which 

remains undetermined yet (Bjorkhem and Diczfalusy 2002, Breuer and Bjorkhem 1995, Lund 

et al. 1999).  

   Thus, the BBB is crossed by constant passive fluxes of oxysterols due to their permissive 

chemical structures and following their concentration gradient. It is also described that 

oxysterols can be shuttled by HDLs across the BBB as demonstrated for 24S-OH-Chol 

(Panzenboeck et al. 2002, Saint-Pol et al. 2012). Another study using rats and oatp2-

expressing oocytes highlighted the possible role of organic anion transporter transporting 

polypeptide 2 (oatp2) in the transport of 24S-OH-Chol out of the brain (Ohtsuki and Terasaki 

2007). 

 

2. Oxysterols and the regulation of the cholesterol homeostasis in the NVU 

   As natural endogenous agonists of the Liver X nuclear Receptors (LXRs), oxysterols 

stimulate the expression of the LXR target genes involved in the regulation of the cholesterol 

homeostasis. The most characterized LXR target genes are Abca1, Abcg1, Apoa-1 and Apoe 

coding for the proteins ATP Binding Cassette sub-family A member 1 (ABCA1), ABCG1 and 

the apolipoproteins A-1 (ApoA-1) and ApoE, respectively (Hu et al. 2010). These proteins 

mediate the reverse cholesterol transfer (RCT) from cells to (apo)lipoproteins and are key 

regulators of cellular cholesterol homeostasis (Figure 3). The role of oxysterols in cholesterol 

homeostasis in the NVU has been studied first focusing on the brain part (astrocytes and 

neurons), and more recently at the BBB levels, since brain microvessels and brain pericytes 

express LXR nuclear receptors and their target genes (Akanuma et al. 2008, Gosselet et al. 

2009, Panzenboeck et al. 2002, Saint-Pol et al. 2013, Saint-Pol et al. 2012).  

   In brain, 24S-OH-Chol is involved in a regulatory loop between astrocytes and neurons to 

control brain cholesterol homeostasis. In fact, the excess of cholesterol in neurons is 
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metabolized into 24S-OH-Chol which regulates the cholesterol production de novo (through 

a negative control on the 3-Hydroxy-3-MethylGlutaryl-Coenzyme A (HMG-CoA) reductase) 

and increases the expression of ABCA1, ABCG1 and ApoE in a dose-dependent manner as 

demonstrated in primary astrocytes and CCF-STTGA astrocytoma cell line (Abildayeva et al. 

2006). ABCA1 initiates the RCT in astrocytes by transferring cholesterol to non-lipidated 

ApoE to form discoid ApoE. This lipidation statement provides a second step of cholesterol 

transfer via ABCG1 leading to spheroid ApoE called ‘HDL-like’ particles because their density 

is close to circulating HDL density. The cholesterol and cholesterol esters in HDL-like particles 

are then uptaken by neurons via the Low-Density Lipoprotein Receptor (LDLR) or Low-

Density Lipoprotein Receptor-related Proteins (LRPs) to ensure the synaptic 

communications, the electric isolation and repair of myelin sheets (Hirsch-Reinshagen and 

Wellington 2007, Pfrieger 2003, Saher et al. 2005). According to former studies performed in 

rats by 18O2 inhalation, about 2/3 of brain cholesterol produced de novo is converted into 

24S-OH-Chol per hour, highlighting the importance of the 24S-OH-Chol regulatory loop in 

brain cholesterol homeostasis (Bjorkhem and Lewenhaupt 1979, Bjorkhem et al. 1997). 27-

OH-Chol has been recently described to modulate the cholesterol homeostasis in astrocytes 

in a study performed with C6 glioma cells. This oxysterol decreased free cholesterol and 

cholesterol ester content and the expression of HMG-CoA reductase, SREBP1-a and LDLR in a 

dose-dependent manner (An et al. 2017).  

   Concerning the BBB, we and others characterized in vitro the impact of both 24S-OH-Chol 

and 27-OH-Chol in cholesterol homeostasis in brain microvessel ECs and in brain pericytes. 

Both oxysterols increase the expression of ABCA1 and ABCG1 in a dose-dependent manner 

in porcine (Panzenboeck et al. 2002, Panzenboeck et al. 2006) and bovine primary brain 

capillary ECs (Saint-Pol et al. 2013), as well as in human brain-like endothelial cells (Saint-Pol 

and Gosselet, unpublished data). Since the presence of tight junctions in the apical part of 

brain microvessel ECs, Panzenboeck’s team studied the role of 24S-OH-Chol and 27-OH-Chol 

in ABCA1 and ABCG1 polarization. In a non-stimulated condition, ABCA1 is mainly localized 

at the abluminal side of the ECs (Panzenboeck et al. 2006, Schweinzer et al. 2011), whereas 

ABCG1 is located in both sides (Kober et al. 2017). Oxysterols stimulation of ABCG1 

expression does not impact its location (Kober et al. 2017), but the increased expression of 

ABCA1 is associated with its relocalization in both luminal and abluminal sides of the ECs 

(Panzenboeck et al. 2002). In brain pericytes, 24S-OH-Chol (Saint-Pol et al. 2012) and 27-OH-
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Chol (Saint-Pol et al., unpublished data) increase the expression of only ABCA1. ABCG1 

seems to be neither expressed nor induced by the treatment in these cells. In terms of RCT, 

the increased expression of ABCA1 is correlated with an increase of cholesterol efflux from 

brain pericytes to ApoA-1 (secreted from ECs), ApoE3, ApoE4 and HDL. The absence of 

ABCG1 in brain pericytes can be compensated by the presence of Scavenger Receptor B 

member 1 (SR-B1) and ABCG4, both involved in the release of free cholesterol and 

cholesterol ester to discoid ApoE or HDL (Do et al. 2012, Rigotti et al. 2003) but their 

expression is modified neither by 24S-OH-Chol nor by 27-OH-Chol ((Saint-Pol et al. 2012) and 

unpublished data). In ECs, 24S-OH-Chol and 27-OH-Chol increase the total cholesterol efflux 

to ApoA-1 and HDL3 through the increase of ABCA1 and ABCG1 expression and function 

(Kober et al. 2017, Panzenboeck et al. 2006, Saint-Pol et al. 2013). As the ECs are in direct 

contact with the bloodstream, the RCT is slightly different from the one previously described 

in the brain (Figure 3). ABCA1 initiates the RCT through the transfer of free cholesterol and 

cholesterol ester to ApoA-1 to form pre-ß HDL particles, the latter are then loaded with 

cholesterol ester to form immature HDL3. ABCG1 finishes the RCT by releasing cholesterol to 

HDL3 via the ApoM exposed at their surface (Kober et al. 2017). The neoformed HDL2 

particles is then uptaken by cells to access the pool of cholesterol they carry, or are 

metabolized in the liver. Hence, oxysterols control cholesterol homeostasis within the NVU 

through the activation of LXR pathway and the function of their target genes in RCT, and 

according to the surface represented by the BBB (18 m2 representing about 600 km of brain 

microvessels inside the brain), the maintenance of the NVU cholesterol homeostasis 

contributes (at least in part) to the regulation and the maintenance of brain cholesterol 

homeostasis. 

 

3. The NVU, oxysterols and Alzheimer’s disease 

   AD is a neurodegenerative disease characterised by two major hallmarks: (i) 

hyperphosphorylation and/or abnormal phosphorylation of tau proteins leading to the 

appearance of neurofibrillary tangles (NFTs); (ii) an altered clearance of amyloid-ß (Aß) 

peptides which accumulate around brain microvessels of the BBB and in the brain 

parenchyma, thus leading to the formation of amyloid plaques. NFTs and Aß plaques 

promote neuronal cell death and the progressive cognitive decline (Querfurth and LaFerla 

2010). Despite some recent data suggesting that the AD-associated tauopathy is responsible 
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for vascular damages and for the BBB breakdown (Bennett et al. 2018, Blair et al. 2015), the 

vascular side of AD is commonly associated with a defective clearance of Aß peptides 

through the BBB and their accumulation in perivascular spaces leading to a cerebral amyloid 

angiopathy (CAA)(Mawuenyega et al. 2010, Thal et al. 2008). Furthermore, the BBB is 

involved in bidirectional Aß peptide exchanges between the brain and the blood ((Gosselet 

et al. 2013); Figure 4, bright side). Influx of Aß peptides across the BBB, i.e. their entry in the 

brain, is driven by the receptor for advanced glycation end-products (RAGE) which is 

expressed in the luminal side of the brain microvessel ECs, and is restricted by several efflux 

pumps including P-glycoprotein (ABCB1) and breast cancer resistance protein (BCRP or 

ABCG2,(Candela et al. 2010)). Efflux of Aß peptides across the BBB is dependent of ABCG4 

and a possible tandem LRP1-ABCB1 (Candela et al. 2015, Do et al. 2012, Storck et al. 2018). 

LRP1 is 1000 times more expressed in brain pericytes than in ECs (Gosselet et al. 2009, 

Candela et al. 2015) and is involved in Aß peptide accumulation in brain pericytes (Candela 

et al. 2015, Wilhelmus et al. 2007). LRP1 mediates also Aß-ApoE complexes from the brain 

(Bachmeier et al. 2013). Moreover, Panzenboeck’s team demonstrated that porcine primary 

brain capillary ECs expressed the precursor of Aß peptide (APP) and the secretases 

responsible of amyloidogenic and non-amyloidogenic cleavage of APP, ECs have a slight but 

local production of Aß peptides (Schweinzer et al. 2011). 

   Plethora of studies have highlighted the close relationship between AD and brain 

cholesterol metabolism (Vance 2012). ABCA1, the major LXR target gene, was thought to be 

involved in Aß uptake and /or degradation since Lxrs or Abca1-deficient AD mice showed an 

increased Aß peptide deposition in brain parenchyma (Koldamova R. et al. 2005a, Wahrle et 

al. 2005, Zelcer et al. 2007). On the contrary, Abca1 knock-in AD mice or AD mice treated 

with LXR agonists demonstrated a decreased Aß burden in brain associated with a 

progressive cognitive recovery (Burns et al. 2006, Donkin et al. 2010, Fitz et al. 2010, 

Koldamova R. P. et al. 2005b, Riddell et al. 2007, Wahrle et al. 2008). We investigated the 

effect of LXR stimulation by both 24S-OH-Chol and 27-OH-Chol in soluble Aß peptide 

transport across the brain microvessel ECs and Aß uptake by brain pericytes and clearly 

demonstrated that ABCA1 is not involved in these processes despite an increased expression 

(Saint-Pol et al. 2013, Saint-Pol et al. 2012). Interestingly, 24S-OH-Chol and 27-OH-Chol 

decreased Aß peptide influx across brain microvessel ECs through an increase of ABCB1 

protein expression and function. As ABCB1 is not linked to the LXR pathway, we concluded 
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that oxysterols may regulate ABCB1 expression through an indirect pathway that remains to 

be investigated (Saint-Pol et al. 2013). 

   In terms of APP cleavage in brain capillary ECs, 24S-OH-Chol and 27-OH-Chol decreased 

BACE1 expression, the secretase involved in the initiation of the amyloidogenic cleavage of 

APP (and the further production of Aß peptides) and promoted the release of sAPPα in the 

basolateral side (i.e. brain side), a soluble fragment associated with the non-amyloidogenic 

cleavage of APP (Schweinzer et al. 2011). However, these findings are in opposition with 

previous data obtained in SH-SY5Y neuroblastoma cells where 24S-OH-Chol and 27-OH-Chol 

differentially regulated APP processing, 27-OH-Chol regulation was in favour of Aß1-42 

production (Prasanthi et al. 2009) and 24S-OH-Chol altered intracellular APP trafficking 

which is retained in the endoplasmic reticulum (Urano et al. 2013), thus decreasing Aß 

production. Since 24S-OH-Chol/27-OH-Chol ratios in brain and in blood are altered in AD in 

the benefit of 27-OH-Chol (Bjorkhem 2006), the suggested amyloidogenic regulation of 27-

OH-Chol on APP processing and the increased expression of CYP27A1 in AD patient brains 

(Testa et al. 2016) could be in favour of an increased production of Aß peptides. Further 

investigations would be therefore needed to clarify this APP processing regulation by 

oxysterols. (Figure 4, dark side) 

   The rate of circulating 24S-OH-Chol decreases with age and is altered in AD patients as 

reported by an altered 24S-OH-Chol/27-OH-Chol ratios observed in AD patients compared 

with healthy people (Bjorkhem 2006). This alteration depends on the stage of the disease. 

Indeed, it has been previously demonstrated that the plasma 24S-OH-Chol concentration is 

increased in early stages of AD (Lutjohann et al. 2000), whereas this concentration 

decreased following the progression of the disease (Bretillon et al. 2000a, Bretillon et al. 

2000b). These variations are correlated with the observed alteration of neuronal CYP46A1 

activity and expression in AD patient brains (Bogdanovic et al. 2001, Testa et al. 2016). 

Moreover, the inhibition of Cyp46a1 in APP23 mouse hippocampus in vivo by a small hairpin 

RNA (shRNA) led to an increase of neuronal cholesterol levels, more apoptotic cell death and 

the production of Aß peptides and phosphoTau (Djelti et al. 2015). A recent study shed the 

light on the effect of efavirenz, an anti-retroviral drug used as anti-HIV, on the CYP46A1 

activity in 5xFAD mice. The treated mice showed improved cognitive functions in association 

with a decreased Aß burden (Mast et al. 2017). However, once the treatment stopped, the 

activation of CYP46A1 and the brain cholesterol turnover stopped, promoting the long-term 
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spatial memory defects and short-term memory troubles (Mast et al. 2017). Moreover, even 

these potential benefit effects in the CNS, efavirenz treatments in mice have been reported 

to promote a progressive BBB disruption (increased BBB permeability and decreased 

expression of claudin-5) associated with vascular side effect such as stroke (Bertrand et al. 

2016). The use of efavirenz or the development of chemical analogues with lower side 

effects, and particularly on the BBB, needs obviously to be optimized. However, CYP46A1 

activity in AD appears to be crucial not only to maintain brain and the NVU cholesterol 

homeostasis, but also to prevent cognitive decline and the apparition of AD hallmarks in 

brain and altered Aß peptide clearance, identifying therefore CYP46A1 as a new promising 

therapeutic target in AD. 

 

 

Conclusion 

 

The BBB, which is included in a bigger cellular complex referred to as the NVU (including 

brain pericytes, astrocytes and neurons of the perivascular spaces), is the main road of 

oxysterols exchanges, and oxysterols ratios determined by this barrier are key indicators to 

distinguish physiological and neurodegenerative contexts. Oxysterols, and particularly 24S-

OH-Chol and 27-OH-Chol, contribute to control and maintain the complex brain cholesterol 

homeostasis which is in part correlated with the maintenance of the NVU cholesterol 

homeostasis. The maintenance of stable concentrations of 24S-OH-Chol and physiological 

24S-OH-Chol/27-OH-Chol ratios by targeting CYP46A1 seems to improve not only the 

cognitive functions and to lessen Aß burden in brain, but also to keep the physiological 

regulation of Aß peptide exchanges through the BBB, allowing a potential double-sided 

therapeutic approach in AD which could limit the perivascular defects of the disease. 
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FIGURES 

 

Figure 1: Induction and maintenance of the blood-brain barrier (BBB) main features on 

brain microvessel endothelial cells. AJs: Adherens Junctions, JAMs: Junctional Adhesion 

Molecules, LAMs: Leukocyte Adhesion Molecules, LDLR: Low-Density Lipoprotein Receptor, 

NVU: NeuroVascular Unit, PDGF: Platelet-Derived Growth Factor, TJs: Tight Junctions. 

 

Figure 2: Exchanges of oxysterols across the BBB. Major passive fluxes of oxysterols (A) and 

the actual hypothesis of oxysterol passive diffusion across the membrane leaflets (B). 7α-

OH-4-CA: 7α-hydroxy-3-oxo-4-cholestenoic acid, 24S-OH-Chol: 24S-hydroxycholesterol, 27-

OH-Chol: 27-hydroxycholesterol, AJs: Adherens Junctions, BM: Basement membrane, 

CYP7A1/B1: cholesterol 7α-hydroxylase, CYP27A1: sterol 27-hydroxylase, CYP46A1: 

cholesterol 24-hydroxylase, EC: Endothelial Cell, HSB3B7: 3ß-hydroxy-C27-steroid 

deshydrogenase/hydroxylase, P: Pericyte, TJs: Tight Junctions. 

 

Figure 3: Regulation of cholesterol homeostasis in the NVU by oxysterols and ratio 24S-OH-

Chol/27-OH-Chol (R) in plasma and brain. 24S-OH-Chol: 24S-hydroxycholesterol, 27-OH-

Chol: 27-hydroxycholesterol, ABCs: ATP-Binding Cassettes, AJs: Adherens Junctions, Apo: 

Apolipoprotein, CETP: Cholesteryl Ester Transfert Protein, CYP46A1: cholesterol 24-

hydroxylase, EC: Endothelial Cell, HDL: High-Density Lipoprotein, HMG-CoA: 3-hydroxy-3-

methylglutaryl Coenzyme A, HMG-CoAR: 3-hydroxy-3-methylglutaryl Coenzyme A 

Reductase, LDLR: Low-Density Lipoprotein Receptor, LRPs: Low-density lipoprotein receptor-

Related Peptides, P: Pericyte, SR-B1: Scavenger Receptor class B member 1, TJs: Tight 

Junctions. 

 

Figure 4: 24S-OH-Chol, 27-OH-Chol and Alzheimer’s disease - bright and dark sides within 

the NVU. 24S-OH-Chol: 24S-hydroxycholesterol, 27-OH-Chol: 27-hydroxycholesterol, Aß: ß-

amyloid, ABCs: ATP-Binding Cassettes, ABCB1: ATP-Binding Cassette sub-family B member 1 

(i.e. P-glycoprotein or P-gp), ABCC1: ATP-Binding Cassette sub-family C member 1 (i.e. 

Multidrug Resistance-associated Protein 1 or MRP1), ABCG2: ATP-Binding Cassette sub-

family G member 2 (i.e. Breast Cancer Resistance Protein or BCRP), AJs: Adherens Junctions, 

APP: Amyloid Precursor Peptide, BACE1: ß-site APP Cleaving Enzyme 1, BBB: Blood-Brain 
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Barrier, APP-ßCTF: APP-ß CarboxyTerminal Fragment, CYP46A1: cholesterol 24-hydroxylase, 

EC: Endothelial Cell, LRP1: Low-density lipoprotein receptor-Related Peptide 1, P: Pericyte, 

RAGE: Receptor for Advanced Glycation End-products, TJs: Tight Junctions. 
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