Armin Biere 
  
Daniel Le Berre 
  
Emmanuel Lonca 
  
Norbert Manthey 
  
Detecting Cardinality Constraints in CNF

published or not. The documents may come   L'archive ouverte pluridisciplinaire

Introduction

Current benchmarks in CNF contain various Boolean functions encoded with clauses [START_REF] Ostrowski | Recovering and exploiting structural knowledge from cnf formulas[END_REF][START_REF] Fu | Extracting logic circuit structure from conjunctive normal form descriptions[END_REF]. Among them, cardinality constraints n i=1 l i ⊗ k with ⊗ ∈ {<, ≤ , =, ≥, >} are Boolean functions whose satisfiability is determined by counting the satisfied literals on the left hand side and compare them to the right hand side (the threshold ). For instance, x 1 + x 2 + ¬x 3 + ¬x 4 ≤ 2 is satisfied iff at most 2 of its literals are satisfied. A wide use case of those constraints is to encode that a domain variable v takes one value of the discrete set {o 1 , o 2 , . . . , o n }, which is represented by the n Boolean variables v oi and the cardinality constraint v oi = 1. Since cardinality constraints are Boolean functions, they can be expressed by an equivalent CNF. The "theoretical" approach, i.e. the one found in [START_REF] Cook | On the complexity of cutting-plane proofs[END_REF] for instance, translates a cardinality constraint n i=1 l i ≤ k using n k+1 negative clauses of size k + 1. Such encoding is called binomial because of the number of generated clauses. In practice, introducing new variables to reduce the number of clauses in the CNF usually results in a better performance. Various encodings have been proposed in the last decade (see for instance [START_REF] Frisch | Sat encodings of the at-most-k constraint: Some old, some new, some fast, some slow[END_REF] for a survey). We discuss commonly used encodings in next section.

Pseudo-Boolean solvers use a proof system like generalized resolution [START_REF] Hooker | Generalized resolution and cutting planes[END_REF], which is a specific form of the cutting planes proof system [START_REF] Cook | On the complexity of cutting-plane proofs[END_REF] that p-simulates resolution. This way, these solvers are able to solve instances of the Pigeon Hole Principle [START_REF] Haken | The intractability of resolution[END_REF] when they are given cardinality constraints but not when they are given the same problem expressed with clauses. The reason of that behavior is that applying generalized resolution on clauses is equivalent to resolution [START_REF] Hooker | Generalized resolution and cutting planes[END_REF], while on cardinality constraints generalized resolution is a specific form of cutting planes [START_REF] Cook | On the complexity of cutting-plane proofs[END_REF]. Retrieving cardinality constraints from clauses in the cutting planes proof system requires a very specific procedure. Take for instance the cardinality constraint

x 1 + x 2 + x 3 + x 4 ≤ 1
which is equivalent to

x 1 + x 2 + x 3 + x 4 ≥ 3
This cardinality constraint is represented in CNF using the following clauses:

¬x 1 ∨ ¬x 2 , ¬x 1 ∨ ¬x 3 , ¬x 1 ∨ ¬x 4 , ¬x 2 ∨ ¬x 3 , ¬x 2 ∨ ¬x 4 , ¬x 3 ∨ ¬x 4
These clauses can be represented as binary cardinality constraints:

x 1 + x 2 ≤ 1, x 1 + x 3 ≤ 1, x 1 + x 4 ≤ 1, x 2 + x 3 ≤ 1, x 2 + x 4 ≤ 1, x 3 + x 4 ≤ 1
Retrieving the original cardinality from the clauses represented by cardinalities ≤ 1 requires to derive intermediate constraints as shown below (from [START_REF] Cook | On the complexity of cutting-plane proofs[END_REF]):

x 1 + x 2 ≤ 1 x 1 + x 2 ≤ 1 x 1 + x 3 ≤ 1 x 2 + x 3 ≤ 1 x 1 + x 3 ≤ 1 x 1 + x 4 ≤ 1 x 1 + x 4 ≤ 1 x 2 + x 4 ≤ 1 x 2 + x 3 ≤ 1 x 2 + x 4 ≤ 1 x 3 + x 4 ≤ 1 x 3 + x 4 ≤ 1 x 1 + x 2 + x 3 ≤ 1 x 1 + x 2 + x 4 ≤ 1 x 1 + x 3 + x 4 ≤ 1 x 2 + x 3 + x 4 ≤ 1
For the first column, summing the three cardinality constraints leads to 2x 1 + 2x 2 +2x 3 ≤ 3, which can be reduced to x 1 +x 2 +x 3 ≤ 1 by dividing the inequality by 2 and rounding down the threshold. The same process can be applied to derive the other cardinality constraints in the last line. Finally, summing up these four cardinality constraints of 3 literals results in a cardinality constraint of 4 literals: 3x 1 + 3x 2 + 3x 3 + 3x 4 ≤ 4. The expected cardinality constraint

x 1 + x 2 + x 3 + x 4 ≤ 4
3 is obtained after division by 3 and rounding. The described process is tedious and not easy to integrate in a solver. Thus, the idea is to find a way to detect those cardinality constraints in a preprocessing step, independent from the original proof system of the solver.

The motivation for this work is to allow solvers to take advantage of those cardinality constraints, at least for space efficiency (support of native cardinality constraints) or because of a better proof system (e.g. Generalized Resolution [START_REF] Hooker | Generalized resolution and cutting planes[END_REF] or Cutting Planes [START_REF] Cook | On the complexity of cutting-plane proofs[END_REF]). Detecting cardinality constraints is also an interesting idea for pure SAT solvers, namely for constraints reencoding, e.g. to encode cardinality constraints back to CNF with an alternative and hopefully more efficient encoding [START_REF] Manthey | Quadratic direct encoding vs. linear order encoding, a one-out-of-n transformation on cnf[END_REF][START_REF] Manthey | Automated reencoding of boolean formulas[END_REF]. This is especially useful in practice to replace the commonly used pairwise encoding of ≤ 1 constraints with a more efficient encoding.

Short Review of Known Encodings

Before we discuss how to find encoded cardinality constraints, a few common encodings for widely used constraints are introduced. For the AtMost-1 constraint n i=1 x i ≤ 1 the naïve encoding, also known as pairwise encoding, is to exclude each pair of satisfied literals explicitly: n i=1 n j>i (¬x i ∨ ¬x j ). This way, a constraint with n variables requires n(n-1)

2

clauses. This encoding is also referred to as direct encoding in the CP community [START_REF] Walsh | Sat v csp[END_REF].

The nested encoding uses auxiliary variables to reduce the number of generated clauses from a quadratic number can to a linear number, by (recursively) splitting the constraint into two constraints:

n i=1 x i ≤ 1 = [y + ( n 2 -1 i=1 x i ) ≤ 1] ∧ [¬y + ( n i= n 2 -1 x i ) ≤ 1].
For n = 4, the naïve encoding requires six clauses, and the nested encoding requires six clauses as well, but has more variables. Hence, as soon as the number of variables for an AtMost-1 constraint is at most four, no more recursions are applied. This way, the nested encoding requires 3n -6 clauses.

The currently best known asymptotic (starting from n > 47 [START_REF] Manthey | Automated reencoding of boolean formulas[END_REF]) encoding for the AtMost-1 constraint is the two product encoding [START_REF] Chen | A new sat encoding of the at-most-one constraint[END_REF]. For n variables in the constraint, two integers p = √ n and q = n p are used to create two more AtMost-1 constraints: p i=1 r i ≤ 1 and q i=1 c i ≤ 1. These two constraints are used as selector for a row and a column. The variables x i are placed in a matrix, such that each variable x i is assigned exactly to one row selector r s and to one column selector c t with the clauses (¬x i ∨ r s ) and (¬x i ∨ c t ), where s = i-1 q + 1 and t = ((i -1) mod q) + 1). An illustration for 10 variables is given in Fig. 1.

Further proposed encodings for the AtMost-1 constraint are the log encoding [START_REF] Walsh | Sat v csp[END_REF], the ladder encoding [START_REF] Gent | A 0/1 encoding of the gaclex constraint for pairs of vectors[END_REF][START_REF] Gent | A new encoding of alldifferent into sat[END_REF] also defined independently in [START_REF] Ansótegui | Mapping problems with finite-domain variables to problems with boolean variables[END_REF], the commander encoding [START_REF] Klieber | Efficient cnf encoding for selecting 1 from n objects[END_REF], generalizations of the log encoding and the two-product encoding [START_REF] Frisch | Sat encodings of the at-most-k constraint: Some old, some new, some fast, some slow[END_REF], the bimander encoding [START_REF] Hölldobler | On SAT-Encodings of the At-Most-One Constraint[END_REF], as well as generalizations of the bimander encoding [START_REF] Barahona | Representative Encodings to Translate Finite CSPs into SAT[END_REF].

For cardinality constraints n i=1 x i ≤ k with a higher threshold k > 1, many encodings have been presented. Well known and sophisticated encodings are the partial sum encoding [START_REF] Aloul | Generic ilp versus specialized 0-1 ilp: an update[END_REF], totalizer encoding [START_REF] Bailleux | Efficient cnf encoding of boolean cardinality constraints[END_REF], the sequential counter encoding [START_REF] Sinz | Towards an optimal cnf encoding of boolean cardinality constraints[END_REF], BDDs [START_REF] Eén | Translating pseudo-boolean constraints into sat[END_REF] or sorting networks [START_REF] Eén | Translating pseudo-boolean constraints into sat[END_REF], cardinality networks [START_REF] Asín | Cardinality networks and their applications[END_REF], as well as the perfect hashing encoding [START_REF] Ben-Haim | Perfect hashing and cnf encodings of cardinality constraints[END_REF]. As shown in [START_REF] Manthey | Automated reencoding of boolean formulas[END_REF], these specialized encodings produce much smaller CNF formulas compared to the binomial encoding. However, it is not clear whether smaller is better in all contexts. A recent survey on practical efficiency of those encodings in the context of MaxSAT solving is available in [START_REF] Martins | Parallel search for maximum satisfiability[END_REF].

Static Detection of AtMost-1 and AtMost-2 Constraints

The naïve encoding of the AtMost-1 constraint can be detected by a syntactic analysis of the formula, namely by finding cliques in the NAND graph (NAG) of the formula, which is the undirected graph connecting literals that occur negated in the same binary clause. In [START_REF] Gil | Complete SAT solvers for Many-Valued CNF Formulas[END_REF][START_REF] Ansótegui | Exploiting multivalued knowledge in variable selection heuristics for sat solvers[END_REF], the authors modified the solvers zChaff and Satz to recognize those constraints using unit propagation and local search. A specific data structure for binary clauses is often found in modern SAT solvers to reduce the memory consumption of the solver. From such a graph AtMost-1 constraints can be extracted by syntactic analysis. The naïve encoding of the AtMost-2 constraint can be recognized by exploring ternary clauses. The tools 3MCard [START_REF] Van Lambalgen | 3MCard 3MCard A Lookahead Cardinality Solver[END_REF], Lingeling [START_REF] Biere | Lingeling, plingeling and treengeling entering the sat competition 2013[END_REF] and SBSAT [START_REF] Weaver | Satisfiability Advancements Enabled by State Machines[END_REF] can recover cardinality constraints based on a syntactic analysis, and hence their methods are presented below additionally to the new extraction method. Both 3MCard and SBSAT do not restrict their search on clauses of special size, but consider the whole formula: SBSAT constructs BDDs based on clauses that share the same variables. By merging and analyzing these BDDs cardinality constraints can be detected [START_REF] Weaver | Satisfiability Advancements Enabled by State Machines[END_REF]. The tool 3MCard builds a graph based on the binary clauses, and increases the current constraint while collecting more clauses [START_REF] Van Lambalgen | 3MCard 3MCard A Lookahead Cardinality Solver[END_REF]. Only Lingeling has special methods to extract AtMost-1 constraints, and AtMost-2 constraints.

Detecting the Pairwise Encoding

The structure of the pairwise encoding on the NAG is quite simple: if a clique is present in that graph, then the literals of the corresponding nodes form an AtMost-1 constraint. Since finding a clique of size k in a graph is NPcomplete [START_REF] Karp | Reducibility among combinatorial problems[END_REF], a preprocessing step should not perform a full clique search. The algorithm for greedily finding cliques as implemented in Lingeling goes over all literals n which have not been included in an AtMost-1 constraint yet. For each n the set S of candidate literals is initialized with n. Then all literals l which occur negated in binary clauses n ∨ l together with n, e.g. l and n are connected in the NAG, are considered, in an arbitrary order, and greedily added to S after checking that for each previously added k ∈ S a binary clause l ∨ k is also present in the formula, e.g. l and k have an edge in the NAG too. As an optimization, literals k which already occur in previously extracted AtMost-1 constraints are skipped. The final set S of nodes forms a clique in the graph. If |S| > 2 the clique is non-trivial and the AtMost-1 constraint l∈S ≤ 1 is added [START_REF] Biere | Lingeling, plingeling and treengeling entering the sat competition 2013[END_REF].

Detecting the Nested Encoding

Consider the nested encoding of the AtMost-1 constraint x 1 + x 2 + x 4 + x 5 ≤ 1, where the constraint is divided into the cardinality constraints x 1 + x 2 + x 3 ≤ 1 and ¬x 3 + x 4 + x 5 ≤ 1. They are represented in CNF by the six clauses (¬x 1 ∨ ¬x 2 ), (¬x 1 ∨ ¬x 3 ), (¬x 2 ∨ ¬x 3 ), (x 3 ∨ ¬x 4 ), (x 3 ∨ ¬x 5 ), (¬x 4 ∨ ¬x 5 ). Since there is no binary clause (¬x 1 ∨ ¬x 4 ), the above method cannot find this encoding. Here, we present another method that recognizes this encoding. The two smaller constraints can be recognized with the above method (their literals form two cliques in the NAG). Then, there is an AtMost-1 constraint for the literal x 3 , as well as for the literal ¬x 3 . By resolving the two constraints, the original constraint can be obtained. Algorithm 1 searches for exactly this encoding by combining pairs of constraints. For each variable v, all AtMost-1 constraints with different polarity are added and simplified. As a simplification it is checked, whether duplicate literals occur, or whether complementary literals Algorithm 1: Merge AtMost-1 Input: A set of "at most 1" cardinality constraints S, the set of variables V Output: An extended set of "at most 1" cardinality constraints occur. In the former case, the duplicated literal has to be assigned false, because that literal has now a weight of two in that constraint, while the threshold is 1. In the latter case, all literals of the constraint (A+B), except the complementary literal, has to be falsified (because x + x = 1, so the threshold is reduced by one to zero). The simplified constraint is added to the set of AtMost-1 constraint, which is finally returned by the algorithm.

1 foreach v ∈ V do 2 foreach A ∈ Sv do 3 foreach B ∈ S¬v do
Since the nested encoding can be encoded recursively, the algorithm can be called multiple times to find these recursive encodings. To not resolve the same constraints multiple times, for each variable the already seen constraints can be memorized, so that in a new iteration only resolutions with new constraints are performed. In practice, our implementation loops over the variables in ascending order exactly once. This seems to be sufficient, because the recursive encoding of constraints requires that the "fresh" variable is not present yet, so that the ascending order in the variable finds this encoding nicely.

Detecting the Two-Product Encoding

The two product encoding has a similar recursive structure as the nested encoding, however, its structure is more complex. Hence, this encoding is discussed in more details. The constraint in Fig. 1 illustrates an AtMost-1 constraint that is encoded with the two-product encoding.

For all concerned literals, in the example x 1 to x 10 , two implications are added to set the column and row selectors. For example, as x 7 is on the second row and the fourth column, the constraints x 7 → r 2 and x 7 → c 3 are added. In order to prevent two rows or two columns selectors to be set simultaneously, we also add AtMost-1 cardinality constraints on the c i and on the r i literals. Those new cardinality constraints are encoded using the pairwise encoding if their size is low, or using the two product encoding. As the product encoding of AtMost-1 constraints may generate other AtMost-1 constraints to be encoding in the same way, the algorithm may be written in a recursive way.

In the given constraint, the following implications to select a column and a row for x 7 are entailed by the encoding: x 7 → c 3 and x 7 → r 2 . Additionally,

c1 c2 c3 c4 r1 r2 r3 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 AMO AMO Selection Clauses (¬x1 ∨ r1) (¬x1 ∨ c1) (¬x2 ∨ r1) (¬x2 ∨ c2) (¬x3 ∨ r1) (¬x3 ∨ c3) (¬x4 ∨ r1) (¬x4 ∨ c4) (¬x5 ∨ r2) (¬x5 ∨ c1) (¬x6 ∨ r2) (¬x6 ∨ c2) (¬x7 ∨ r2) (¬x7 ∨ c3) (¬x8 ∨ r2) (¬x8 ∨ c4) (¬x9 ∨ r3) (¬x9 ∨ c1) (¬x10 ∨ r3) (¬x10 ∨ c2) Recursive AMO (¬r1 ∨ ¬r2) (¬r1 ∨ ¬r3) (¬r2 ∨ ¬r3) (¬c1 ∨ ¬c2) (¬c1 ∨ ¬c3) (¬c1 ∨ ¬c4) (¬c2 ∨ ¬c3) (¬c2 ∨ ¬c4) (¬c3 ∨ ¬c4)
Fig. 1. Encoding the AtMost-1 constraint i≤10 i=1 xi ≤ 1 with the two product encoding, and two auxiliary AtMost-1 constraints r1 + r2 + r3 ≤ 1 and c1

+ c2 + c3 + c4 ≤ 1.
the implications c 3 → ¬c 2 and ¬c 2 → (¬x 2 ∧ ¬x 6 ) by transitivity show, that x 7 → (¬x 6 ∧ ¬x 2 ). Since all implications are build on binary clauses, the reverse direction also holds: x 6 → ¬x 7 and x 2 → ¬x 7 . Hence, the constraints x 6 +x 7 ≤ 1 and x 2 + x 7 ≤ 1 can be deduced. However, the constraint x 2 + x 6 ≤ 1 cannot be deduced via the columns and their literals c 2 and c 3 . This constraint can still be found via rows, namely with the literals r 1 and r 2 . The same reasoning as for columns applies also to rows.

More generally, given an AtMost-1 constraint R, where the complement of a literal r i ∈ R implies some literal ¬x i (¬r i → ¬x i ), and furthermore, this literal ¬x i implies a literal b i , which belongs to another AtMost-1 constraint C, ¬b i ∈ C, then by using R as row constraint, and C as column constraint, an AtMost-1 constraint that includes x i can be constructed by searching for the remaining literals x j . Per literal a i in the row constraint R, literals x i implied by ¬r i can be collected as candidates to form a row in the two-product representation. Only literals x i that imply a different literal c i of the column constraint C are considered, so that the literal inside each row matches exactly one column in the matrix. The literals for one row already form an AtMost-1 constraint. For the next row r i+1 , more literals x i are collected in the same way, and added to the AtMost-1 constraint. This addition is sound based on the construction of the encoding: if one of the elements in the new AtMost-1 constraint is assigned to true, then this assignment implies its row and column variable to be satisfied as well. Since there is an AtMost-1 constraint enforced for both the rows and the columns, all other row and column variables are assigned false. Due to the implications in the Two-Product encoding, these falsified selector variables also falsify all variables (except the currently satisfied one) in the new AtMost-1 constraint, and hence only the initially satisfied variable remains satisfied.

To the best of our knowledge, no existing system is able to detect AtMost-1 constraints which are encoded in this way. We now present algorithm 2, that is able to find an approximation of the set of those constraints. Constructing new Algorithm 2: Extract AtMost-1 Constraints Two Product Encodings Input: A set of "at most 1" cardinality constraints S, the NAG of the formula Output: An extended set of "at most 1" cardinality constraints 1 foreach R ∈ AMO do AtMost-1 constraints based on the idea of the two-product encoding is done by first finding two AtMost-1 constraints R and C, which contain a literal r and c, which are used by some literal l as row selector and column selector (lines 1-6). Therefore, all AtMost-1 constraints R are considered, and a literal r is considered as row-selector variable. Next, the literal l is chosen to be part in the new two product AtMost-1. To reduce the computational work, the literal r is assumed to be the smallest literal in R, and the literal l is the smallest literal, such that ¬r → ¬l holds (lines 2-3). Finally, another AtMost-1 constraint C is selected, which contains the column selector literal c.

For each pair of AtMost-1s R and C, a new AtMost-1 can be constructed (line 7), by collecting all literals x i . The literals x i are called hitLit in the algorithm, because each such literal needs to imply a unique pair of row and column selector literals. This condition can be ensured by searching for literals that are implied by the complement of the column selector literal c: ¬c → ¬hitLit. Furthermore, a literal hitLit has to imply a row selector variable r ∈ R (lines 8-10). To ensure the second condition, an auxiliary set of literals hitSet is used, which stores all the literals of the row selector AtMost-1 constraint R during the analysis of each column. If for the current column selector c and the current literal hitLit a new selector targetLit ∈ hitSet is found (line 12), then the set hitSet of hit literals is updated by removing the current hit literal targetLit, and furthermore, the current hitting literal hitLit is added to the currently constructed AtMost-1 constraint (lines 14-15). Finally, the new AtMost-1 constraint is added to the set of constraints (line 19).

Detecting AtMost-2 Constraints

For a small number of literals x i , and small thresholds k, for example k = 2, the naïve binomial encoding is competitive. Therefore, a method for extracting this constraint is proposed as well. Similarly to the syntactic extraction of AtMost-1 constraints, the structure of ternary clauses is analyzed by a greedy algorithm. Starting with a seed literal n which does not occur in an extracted AtMost-2 constraint yet all ternary clauses with n are considered and the set of candidate literals is initialized by all literals which occur negated at least twice in these clauses. If the candidate set at one point contains less than 4 literals the algorithm moves on to the next seed literal n. Otherwise each triple of literals in S is tested to have a corresponding ternary clause in the formula. If this test fails the set of candidates is reduced by removing from S one of the literals in a triple without a matching clause. If |S| ≥ 4 and all triples can be matched with a clause, then the AtMost-2 constraint l∈S l ≤ 2 is added.

Semantic Detection of AtMost-k Constraints

Another approach to detect cardinality constraints is to use unit propagation in the spirit of [START_REF] Le Berre | Exploiting the real power of unit propagation lookahead[END_REF]. Using a more semantic approach instead of a pure syntactic approach allows to detect some nested cardinality constraints without requiring a specific procedure at the expense of performing unit propagation in a solver instead of traversing a NAG. The main advantage of the more semantic detection is that we may detect cardinality constraints as long as the encoding preserves arc-consistency by unit propagation. This allow us to propose an algorithm for all known encodings, that is also able to detect constraints that would not have been explicitly known at problem encoding time. However, our approach may not detect all cardinality constraints, since additional variables used in some encodings may interfere with the actual constraint variables, and make our algorithm produce truncated versions of the constraints to detect.

Basically our approach starts with a cardinality constraint n i=1 l i ≤ k and tries to extend it with new literals m such that (

n i=1 l i ) + m ≤ k.
Our contribution is an algorithm to detect cardinality constraints in CNF using unit propagation, such that these constraints contain as much literals as it is possible to detect using unit propagation.

Expanding a Cardinality Constraint With One Literal

The idea of the algorithm is as follows: Given a clause cl = l 1 ∨l 2 ∨..∨l n , we want to check if it belongs to a cardinality constraint cc = n i=1 l i + j m j ≤ n -1.

Indeed, we know that cl

= l 1 ∨ l 2 ∨ .. ∨ l n ≡ n i=1 l i ≥ 1 ≡ n i=1 l i ≤ n -1 = cc .
We are thus looking for literals m j which extend cc .

Going back to our nested encoding example based on a CNF α = ¬x 1 ∨ ¬x 2 , ¬x 1 ∨ ¬x 3 ,¬x 2 ∨ ¬x 3 ,x 3 ∨ ¬x 4 , x 3 ∨ ¬x 5 ,¬x 4 ∨ ¬x 5 . ¬x 1 ∨ ¬x 2 does represent the cardinality constraint x 1 + x 2 ≤ 1. If we assign both x 1 or x 2 in α, we notice that the literals ¬x 3 , ¬x 4 , ¬x 5 are derived by unit propagation in both cases. hence, we can extend x 1 + x 2 ≤ 1 by either x 3 , x 4 or x 5 , i.e. that the cardinality constraints

x 1 + x 2 + x 3 ≤ 1, x 1 + x 2 + x 4 ≤ 1,x 1 + x 2 + x 5 ≤ 1 are derivable from α.
More generally: if all valid maximal combinations of the literals in cc imply a literal ¬m, then m can be added to cc . We exploit the following property.

Proposition 1 Let α be a CNF. Let α(S) be the conjunction of the literals propagated in α under the set of assumptions S.

Let cc = n i=1 l i ≤ k. Let L = {l i | 1 ≤ i ≤ n} and L k = {S|[S ⊆ L] ∧ [|S| = k]}. If α |= cc and ∀S ∈ L k , α(S) |= ¬m then α |= ( n i=1 l i ) + m ≤ k. Proof. Let us suppose that ω is a model of α, α |= n i=1 l i ≤ k and ∀S ∈ L k , α(S) |= ¬m. Let us suppose that ω is not a model of α ∧ ( n i=1 l i ) + m ≤ k.
This implies that at least k + 1 literals in {l 1 , ..., l n } are set to true. As α |= n i=1 l i ≤ k, m must be set to true, which is inconsistent with the fact that ∀S ∈ L k , α(S) |= ¬m.

If several of those literals exist, it is not valid to add them at once to cc . In our running example, x 3 , x 4 and x 5 are candidates to extend x 1 +x 2 ≤ 1 but extending cc with all literals leads to the cardinality constraint x 1 +x 2 +x 3 +x 4 +x 5 ≤ 1, which is not derivable from α. We also need to pay attention to unit clauses in the original formula and literals implied by unit propagation. Those literals are by definition candidates to the cardinality constraint expansion. Adding those literals may results in a case where the only literals that will be able to expand the constraint through our algorithm are known to be falsified.

Consider the formula ¬x 1 ∨ ¬x 2 , ¬x 1 ∨ ¬x 3 , ¬x 3 ∨ ¬x 2 , ¬x 4 , and suppose you treat ¬x 1 ∨ ¬x 2 as the cardinality constraint x 1 + x 2 ≤ 1. Two literals are candidates to the clause expansion: x 3 and x 4 . If we choose x 4 , then the generated cardinality constraint is not tight because we know that x 4 must be falsified. Note that if unit propagation leads to unsatisfiability (⊥ is detected), we do not have to filter out the candidates, because all literals are implied by a falsified formula. In this case, we must pay attention that the candidate we choose for the expansion is not the complement of a literal that is already present in the initial cardinality constraint. This check is done in line 1 of Algorithm 3.

Algorithm 3 exploits Proposition 1 to find the complement of a literal that may expand a cardinality constraint. The set candidates keeps all the remaining candidates (the literals whose negation may expand the constraint). For each unit propagation phase, only literals that are propagated are kept, that is eliminating the ones for which there exists a subset L k that does not propagate them (this is, in fact, preserve arc-consistency). This procedure implies that for each literal ¬m in the set candidates, the literal m may expand the current cardinality constraint.

Algorithm 3: findExpandingLiterals

Input: a CNF formula α, a cardinality constraint n i=1 li ≤ k Output: a set of literals m such that ( n i=1 li) + m ≤ k 1 candidates ← {vi|vi ∈ V ARS(α)} ∪ {vi|vi ∈ V ARS(α)} \ {li}; 2 foreach S ⊆ {li} such that |S| = k do 3 propagated ← unitProp(α, S) ; 4 if ⊥ ∈ propagated then 5 candidates ← candidates ∩ propagated ; 6 if candidates = ∅ then 7 return ∅; 8 end 9 return candidates ; Lemma 1. Let α be a CNF. Let cc = n i=1 l i ≤ k such that α |= cc. ∀m ∈findExpandingLiterals(α,cc), α |= n i=1 l i + m ≤ k.

Maximal Cardinality Constraint Expansion

In practice, we are not going to learn any arbitrary cardinality constraint, but only the ones which cannot be extended further. Moreover, if a cardinality constraint corresponding to a clause cannot be extended at all, we will keep it in its clausal form. Algorithm 3 computes all the literals that are propagated through unit propagation by all sets L k . Once this set is empty, we are not able to find a literal that extends this constraint using the unit propagation. As long as there exists such literals, they may be added as proved by Proposition 1, as written in the following lemma.

Lemma 2. Let α be a CNF. ∀c ∈ α, α |= expandCardFromClause(α, c).

We iteratively find a new expanding literal, add the literal to the constraint, then search a new literal, and repeat these steps until there are no more expansion candidates. It is not necessary to compute all sets L k when the second iteration is reached. In fact, to find the n th literal of a constraint, we have computed n-1 k of the n k propagations that are required by the current call to Algorithm 3. The only sets L k that are not analyzed yet are the sets containing the literal that was added to the constraint in the most recent step. This procedure is shown in Algorithm 4. With this insight, we build an efficient algorithm to compute maximum cardinality constraints in Algorithm 5.

The computation of the n k unit propagations is the costly part of the algorithm. We assume that the unit propagation cost is bounded by the number of literals to produce the following lemma. 

Replacing Clauses by Cardinality Constraints

The last step in our approach is to detect clauses that are entailed by the cardinality constraints found so far. This step is important, because it allows to avoid considering clauses that would lead to already revealed cardinality constraints. Furthermore, we need to keep the clauses not covered by any cardinality constraint to build a mixed formula of cardinality constraints and clauses, which is logically equivalent to the original formula.

We use the rule described by Barth in [START_REF] Barth | Linear 0-1 inequalities and extended clauses[END_REF] and used in 3MCard [START_REF] Van Lambalgen | 3MCard 3MCard A Lookahead Cardinality Solver[END_REF] to determine if a clause (written as an at-most-k constraint) is dominated by a revealed cardinality constraint. This rule states that L ≥ d dominates L ≥ d iff |L \ L | ≤ d -d . So, before considering a clause for cardinality constraint expansion, we check using this rule if the clause is dominated by one of our new constraints. In this case, we do not search any expansion, and remove this clause from the problem. We also remove the clauses that have been expanded to cardinality constraints, as they are trivially dominated by the new constraint. To avoid redundancy it is important to first consider the smallest clauses as candidates for the expansion. In fact, while considering the smallest clauses first, we find the cardinality constraints with the lowest threshold first. Consider that l 1 + ... + l n ≤ k has been discovered, and that we take a look at a constraint where the sum part sums a subset of {l 1 , ..., l n } and where the threshold is k + d (d > 0). In this case, the latter constraint is always dominated by the former cardinality constraint, so there is no need to expand it.

Algorithm 5: expandCardFromClause

Input: a CNF formula α, a clause c Output: a cardinality constraint cc or c 1 cc ← l∈c l ≤ |c| -1 ; 2 candidates ← f indExpandingLiterals(α, cc) ; 3 while candidates = ∅ do 4 select m in candidates; 5 cc ← l i ∈cc li + m ≤ |c| -1 ;
As the new cardinality constraints are consequences of the formula and the removed clauses are consequences of the cardinality constraints, we ensure that the new formula is equivalent to the original one, as written in the following theorem.

Theorem 1. Let α be a CNF. Let k an arbitrary integer.

α ≡ revealCardsInCNF(α, k) In our nested encoding example, our approach will work as follows. We first try to extend x 1 + x 2 ≤ 1. Our approach will find either x 1 + x 2 + x 3 ≤ 1 or x 1 + x 2 + x 4 + x 5 ≤ 1. Suppose it finds the longest one. The CNF is reduced from clauses dominated by that cardinality constraint: ¬x 1 ∨ ¬x 2 , ¬x 4 ∨ ¬x 5 . The next clause to consider is ¬x 1 ∨ ¬x 3 . We try to extend x 1 + ¬x 3 ≤ 1. We can extend it to x 1 + x 2 + x 3 ≤ 1. The clause ¬x 2 ∨ ¬x 3 , is removed from the CNF, because this clause is dominated by that new cardinality constraint. The next cardinality to extend is ¬x 3 +x 4 ≤ 1. The cardinality constraint ¬x 3 +x 4 +x 5 ≤ 1 is found. The remaining clauses are dominated by the cardinality constraints, so they are removed from the CNF. The procedure stops, since no more clauses have to be considered. Note that if the first cardinality constraint found is x 1 + x 2 + x 3 ≤ 1, the procedure will be unable to reveal x 1 + x 2 + x 4 + x 5 ≤ 1, because all clauses containing ¬x 1 would be removed from the CNF.

In terms of complexity, the worst case will be reached if we try to expand all clauses; implying the following complexity bound. 

Experimental Results

The experimental results show that the proposed methods detect a significant amount of cardinality constraints in CNFs. For this analysis we use academic benchmarks, like Sudoku puzzles and the pigeon hole problem, for which we know how many cardinality constraints are present in the CNF, and which are easy to solve using Generalized Resolution when the constraints are expressed using cardinality constraints. All the benchmarks were launched on Intel Xeon X5550 processors (@2.66GHz) with 32GB RAM and a 900s timeout. The static approach is implemented in the latest release of Lingeling. The static approach plus the specific handling of the two product encoding are implemented on Riss (so called Syntactic). The semantic detection of cardinality constraints is implemented on Riss. As Riss does not take advantage of those cardinality constraints for solving the benchmarks, we use it as a fast preprocessor to feed Sat4j which uses Generalized Resolution to solve the new benchmark with a mix of clauses and cardinality constraints. It allows us to check if the cardinality constraints found by the incomplete approaches are sufficient to solve those benchmarks. We compare the proposed approaches against SBSAT1 .

Pigeon hole principle

These famous benchmark are known to be extremely hard for resolution based solvers [START_REF] Haken | The intractability of resolution[END_REF]. For n + 1 pigeons and n holes, the problem is to assign each pigeon in a hole while not having more that one pigeon per hole. Each Boolean variable x i,j represents pigeon i is assigned hole j. The problem is expressed by n + 1 clauses n j=1 x i,j and n cardinality constraints n+1 j=1 x i,j ≤ 1. Those benchmarks are generated for n from 10 to 15, and n from 25 to 200 by steps of 25, using six different encodings: binomial, product, binary, ladder, commander and sequential. The results are presented in Table 2.

As expected, without revealing the cardinality constraint, Sat4j can only solve one or two problems. The semantic approach can detect many cardinality constraints and let Sat4j solve more instances than the other solvers -it is particularly efficient for the pairwise, sequential and commander encodings. Note that the instance using the pairwise encoding for n = 200 has 402000 variables and 4020201 clauses, which shows that our approach scales. The static analysis (with specific reasoning for the two product encoding) is also very efficient on most of the encodings, and is the best on the product encoding, as intended. The commander and binary encodings are most difficult to reveal using our techniques. SBSAT is not as efficient as our approaches, even if it got the best results for the ladder encoding. Lingeling is very efficient for the pairwise encoding, but not for the others, as intended too.

Small hard combinatorial benchmarks

Benchmarks of unsatisfiable balanced block designs are described in [START_REF] Spence | sgen1: A generator of small but difficult satisfiability benchmarks[END_REF][START_REF] Gelder | Zero-one designs produce small hard sat instances[END_REF]. They contain the cardinality constraints AtMost-2. We use the benchmarks submitted to the SAT09 competition (called sgen) which were the smallest hard unsatisfiable formulas as well as benchmarks provided by Jakob Nordström and Mladen Miksa from KTH [START_REF] Miksa | Long proofs of (seemingly) simple formulas[END_REF]. Both the syntactic and the semantic detection are able to recover quickly all cardinality constraints of these benchmarks and let the solver use them to prove unsatisfiability, as presented in Table 3. The solvers Lingeling and Sat4jCP, which do not use cardinality detection or generalized resolution, emphasize the fact these benchmarks are too difficult for existing solver.

Sudoku benchmarks

Sudoku puzzles contain only = 1 cardinality constraints represented by a clause and an AtMost-1 constraint. The puzzles are trivial to solve but interesting from a preprocessing point of view because the cardinality constraints share a lot of variables which may mislead our approximation methods. We use two instances representing empty n × n for n = 9 and n = 16. The grids contain n 2 × 4 AtMost-1 constraints, for n = 9 [START_REF] Gelder | Zero-one designs produce small hard sat instances[END_REF] there are 324(1024) constraints. All constraints are encoded with the pairwise encoding. The AtMost-1 constraints that can be found by the syntactic approach all contain 9 (resp. 16) literals, as expected. However, some constraints are missing: 300 constraints revealed out of 324 and 980 revealed out of 1024. The semantic preprocessor finds all the cardinality constraints for those benchmarks because each cardinality constraint has a binary clause which belongs to only this constraint, and hence is not discarded when another constraint is found. This specific clause is used to retrieve the cardinality constraint by addition of literals.

Conclusion

We presented two approaches to derive cardinality constraints from CNF. The first approach is based on the analysis of a NAND graph, the data structure used in some SAT solvers to handle binary clauses efficiently, to retrieve AtMost-1 or AtMost-2 constraints. The second approach, based on using unit propagation on the original CNF, is a generic way to derive AtMost-k constraints. We show that both approaches are able to retrieve cardinality constraints in known hard combinatorial problems in CNF. Our experiments suggest that the syntactic approach is particularly useful to derive AtMost-1 and AtMost-2 constraints while the semantic is more robust because this method is also able to detect cardinality constraints with an arbitrary threshold. Our approaches are useful for tackling the smallest unsolved UNSAT problems of the SAT 2009 competition (sgen) which are all solved by Sat4j using generalized resolution within seconds once the AtMost-2 constraints have been revealed (this fact was already observed in [START_REF] Weaver | Satisfiability Advancements Enabled by State Machines[END_REF]). The difference between the syntactic and semantic approaches is visible with the challenge benchmark from [START_REF] Gelder | Zero-one designs produce small hard sat instances[END_REF] that no solver could solve in one day. It is solved in a second after deriving 22 AtMost-2 and 20 AtMost-3 constraints when revealing the constraints using the semantic approach. The syntactic approach is not able to reveal those AtMost-3 constraints.

We have been able to reveal cardinality constraints on large application benchmarks. However, using that information to improve the run time of the solvers is future work. Checking if those constraints result from the original problem specification or are "hidden" constraints, i.e. constraints not explicitly known in the specification, is an open problem. An interesting research question, out of the scope of this paper, is to study the proof system of the combination of our semantic preprocessing step (extension rule and domination rule) plus generalized resolution.

4 S

 4 := S ∪ simplify(A + B)

2 r 3 l 5 do 6 foreach C ∈ AMO b do 7 newAMO 8 foreach k ∈ C do 9 hitSet

 2356789 = min(R) ; // smallest literal only = min(NAG(r)) ; // r is row-selector for l 4 foreach c ∈ NAG(l) ; // c is column-selector for l = ∅ ; // construct a new AMO based on R and C = R ; // to hit

Lemma 3 . 4 if ⊥ ∈ propagated then 5 candidates ← candidates ∩ propagated ; 6 if candidates = ∅ then 7 return ∅ ; 8 end 9

 345679 Let α be a CNF with n variables and l literals. Let c be a clause of α of size |c| = k + 1. expandCardFromClause(α, c) has a complexity in O( n k × l). Algorithm 4: refineExpandingLiterals Input: a CNF formula α, a cardinality constraint n i=1 li + lnew ≤ k, a set of literals L Output: a set of literals m such that ( n i=1 li) + lnew + m ≤ k 1 candidates ← L; 2 foreach S = S ∪ {lnew} such that S ⊆ {li} and |S| = k -1 do 3 propagated ← unitProp(α, S ) ; return candidates ;

6 candidates← 4 φ

 64 ref ineExpandingLiteral(α, cc, candidates \ {m}) ; 7 end 8 if |cc| > |c| then return cc; 9 else return c ; Algorithm 6: revealCardsInCNF Input: a CNF formula α and a bound k Output: a formula φ ≡ α containing cardinality constraints with threshold ≤ k and clauses 1 φ ← ∅ ; 2 foreach clause c ∈ α of increasing size -c-such that |c| ≤ k + 1 do 3 if there is no cardinality constraint cc ∈ φ which dominates c then ← φ ∪ expandCardF romClause(α, c) ;

Lemma 4 .

 4 Let α be a CNF with n variables, m clauses and l literals. Let k an integer such that 0 < k ≤ n and m k ≤ m the number of clauses of size ≤ k + 1 in α. revealCardsInCNF(α, k) has a complexity in O(m k × n k × l).

Fig. 3 .

 3 Fig. 3. Various hard combinatorial benchmarks families: number of solved instances and sum of run time for solved instances per solver configuration per family

  each literal once

	10	foreach hitLit ∈ NAG(k), hitLit / ∈ newAMO do
	20	end
	21	end
	22 end
	23 return AMO

11 foreach targetLit ∈ NAG(hitLit) do 12 if targetLit ∈ hitSet ; // found selector pair 13 then 14 hitSet := hitSet \ {targetLit}; // update hit set 15 newAMO := newAMO ∪ {hitLit} ; // update AMO 16 end 17 end 18 end 19 AMO := AMO ∪ newAMO ; // store new AMO constraint

  Six encodings of the pigeon hole instances: number of solved instances and sum of run time for solved instances per solver configuration per encoding.

	Preprocessor #inst. Lingeling Synt.(Riss) Sem.(Riss)	no	no
	Solver		Lingeling	Sat4jCP	Sat4jCP	SBSAT	Sat4jCP
	Pairwise	14	14 (3s)	13 (244s)	14 (583s)	6 (0s)	1 (196s)
	Binary	14	3 (398s)	2 (554s)	7 (6s)	6 (7s)	2 (645s)
	Sequential	14	0 (0s)	14 (50s)	14 (40s)	10 (6s)	1 (37s)
	Product	14	0 (0s)	14 (544s)	11 (69s)	6 (25s)	2 (346s)
	Commander	14	1 (3s)	7 (0s)	14 (40s)	9 (187s)	1 (684s)
	Ladder	14	0 (0s)	11 (505s) 11 (1229s) 12 (26s)	1 (36s)
	Fig. 2.						

We tried to run 3MCard on those benchmarks but the solver was not able to read or solve most of the benchmarks.

Acknowledgement

The authors would like to thank Jakob Nordström and his group from KTH for providing us the hard combinatorial benchmarks, pointing out the challenge benchmark, and the fruitful discussions about Sat4j proof system which motivated this work. The authors would like to thank the Banff International Research Station which hosted the Theoretical Foundations of Applied SAT Solving workshop (14w5101) which essentially contributed to this joint work. The authors would like to thank the anonymous reviewers for their helpful comments to improve this paper. This work has been partially supported by ANR TUPLES.