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3 Technische Universität Dresden

Abstract. We present novel approaches to detect cardinality constraints
expressed in CNF. The first approach is based on a syntactic analysis
of specific data structures used in SAT solvers to represent binary and
ternary clauses, whereas the second approach is based on a semantic
analysis by unit propagation. The syntactic approach computes an ap-
proximation of the cardinality constraints AtMost-1 and AtMost-2 con-
straints very fast, whereas the semantic approach has the property to be
generic, i.e. it can detect cardinality constraints AtMost-k for any k, at
a higher computation cost. Our experimental results suggest that both
approaches are efficient at recovering AtMost-1 and AtMost-2 cardinality
constraints.

1 Introduction

Current benchmarks in CNF contain various Boolean functions encoded with
clauses [30,15]. Among them, cardinality constraints

∑n
i=1 li⊗k with ⊗ ∈ {<,≤

,=,≥, >} are Boolean functions whose satisfiability is determined by counting
the satisfied literals on the left hand side and compare them to the right hand
side (the threshold). For instance, x1 +x2 +¬x3 +¬x4 ≤ 2 is satisfied iff at most
2 of its literals are satisfied. A wide use case of those constraints is to encode that
a domain variable v takes one value of the discrete set {o1, o2, . . . , on}, which
is represented by the n Boolean variables voi and the cardinality constraint∑
voi = 1.
Since cardinality constraints are Boolean functions, they can be expressed

by an equivalent CNF. The “theoretical” approach, i.e. the one found in [12] for
instance, translates a cardinality constraint

∑n
i=1 li ≤ k using

(
n

k+1

)
negative

clauses of size k + 1. Such encoding is called binomial because of the number of
generated clauses. In practice, introducing new variables to reduce the number
of clauses in the CNF usually results in a better performance. Various encodings
have been proposed in the last decade (see for instance [14] for a survey). We
discuss commonly used encodings in next section.

Pseudo-Boolean solvers use a proof system like generalized resolution [21],
which is a specific form of the cutting planes proof system [12] that p-simulates
resolution. This way, these solvers are able to solve instances of the Pigeon Hole
Principle [19] when they are given cardinality constraints but not when they are
given the same problem expressed with clauses. The reason of that behavior is



that applying generalized resolution on clauses is equivalent to resolution [21],
while on cardinality constraints generalized resolution is a specific form of cutting
planes [12]. Retrieving cardinality constraints from clauses in the cutting planes
proof system requires a very specific procedure. Take for instance the cardinality
constraint

x1 + x2 + x3 + x4 ≤ 1

which is equivalent to
x1 + x2 + x3 + x4 ≥ 3

This cardinality constraint is represented in CNF using the following clauses:

¬x1 ∨ ¬x2, ¬x1 ∨ ¬x3, ¬x1 ∨ ¬x4, ¬x2 ∨ ¬x3, ¬x2 ∨ ¬x4, ¬x3 ∨ ¬x4

These clauses can be represented as binary cardinality constraints:

x1 +x2 ≤ 1, x1 +x3 ≤ 1, x1 +x4 ≤ 1, x2 +x3 ≤ 1, x2 +x4 ≤ 1, x3 +x4 ≤ 1

Retrieving the original cardinality from the clauses represented by cardinalities
≤ 1 requires to derive intermediate constraints as shown below (from [12]):

x1 + x2 ≤ 1 x1 + x2 ≤ 1 x1 + x3 ≤ 1 x2 + x3 ≤ 1
x1 + x3 ≤ 1 x1 + x4 ≤ 1 x1 + x4 ≤ 1 x2 + x4 ≤ 1
x2 + x3 ≤ 1 x2 + x4 ≤ 1 x3 + x4 ≤ 1 x3 + x4 ≤ 1

x1 + x2 + x3 ≤ 1 x1 + x2 + x4 ≤ 1 x1 + x3 + x4 ≤ 1 x2 + x3 + x4 ≤ 1

For the first column, summing the three cardinality constraints leads to 2x1 +
2x2+2x3 ≤ 3, which can be reduced to x1+x2+x3 ≤ 1 by dividing the inequality
by 2 and rounding down the threshold. The same process can be applied to
derive the other cardinality constraints in the last line. Finally, summing up
these four cardinality constraints of 3 literals results in a cardinality constraint
of 4 literals: 3x1 + 3x2 + 3x3 + 3x4 ≤ 4. The expected cardinality constraint
x1 + x2 + x3 + x4 ≤ b 43c is obtained after division by 3 and rounding.

The described process is tedious and not easy to integrate in a solver. Thus,
the idea is to find a way to detect those cardinality constraints in a preprocessing
step, independent from the original proof system of the solver.

The motivation for this work is to allow solvers to take advantage of those
cardinality constraints, at least for space efficiency (support of native cardinality
constraints) or because of a better proof system (e.g. Generalized Resolution [21]
or Cutting Planes [12]). Detecting cardinality constraints is also an interesting
idea for pure SAT solvers, namely for constraints reencoding, e.g. to encode car-
dinality constraints back to CNF with an alternative and hopefully more efficient
encoding [27,26]. This is especially useful in practice to replace the commonly
used pairwise encoding of ≤ 1 constraints with a more efficient encoding.

2 Short Review of Known Encodings

Before we discuss how to find encoded cardinality constraints, a few common en-
codings for widely used constraints are introduced. For the AtMost-1 constraint



∑n
i=1 xi ≤ 1 the näıve encoding, also known as pairwise encoding, is to exclude

each pair of satisfied literals explicitly:
∧n

i=1

∧n
j>i(¬xi ∨ ¬xj). This way, a con-

straint with n variables requires n(n−1)
2 clauses. This encoding is also referred to

as direct encoding in the CP community [33].
The nested encoding uses auxiliary variables to reduce the number of gener-

ated clauses from a quadratic number can to a linear number, by (recursively)
splitting the constraint into two constraints:∑n

i=1 xi ≤ 1 = [y + (
∑bn2 c−1

i=1 xi) ≤ 1] ∧ [¬y + (
∑n

i=bn2 c−1
xi) ≤ 1].

For n = 4, the näıve encoding requires six clauses, and the nested encoding
requires six clauses as well, but has more variables. Hence, as soon as the number
of variables for an AtMost-1 constraint is at most four, no more recursions are
applied. This way, the nested encoding requires 3n− 6 clauses.

The currently best known asymptotic (starting from n > 47 [26]) encoding
for the AtMost-1 constraint is the two product encoding [11]. For n variables in
the constraint, two integers p = b

√
nc and q = dnp e are used to create two more

AtMost-1 constraints:
∑p

i=1 ri ≤ 1 and
∑q

i=1 ci ≤ 1. These two constraints are
used as selector for a row and a column. The variables xi are placed in a matrix,
such that each variable xi is assigned exactly to one row selector rs and to one
column selector ct with the clauses (¬xi∨rs) and (¬xi∨ct), where s = b i−1q c+1

and t = ((i− 1) mod q) + 1). An illustration for 10 variables is given in Fig. 1.
Further proposed encodings for the AtMost-1 constraint are the log encod-

ing [33], the ladder encoding [18,17] also defined independently in [3], the com-
mander encoding [23], generalizations of the log encoding and the two-product
encoding [14], the bimander encoding [20], as well as generalizations of the bi-
mander encoding [7].

For cardinality constraints
∑n

i=1 xi ≤ k with a higher threshold k > 1, many
encodings have been presented. Well known and sophisticated encodings are the
partial sum encoding [1], totalizer encoding [6], the sequential counter encod-
ing [31], BDDs [13] or sorting networks [13], cardinality networks [5], as well as
the perfect hashing encoding [9]. As shown in [26], these specialized encodings
produce much smaller CNF formulas compared to the binomial encoding. How-
ever, it is not clear whether smaller is better in all contexts. A recent survey
on practical efficiency of those encodings in the context of MaxSAT solving is
available in [28].

3 Static Detection of AtMost-1 and AtMost-2 Constraints

The näıve encoding of the AtMost-1 constraint can be detected by a syntactic
analysis of the formula, namely by finding cliques in the NAND graph (NAG)
of the formula, which is the undirected graph connecting literals that occur
negated in the same binary clause. In [4,2], the authors modified the solvers
zChaff and Satz to recognize those constraints using unit propagation and local
search. A specific data structure for binary clauses is often found in modern



SAT solvers to reduce the memory consumption of the solver. From such a
graph AtMost-1 constraints can be extracted by syntactic analysis. The näıve
encoding of the AtMost-2 constraint can be recognized by exploring ternary
clauses. The tools 3MCard [24], Lingeling [10] and SBSAT [34] can recover
cardinality constraints based on a syntactic analysis, and hence their methods are
presented below additionally to the new extraction method. Both 3MCard and
SBSAT do not restrict their search on clauses of special size, but consider the
whole formula: SBSAT constructs BDDs based on clauses that share the same
variables. By merging and analyzing these BDDs cardinality constraints can be
detected [34]. The tool 3MCard builds a graph based on the binary clauses,
and increases the current constraint while collecting more clauses [24]. Only
Lingeling has special methods to extract AtMost-1 constraints, and AtMost-2
constraints.

3.1 Detecting the Pairwise Encoding

The structure of the pairwise encoding on the NAG is quite simple: if a clique
is present in that graph, then the literals of the corresponding nodes form
an AtMost-1 constraint. Since finding a clique of size k in a graph is NP-
complete [22], a preprocessing step should not perform a full clique search. The
algorithm for greedily finding cliques as implemented in Lingeling goes over all
literals n which have not been included in an AtMost-1 constraint yet. For each
n the set S of candidate literals is initialized with n. Then all literals l which
occur negated in binary clauses n̄∨ l̄ together with n, e.g. l and n are connected
in the NAG, are considered, in an arbitrary order, and greedily added to S after
checking that for each previously added k ∈ S a binary clause l̄∨ k̄ is also present
in the formula, e.g. l and k have an edge in the NAG too. As an optimization,
literals k which already occur in previously extracted AtMost-1 constraints are
skipped. The final set S of nodes forms a clique in the graph. If |S| > 2 the
clique is non-trivial and the AtMost-1 constraint

∑
l∈S ≤ 1 is added [10].

3.2 Detecting the Nested Encoding

Consider the nested encoding of the AtMost-1 constraint x1 + x2 + x4 + x5 ≤ 1,
where the constraint is divided into the cardinality constraints x1 + x2 + x3 ≤ 1
and ¬x3 + x4 + x5 ≤ 1. They are represented in CNF by the six clauses
(¬x1 ∨ ¬x2), (¬x1 ∨ ¬x3), (¬x2 ∨ ¬x3), (x3 ∨ ¬x4), (x3 ∨ ¬x5), (¬x4 ∨ ¬x5).
Since there is no binary clause (¬x1 ∨ ¬x4), the above method cannot find this
encoding. Here, we present another method that recognizes this encoding. The
two smaller constraints can be recognized with the above method (their liter-
als form two cliques in the NAG). Then, there is an AtMost-1 constraint for
the literal x3, as well as for the literal ¬x3. By resolving the two constraints,
the original constraint can be obtained. Algorithm 1 searches for exactly this
encoding by combining pairs of constraints. For each variable v, all AtMost-1
constraints with different polarity are added and simplified. As a simplification
it is checked, whether duplicate literals occur, or whether complementary literals



Algorithm 1: Merge AtMost-1

Input: A set of “at most 1” cardinality constraints S, the set of variables V
Output: An extended set of “at most 1” cardinality constraints

1 foreach v ∈ V do
2 foreach A ∈ Sv do
3 foreach B ∈ S¬v do
4 S := S ∪ simplify(A + B)
5 end

6 end

7 end
8 return S ;

occur. In the former case, the duplicated literal has to be assigned false, because
that literal has now a weight of two in that constraint, while the threshold is 1.
In the latter case, all literals of the constraint (A+B), except the complementary
literal, has to be falsified (because x+ x = 1, so the threshold is reduced by one
to zero). The simplified constraint is added to the set of AtMost-1 constraint,
which is finally returned by the algorithm.

Since the nested encoding can be encoded recursively, the algorithm can be
called multiple times to find these recursive encodings. To not resolve the same
constraints multiple times, for each variable the already seen constraints can be
memorized, so that in a new iteration only resolutions with new constraints are
performed. In practice, our implementation loops over the variables in ascending
order exactly once. This seems to be sufficient, because the recursive encoding
of constraints requires that the “fresh” variable is not present yet, so that the
ascending order in the variable finds this encoding nicely.

3.3 Detecting the Two-Product Encoding

The two product encoding has a similar recursive structure as the nested encod-
ing, however, its structure is more complex. Hence, this encoding is discussed in
more details. The constraint in Fig. 1 illustrates an AtMost-1 constraint that is
encoded with the two-product encoding.

For all concerned literals, in the example x1 to x10, two implications are
added to set the column and row selectors. For example, as x7 is on the second
row and the fourth column, the constraints x7 → r2 and x7 → c3 are added. In
order to prevent two rows or two columns selectors to be set simultaneously, we
also add AtMost-1 cardinality constraints on the ci and on the ri literals. Those
new cardinality constraints are encoded using the pairwise encoding if their size
is low, or using the two product encoding. As the product encoding of AtMost-1
constraints may generate other AtMost-1 constraints to be encoding in the same
way, the algorithm may be written in a recursive way.

In the given constraint, the following implications to select a column and a
row for x7 are entailed by the encoding: x7 → c3 and x7 → r2. Additionally,



c1 c2 c3 c4

r1

r2

r3

x1 x2 x3 x4

x5 x6 x7 x8

x9 x10

AMO

AMO

Selection Clauses
(¬x1 ∨ r1) (¬x1 ∨ c1) (¬x2 ∨ r1)
(¬x2 ∨ c2) (¬x3 ∨ r1) (¬x3 ∨ c3)
(¬x4 ∨ r1) (¬x4 ∨ c4) (¬x5 ∨ r2)
(¬x5 ∨ c1) (¬x6 ∨ r2) (¬x6 ∨ c2)
(¬x7 ∨ r2) (¬x7 ∨ c3) (¬x8 ∨ r2)
(¬x8 ∨ c4) (¬x9 ∨ r3) (¬x9 ∨ c1)
(¬x10 ∨ r3) (¬x10 ∨ c2)

Recursive AMO
(¬r1 ∨ ¬r2) (¬r1 ∨ ¬r3) (¬r2 ∨ ¬r3)
(¬c1 ∨ ¬c2) (¬c1 ∨ ¬c3) (¬c1 ∨ ¬c4)
(¬c2 ∨ ¬c3) (¬c2 ∨ ¬c4) (¬c3 ∨ ¬c4)

Fig. 1. Encoding the AtMost-1 constraint
∑i≤10

i=1 xi ≤ 1 with the two product encoding,
and two auxiliary AtMost-1 constraints r1 + r2 + r3 ≤ 1 and c1 + c2 + c3 + c4 ≤ 1.

the implications c3 → ¬c2 and ¬c2 → (¬x2 ∧ ¬x6) by transitivity show, that
x7 → (¬x6 ∧¬x2). Since all implications are build on binary clauses, the reverse
direction also holds: x6 → ¬x7 and x2 → ¬x7. Hence, the constraints x6+x7 ≤ 1
and x2 +x7 ≤ 1 can be deduced. However, the constraint x2 +x6 ≤ 1 cannot be
deduced via the columns and their literals c2 and c3. This constraint can still be
found via rows, namely with the literals r1 and r2. The same reasoning as for
columns applies also to rows.

More generally, given an AtMost-1 constraint R, where the complement of a
literal ri ∈ R implies some literal ¬xi (¬ri → ¬xi), and furthermore, this literal
¬xi implies a literal bi, which belongs to another AtMost-1 constraint C, ¬bi ∈ C,
then by using R as row constraint, and C as column constraint, an AtMost-1
constraint that includes xi can be constructed by searching for the remaining
literals xj . Per literal ai in the row constraint R, literals xi implied by ¬ri
can be collected as candidates to form a row in the two-product representation.
Only literals xi that imply a different literal ci of the column constraint C are
considered, so that the literal inside each row matches exactly one column in
the matrix. The literals for one row already form an AtMost-1 constraint. For
the next row ri+1, more literals xi are collected in the same way, and added to
the AtMost-1 constraint. This addition is sound based on the construction of
the encoding: if one of the elements in the new AtMost-1 constraint is assigned
to true, then this assignment implies its row and column variable to be satisfied
as well. Since there is an AtMost-1 constraint enforced for both the rows and
the columns, all other row and column variables are assigned false. Due to the
implications in the Two-Product encoding, these falsified selector variables also
falsify all variables (except the currently satisfied one) in the new AtMost-1
constraint, and hence only the initially satisfied variable remains satisfied.

To the best of our knowledge, no existing system is able to detect AtMost-1
constraints which are encoded in this way. We now present algorithm 2, that is
able to find an approximation of the set of those constraints. Constructing new



Algorithm 2: Extract AtMost-1 Constraints Two Product Encodings

Input: A set of “at most 1” cardinality constraints S, the NAG of the formula
Output: An extended set of “at most 1” cardinality constraints

1 foreach R ∈ AMO do
2 r = min(R) ; // smallest literal only

3 l = min(NAG(r)) ; // r is row-selector for l
4 foreach c ∈ NAG(l) ; // c is column-selector for l
5 do
6 foreach C ∈ AMOb do
7 newAMO = ∅ ; // construct a new AMO based on R and C
8 foreach k ∈ C do
9 hitSet = R ; // to hit each literal once

10 foreach hitLit ∈ NAG(k), hitLit /∈ newAMO do
11 foreach targetLit ∈ NAG(hitLit) do
12 if targetLit ∈ hitSet ; // found selector pair

13 then
14 hitSet := hitSet \ {targetLit}; // update hit set

15 newAMO := newAMO ∪ {hitLit} ; // update AMO

16 end

17 end

18 end
19 AMO := AMO ∪ newAMO ; // store new AMO constraint

20 end

21 end

22 end
23 return AMO

AtMost-1 constraints based on the idea of the two-product encoding is done by
first finding two AtMost-1 constraints R and C, which contain a literal r and
c, which are used by some literal l as row selector and column selector (lines
1–6). Therefore, all AtMost-1 constraints R are considered, and a literal r is
considered as row-selector variable. Next, the literal l is chosen to be part in the
new two product AtMost-1. To reduce the computational work, the literal r is
assumed to be the smallest literal in R, and the literal l is the smallest literal,
such that ¬r → ¬l holds (lines 2–3). Finally, another AtMost-1 constraint C is
selected, which contains the column selector literal c.

For each pair of AtMost-1s R and C, a new AtMost-1 can be constructed (line
7), by collecting all literals xi. The literals xi are called hitLit in the algorithm,
because each such literal needs to imply a unique pair of row and column selector
literals. This condition can be ensured by searching for literals that are implied
by the complement of the column selector literal c: ¬c→ ¬hitLit. Furthermore,
a literal hitLit has to imply a row selector variable r ∈ R (lines 8–10). To ensure
the second condition, an auxiliary set of literals hitSet is used, which stores all
the literals of the row selector AtMost-1 constraint R during the analysis of each
column. If for the current column selector c and the current literal hitLit a new



selector targetLit ∈ hitSet is found (line 12), then the set hitSet of hit literals
is updated by removing the current hit literal targetLit, and furthermore, the
current hitting literal hitLit is added to the currently constructed AtMost-1
constraint (lines 14–15). Finally, the new AtMost-1 constraint is added to the
set of constraints (line 19).

3.4 Detecting AtMost-2 Constraints

For a small number of literals xi, and small thresholds k, for example k = 2, the
näıve binomial encoding is competitive. Therefore, a method for extracting this
constraint is proposed as well. Similarly to the syntactic extraction of AtMost-1
constraints, the structure of ternary clauses is analyzed by a greedy algorithm.
Starting with a seed literal n which does not occur in an extracted AtMost-2
constraint yet all ternary clauses with n̄ are considered and the set of candidate
literals is initialized by all literals which occur negated at least twice in these
clauses. If the candidate set at one point contains less than 4 literals the algo-
rithm moves on to the next seed literal n. Otherwise each triple of literals in
S is tested to have a corresponding ternary clause in the formula. If this test
fails the set of candidates is reduced by removing from S one of the literals in a
triple without a matching clause. If |S| ≥ 4 and all triples can be matched with
a clause, then the AtMost-2 constraint

∑
l∈S l ≤ 2 is added.

4 Semantic Detection of AtMost-k Constraints

Another approach to detect cardinality constraints is to use unit propagation in
the spirit of [25]. Using a more semantic approach instead of a pure syntactic
approach allows to detect some nested cardinality constraints without requiring
a specific procedure at the expense of performing unit propagation in a solver
instead of traversing a NAG. The main advantage of the more semantic detection
is that we may detect cardinality constraints as long as the encoding preserves
arc-consistency by unit propagation. This allow us to propose an algorithm for
all known encodings, that is also able to detect constraints that would not have
been explicitly known at problem encoding time. However, our approach may not
detect all cardinality constraints, since additional variables used in some encod-
ings may interfere with the actual constraint variables, and make our algorithm
produce truncated versions of the constraints to detect.

Basically our approach starts with a cardinality constraint
∑n

i=1 li ≤ k and
tries to extend it with new literals m such that (

∑n
i=1 li) +m ≤ k.

Our contribution is an algorithm to detect cardinality constraints in CNF
using unit propagation, such that these constraints contain as much literals as
it is possible to detect using unit propagation.

4.1 Expanding a Cardinality Constraint With One Literal

The idea of the algorithm is as follows: Given a clause cl = l1∨l2∨..∨ln, we want
to check if it belongs to a cardinality constraint cc =

∑n
i=1 li +

∑
j mj ≤ n− 1.



Indeed, we know that cl = l1 ∨ l2 ∨ ..∨ ln ≡
∑n

i=1 li ≥ 1 ≡
∑n

i=1 li ≤ n− 1 = cc′.
We are thus looking for literals mj which extend cc′.

Going back to our nested encoding example based on a CNF α = ¬x1 ∨ ¬x2,
¬x1 ∨ ¬x3,¬x2 ∨ ¬x3,x3 ∨ ¬x4, x3 ∨ ¬x5,¬x4 ∨ ¬x5. ¬x1 ∨ ¬x2 does represent
the cardinality constraint x1 +x2 ≤ 1. If we assign both x1 or x2 in α, we notice
that the literals ¬x3,¬x4,¬x5 are derived by unit propagation in both cases.
hence, we can extend x1 +x2 ≤ 1 by either x3, x4 or x5, i.e. that the cardinality
constraints x1 +x2 +x3 ≤ 1, x1 +x2 +x4 ≤ 1,x1 +x2 +x5 ≤ 1 are derivable from
α. More generally: if all valid maximal combinations of the literals in cc′ imply
a literal ¬m, then m can be added to cc′. We exploit the following property.

Proposition 1 Let α be a CNF. Let α(S) be the conjunction of the literals
propagated in α under the set of assumptions S. Let cc =

∑n
i=1 li ≤ k. Let

L = {li | 1 ≤ i ≤ n} and Lk = {S|[S ⊆ L] ∧ [|S| = k]}. If α |= cc and
∀S ∈ Lk, α(S) |= ¬m then α |= (

∑n
i=1 li) +m ≤ k.

Proof. Let us suppose that ω is a model of α, α |=
∑n

i=1 li ≤ k and ∀S ∈
Lk, α(S) |= ¬m. Let us suppose that ω is not a model of α∧ (

∑n
i=1 li) +m ≤ k.

This implies that at least k + 1 literals in {l1, ..., ln} are set to true. As α |=∑n
i=1 li ≤ k, m must be set to true, which is inconsistent with the fact that

∀S ∈ Lk, α(S) |= ¬m. ut

If several of those literals exist, it is not valid to add them at once to cc′. In our
running example, x3, x4 and x5 are candidates to extend x1+x2 ≤ 1 but extend-
ing cc′ with all literals leads to the cardinality constraint x1+x2+x3+x4+x5 ≤ 1,
which is not derivable from α. We also need to pay attention to unit clauses in
the original formula and literals implied by unit propagation. Those literals are
by definition candidates to the cardinality constraint expansion. Adding those
literals may results in a case where the only literals that will be able to expand
the constraint through our algorithm are known to be falsified.

Consider the formula ¬x1 ∨ ¬x2,¬x1 ∨ ¬x3,¬x3 ∨ ¬x2,¬x4, and suppose
you treat ¬x1 ∨ ¬x2 as the cardinality constraint x1 + x2 ≤ 1. Two literals
are candidates to the clause expansion: x3 and x4. If we choose x4, then the
generated cardinality constraint is not tight because we know that x4 must be
falsified. Note that if unit propagation leads to unsatisfiability (⊥ is detected),
we do not have to filter out the candidates, because all literals are implied by
a falsified formula. In this case, we must pay attention that the candidate we
choose for the expansion is not the complement of a literal that is already present
in the initial cardinality constraint. This check is done in line 1 of Algorithm 3.

Algorithm 3 exploits Proposition 1 to find the complement of a literal that
may expand a cardinality constraint. The set candidates keeps all the remaining
candidates (the literals whose negation may expand the constraint). For each unit
propagation phase, only literals that are propagated are kept, that is eliminating
the ones for which there exists a subset Lk that does not propagate them (this
is, in fact, preserve arc-consistency). This procedure implies that for each literal
¬m in the set candidates, the literal m may expand the current cardinality
constraint.



Algorithm 3: findExpandingLiterals

Input: a CNF formula α, a cardinality constraint
∑n

i=1 li ≤ k
Output: a set of literals m such that (

∑n
i=1 li) +m ≤ k

1 candidates← {vi|vi ∈ V ARS(α)} ∪ {vi|vi ∈ V ARS(α)} \ {li};
2 foreach S ⊆ {li} such that |S| = k do
3 propagated← unitProp(α,S) ;
4 if ⊥ 6∈ propagated then
5 candidates← candidates ∩ propagated ;
6 if candidates = ∅ then
7 return ∅;
8 end
9 return candidates ;

Lemma 1. Let α be a CNF. Let cc =
∑n

i=1 li ≤ k such that α |= cc.
∀m ∈findExpandingLiterals(α,cc), α |=

∑n
i=1 li +m ≤ k.

4.2 Maximal Cardinality Constraint Expansion

In practice, we are not going to learn any arbitrary cardinality constraint, but
only the ones which cannot be extended further. Moreover, if a cardinality con-
straint corresponding to a clause cannot be extended at all, we will keep it in its
clausal form. Algorithm 3 computes all the literals that are propagated through
unit propagation by all sets Lk. Once this set is empty, we are not able to find a
literal that extends this constraint using the unit propagation. As long as there
exists such literals, they may be added as proved by Proposition 1, as written
in the following lemma.

Lemma 2. Let α be a CNF. ∀c ∈ α, α |= expandCardFromClause(α, c).

We iteratively find a new expanding literal, add the literal to the constraint, then
search a new literal, and repeat these steps until there are no more expansion
candidates. It is not necessary to compute all sets Lk when the second iteration
is reached. In fact, to find the nth literal of a constraint, we have computed

(
n−1
k

)
of the

(
n
k

)
propagations that are required by the current call to Algorithm 3. The

only sets Lk that are not analyzed yet are the sets containing the literal that
was added to the constraint in the most recent step. This procedure is shown
in Algorithm 4. With this insight, we build an efficient algorithm to compute
maximum cardinality constraints in Algorithm 5.

The computation of the
(
n
k

)
unit propagations is the costly part of the algo-

rithm. We assume that the unit propagation cost is bounded by the number of
literals to produce the following lemma.

Lemma 3. Let α be a CNF with n variables and l literals. Let c be a clause of α
of size |c| = k+ 1. expandCardFromClause(α, c) has a complexity in O(

(
n
k

)
× l).



Algorithm 4: refineExpandingLiterals

Input: a CNF formula α, a cardinality constraint
∑n

i=1 li + lnew ≤ k, a set of
literals L

Output: a set of literals m such that (
∑n

i=1 li) + lnew +m ≤ k
1 candidates← L;
2 foreach S′ = S ∪ {lnew} such that S ⊆ {li} and |S| = k − 1 do
3 propagated← unitProp(α,S′) ;
4 if ⊥ 6∈ propagated then
5 candidates← candidates ∩ propagated ;
6 if candidates = ∅ then
7 return ∅ ;

8 end
9 return candidates ;

4.3 Replacing Clauses by Cardinality Constraints

The last step in our approach is to detect clauses that are entailed by the cardi-
nality constraints found so far. This step is important, because it allows to avoid
considering clauses that would lead to already revealed cardinality constraints.
Furthermore, we need to keep the clauses not covered by any cardinality con-
straint to build a mixed formula of cardinality constraints and clauses, which is
logically equivalent to the original formula.

We use the rule described by Barth in [8] and used in 3MCard [24] to de-
termine if a clause (written as an at-most-k constraint) is dominated by a re-
vealed cardinality constraint. This rule states that L ≥ d dominates L′ ≥ d′

iff |L \ L′| ≤ d − d′. So, before considering a clause for cardinality constraint
expansion, we check using this rule if the clause is dominated by one of our
new constraints. In this case, we do not search any expansion, and remove this
clause from the problem. We also remove the clauses that have been expanded
to cardinality constraints, as they are trivially dominated by the new constraint.

Algorithm 5: expandCardFromClause

Input: a CNF formula α, a clause c
Output: a cardinality constraint cc or c

1 cc←
∑

l∈c l ≤ |c| − 1 ;
2 candidates← findExpandingLiterals(α, cc) ;
3 while candidates 6= ∅ do
4 select m in candidates;
5 cc←

∑
li∈cc li + m ≤ |c| − 1 ;

6 candidates← refineExpandingLiteral(α, cc, candidates \ {m}) ;

7 end
8 if |cc| > |c| then return cc;
9 else return c ;



Algorithm 6: revealCardsInCNF

Input: a CNF formula α and a bound k
Output: a formula φ ≡ α containing cardinality constraints with threshold ≤ k

and clauses
1 φ← ∅ ;
2 foreach clause c ∈ α of increasing size —c— such that |c| ≤ k + 1 do
3 if there is no cardinality constraint cc ∈ φ which dominates c then
4 φ← φ ∪ expandCardFromClause(α, c) ;
5 end

6 end
7 return φ ;

To avoid redundancy it is important to first consider the smallest clauses as
candidates for the expansion. In fact, while considering the smallest clauses first,
we find the cardinality constraints with the lowest threshold first. Consider that
l1 + ... + ln ≤ k has been discovered, and that we take a look at a constraint
where the sum part sums a subset of {l1, ..., ln} and where the threshold is k+d
(d > 0). In this case, the latter constraint is always dominated by the former
cardinality constraint, so there is no need to expand it.

As the new cardinality constraints are consequences of the formula and the
removed clauses are consequences of the cardinality constraints, we ensure that
the new formula is equivalent to the original one, as written in the following
theorem.

Theorem 1. Let α be a CNF. Let k an arbitrary integer.

α ≡ revealCardsInCNF(α, k)

In our nested encoding example, our approach will work as follows. We first
try to extend x1 + x2 ≤ 1. Our approach will find either x1 + x2 + x3 ≤ 1 or
x1 +x2 +x4 +x5 ≤ 1. Suppose it finds the longest one. The CNF is reduced from
clauses dominated by that cardinality constraint: ¬x1 ∨ ¬x2,¬x4 ∨ ¬x5. The
next clause to consider is ¬x1 ∨ ¬x3. We try to extend x1 + ¬x3 ≤ 1. We can
extend it to x1 +x2 +x3 ≤ 1. The clause ¬x2 ∨ ¬x3, is removed from the CNF,
because this clause is dominated by that new cardinality constraint. The next
cardinality to extend is ¬x3 +x4 ≤ 1. The cardinality constraint ¬x3+x4+x5 ≤ 1
is found. The remaining clauses are dominated by the cardinality constraints,
so they are removed from the CNF. The procedure stops, since no more clauses
have to be considered. Note that if the first cardinality constraint found is x1 +
x2+x3 ≤ 1, the procedure will be unable to reveal x1+x2+x4+x5 ≤ 1, because
all clauses containing ¬x1 would be removed from the CNF.

In terms of complexity, the worst case will be reached if we try to expand all
clauses; implying the following complexity bound.

Lemma 4. Let α be a CNF with n variables, m clauses and l literals. Let k an
integer such that 0 < k ≤ n and mk ≤ m the number of clauses of size ≤ k + 1
in α. revealCardsInCNF(α, k) has a complexity in O(mk ×

(
n
k

)
× l).



Preprocessor #inst. Lingeling Synt.(Riss) Sem.(Riss) no no
Solver Lingeling Sat4jCP Sat4jCP SBSAT Sat4jCP

Pairwise 14 14 (3s) 13 (244s) 14 (583s) 6 (0s) 1 (196s)
Binary 14 3 (398s) 2 (554s) 7 (6s) 6 (7s) 2 (645s)

Sequential 14 0 (0s) 14 (50s) 14 (40s) 10 (6s) 1 (37s)
Product 14 0 (0s) 14 (544s) 11 (69s) 6 (25s) 2 (346s)

Commander 14 1 (3s) 7 (0s) 14 (40s) 9 (187s) 1 (684s)
Ladder 14 0 (0s) 11 (505s) 11 (1229s) 12 (26s) 1 (36s)

Fig. 2. Six encodings of the pigeon hole instances: number of solved instances and
sum of run time for solved instances per solver configuration per encoding.

5 Experimental Results

The experimental results show that the proposed methods detect a significant
amount of cardinality constraints in CNFs. For this analysis we use academic
benchmarks, like Sudoku puzzles and the pigeon hole problem, for which we
know how many cardinality constraints are present in the CNF, and which are
easy to solve using Generalized Resolution when the constraints are expressed
using cardinality constraints. All the benchmarks were launched on Intel Xeon
X5550 processors (@2.66GHz) with 32GB RAM and a 900s timeout.

The static approach is implemented in the latest release of Lingeling. The
static approach plus the specific handling of the two product encoding are im-
plemented on Riss (so called Syntactic). The semantic detection of cardinality
constraints is implemented on Riss. As Riss does not take advantage of those
cardinality constraints for solving the benchmarks, we use it as a fast preproces-
sor to feed Sat4j which uses Generalized Resolution to solve the new benchmark
with a mix of clauses and cardinality constraints. It allows us to check if the car-
dinality constraints found by the incomplete approaches are sufficient to solve
those benchmarks. We compare the proposed approaches against SBSAT1.

5.1 Pigeon hole principle

These famous benchmark are known to be extremely hard for resolution based
solvers [19]. For n + 1 pigeons and n holes, the problem is to assign each pi-
geon in a hole while not having more that one pigeon per hole. Each Boolean
variable xi,j represents pigeon i is assigned hole j. The problem is expressed

by n + 1 clauses
∨n

j=1 xi,j and n cardinality constraints
∑n+1

j=1 xi,j ≤ 1. Those
benchmarks are generated for n from 10 to 15, and n from 25 to 200 by steps of
25, using six different encodings: binomial, product, binary, ladder, commander
and sequential. The results are presented in Table 2.

As expected, without revealing the cardinality constraint, Sat4j can only
solve one or two problems. The semantic approach can detect many cardinality

1 We tried to run 3MCard on those benchmarks but the solver was not able to read
or solve most of the benchmarks.



constraints and let Sat4j solve more instances than the other solvers — it is par-
ticularly efficient for the pairwise, sequential and commander encodings. Note
that the instance using the pairwise encoding for n = 200 has 402000 variables
and 4020201 clauses, which shows that our approach scales. The static analy-
sis (with specific reasoning for the two product encoding) is also very efficient
on most of the encodings, and is the best on the product encoding, as intended.
The commander and binary encodings are most difficult to reveal using our tech-
niques. SBSAT is not as efficient as our approaches, even if it got the best results
for the ladder encoding. Lingeling is very efficient for the pairwise encoding, but
not for the others, as intended too.

5.2 Small hard combinatorial benchmarks

Benchmarks of unsatisfiable balanced block designs are described in [32,16]. They
contain the cardinality constraints AtMost-2. We use the benchmarks submitted
to the SAT09 competition (called sgen) which were the smallest hard unsatisfi-
able formulas as well as benchmarks provided by Jakob Nordström and Mladen
Miksa from KTH [29]. Both the syntactic and the semantic detection are able to
recover quickly all cardinality constraints of these benchmarks and let the solver
use them to prove unsatisfiability, as presented in Table 3. The solvers Lingeling
and Sat4jCP, which do not use cardinality detection or generalized resolution,
emphasize the fact these benchmarks are too difficult for existing solver.

5.3 Sudoku benchmarks

Sudoku puzzles contain only = 1 cardinality constraints represented by a clause
and an AtMost-1 constraint. The puzzles are trivial to solve but interesting
from a preprocessing point of view because the cardinality constraints share a
lot of variables which may mislead our approximation methods. We use two
instances representing empty n × n for n = 9 and n = 16. The grids contain
n2 × 4 AtMost-1 constraints, for n = 9(16) there are 324(1024) constraints. All
constraints are encoded with the pairwise encoding. The AtMost-1 constraints
that can be found by the syntactic approach all contain 9 (resp. 16) literals, as
expected. However, some constraints are missing: 300 constraints revealed out

Preprocessor #inst. Lingeling Synt.(Riss) Sem.(Riss) no no
Solver Lingeling Sat4jCP Sat4jCP SBSAT Sat4jCP

Sgen unsat 13 0 (0s) 13 (0s) 13 (0s) 9 (614s) 4 (126s)

Fixed bandwidth 23 2 (341s) 23 (0s) 23 (0s) 23 (1s) 13 (1800s)
Rand. orderings 168 16 (897s) 168 (7s) 168 (8s) 99 (2798s) 69 (3541s)

Rand. 4-reg. 126 6 (1626s) 126 (4s) 126 (5s) 84 (2172s) 49 (3754s)

Fig. 3. Various hard combinatorial benchmarks families: number of solved instances
and sum of run time for solved instances per solver configuration per family



of 324 and 980 revealed out of 1024. The semantic preprocessor finds all the
cardinality constraints for those benchmarks because each cardinality constraint
has a binary clause which belongs to only this constraint, and hence is not
discarded when another constraint is found. This specific clause is used to retrieve
the cardinality constraint by addition of literals.

6 Conclusion

We presented two approaches to derive cardinality constraints from CNF. The
first approach is based on the analysis of a NAND graph, the data structure used
in some SAT solvers to handle binary clauses efficiently, to retrieve AtMost-1
or AtMost-2 constraints. The second approach, based on using unit propagation
on the original CNF, is a generic way to derive AtMost-k constraints. We show
that both approaches are able to retrieve cardinality constraints in known hard
combinatorial problems in CNF. Our experiments suggest that the syntactic
approach is particularly useful to derive AtMost-1 and AtMost-2 constraints
while the semantic is more robust because this method is also able to detect
cardinality constraints with an arbitrary threshold. Our approaches are useful
for tackling the smallest unsolved UNSAT problems of the SAT 2009 competition
(sgen) which are all solved by Sat4j using generalized resolution within seconds
once the AtMost-2 constraints have been revealed (this fact was already observed
in [34]). The difference between the syntactic and semantic approaches is visible
with the challenge benchmark from [16] that no solver could solve in one day. It is
solved in a second after deriving 22 AtMost-2 and 20 AtMost-3 constraints when
revealing the constraints using the semantic approach. The syntactic approach
is not able to reveal those AtMost-3 constraints.

We have been able to reveal cardinality constraints on large application
benchmarks. However, using that information to improve the run time of the
solvers is future work. Checking if those constraints result from the original
problem specification or are “hidden” constraints, i.e. constraints not explicitly
known in the specification, is an open problem. An interesting research question,
out of the scope of this paper, is to study the proof system of the combination
of our semantic preprocessing step (extension rule and domination rule) plus
generalized resolution.
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