
HAL Id: hal-01987504
https://univ-artois.hal.science/hal-01987504v1

Preprint submitted on 21 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An extremal composition operator on the Hardy space
of the bidisk with small approximation numbers

Daniel Li, Hervé Queffélec, Luis Rodríguez-Piazza

To cite this version:
Daniel Li, Hervé Queffélec, Luis Rodríguez-Piazza. An extremal composition operator on the Hardy
space of the bidisk with small approximation numbers. 2019. �hal-01987504�

https://univ-artois.hal.science/hal-01987504v1
https://hal.archives-ouvertes.fr


An extremal composition operator on the

Hardy space of the bidisk with small

approximation numbers

Daniel Li, Hervé Queffélec, Luis Rodríguez-Piazza

January 21, 2019

Abstract. We construct an analytic self-map Φ of the bidisk D
2 whose

image touches the distinguished boundary, but whose approximation numbers

of the associated composition operator on H2(D2) are small in the sense that

lim supn→∞[an2(CΦ)]
1/n < 1.
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1 Introduction

For composition operators CΦ : H
2(D) → H2(D) on the Hardy space of

the unit disk, the decay of their approximation numbers an(CΦ) cannot be
arbitrarily fast, and actually cannot supersede a geometric speed ([16]; see
also [10, Theorem 3.1]): there exists a positive constant c such that:

an(CΦ) & e−cn , n = 1, 2, . . .

It is easy to see that this speed occurs when ‖Φ‖∞ < 1, and we proved in
[10, Theorem 3.4] that a geometrical speed only takes place in this case; in
other words:

(1.1) ‖Φ‖∞ = 1 ⇐⇒ lim
n→∞

[an(CΦ)]
1/n = 1 .

This leads to the introduction, for an operator T between Banach spaces,
of the parameters:

(1.2) β−(T ) = lim inf
n→∞

[an(T )]
1/n and β+(T ) = lim sup

n→∞
[an(T )]

1/n ,
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where an(T ) is the n-th approximation number of T . When [an(T )]
1/n ac-

tually has a limit, i.e. when β−(T ) = β+(T ), we write it β(T ).
What is proved in [10, Theorem 3.4] is that β(CΦ) = 1 if and only if

‖Φ‖∞ = 1. Later, in [12], we gave, when ‖Φ‖∞ < 1, a formula for this
parameter in terms of the Green capacity of Φ(D), which allowed us to
recover (1.1).

More generally, for N ≥ 1, we introduce:

(1.3) β−
N (T ) = lim inf

n→∞
[anN (T )]1/n and β+

N (T ) = lim sup
n→∞

[anN (T )]1/n ,

and:

(1.4) βN (T ) = lim
n→∞

[anN (T )]1/n

when the limit exists. It is clear that 0 ≤ β±
N (T ) ≤ 1, and it is interesting to

know when the extreme cases β±
N (T ) = 0 or β±

N (T ) = 1 occur. For example:

β−
N (T ) > 0 ⇐⇒ anN (T ) & e−τn , with τ > 0

β−
N (T ) = 1 ⇐⇒ anN (T ) & e−nεn , with εn → 0 .

It is coined in [1] (see also [13] and [14]) that β±
N (CΦ) are the suitable

parameters for the composition operators on H2(DN ), and it is proved, for
any N ≥ 1, that β−

N (CΦ) > 0, as soon as Φ is non degenerate (i.e. the
Jacobian JΦ is not identically 0) and the operator CΦ is bounded on H2(DN ).
As for an expression of β±

N (CΦ) in terms of “capacity”, only partial results are
known so far ([13] and [14]) and the application to a result like (1.1) fails in
general. We gave an example of such a phenomenon in [13, Theorem 5.12].
In the present paper we give a shaper result.

2 Background and notation

Let D be the open unit disk, H2(DN ) the Hardy space of the polydisk
D
N , and Φ: DN → D

N an analytic map. When N = 1, it is well-known (see
[4] or [17]) that Φ induces a composition operator CΦ : H

2(D) → H2(D) by
the formula:

CΦ(f) = f ◦ Φ ,

and the connection between the “symbol” Φ and the properties of the opera-
tor CΦ, in particular its compactness, can be further studied (see [4] or [17]).
When N > 1, CΦ is not bounded in general (see [4]).
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Let T be the unit circle, and m the normalized Haar measure on T
N . A

positive Borel measure µ on D
N is called a Carleson measure (for the space

H2(DN )) if the canonical injection J : H2(DN ) → L2(µ) is bounded. When
Φ: DN → D

N is analytic and induces a bounded composition operator on
H2(DN ), the pullback measure mΦ = Φ∗(m), defined, for any test function
u, by:

∫

DN

u(w) dmΦ(w) =

∫

TN

u[Φ∗(ξ)] dm(ξ) ,

is a Carleson measure. Here Φ∗ is the radial limit function, defined for m-
almost every ξ ∈ T

N , by Φ∗(ξ) = limr→1− Φ(rξ).

For ξ ∈ T = ∂D and h > 0, the Carleson window S(ξ, h) is defined as:

(2.1) S(ξ, h) = {z ∈ D ; |z − ξ| ≤ h} .

If f ∈ Hol (D2), D k
j f denotes the k-th derivative of f with respect to the

j-th variable (j = 1, 2).

We denote by A(D) the disk algebra, i.e. the space of functions holo-
morphic in D and continuous on D. We similarly define the bidisk algebra
A(D2).

Let H1 and H2 be Hilbert spaces, and T : H1 → H2 an operator. The
n-th approximation number an(T ) of T , n = 1, 2, . . ., is defined (see [2]) as
the distance (for the operator-norm) of T to operators of rank < n:

(2.2) an(T ) = inf
rankR<n

‖T −R‖ .

The approximation numbers have the ideal property:

an(ATB) ≤ ‖A‖ an(T ) ‖B‖ .

The n-th Gelfand number cn(T ) of T is defined by:

(2.3) cn(T ) = inf
codimE<n

‖T|E‖ .

As an easy consequence of the Schmidt decomposition, we have for any
compact operator between Hilbert spaces:

(2.4) cn(T ) = an(T ) .

If T, T1, T2 : H → H ′ are operators between Hilbert spaces H and H ′, we
write T = T1 ⊕ T2 if T = T1 + T2 and:

‖Tx‖2 = ‖T1x‖
2 + ‖T2x‖

2 , for all x ∈ H .
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The subaddivity of approximation numbers is then expressed by:

(2.5) aj+k(T1 ⊕ T2) ≤ aj(T1) + ak(T2) .

We denote by N = {0, 1, 2, . . .} the set of non-negative integers, and by
[x] the integral part of the real number x.

We write X . Y to indicate that X ≤ c Y for some constant c > 0, and
X ≈ Y to indicate that X . Y and Y . X.

3 Purpose of the paper

Let us recall that the Hardy space of the polydisk is the space:

H2(DN ) =
{

f : DN → C ; f(z) =
∑

α∈NN

aαz
α and ‖f‖22 :=

∑

|aα|
2 < ∞

}

.

If Φ: DN → D
N is an analytic map, the associated composition operator

CΦ (which is not always bounded on H2(DN )) is defined by:

CΦ(f) = f ◦ Φ .

We will mainly here be interested in the case N = 2.

The reproducing kernel Ka of H2(D2) is, with a = (a1, a2) and z =
(z1, z2):

(3.1) Ka(z) =
1

(1− a1z1)(1− a2z2)
·

As a consequence:

(3.2) |f(a)| = |〈f,Ka〉| ≤
‖f‖2

√

(1− |a1|2)(1 − |a2|2)
·

In particular, the functions in the unit ball of H2(D2) are uniformly bounded
on compact subsets of D2.

In [13, Theorem 5.12], we gave an example of a holomorphic self-map
Φ: D2 → D

2, continuous on the closure D2, such that ‖Φ‖∞ = 1, that is:

(3.3) Φ(T2) ∩ ∂D2 6= ∅ ,

and yet:

(3.4) β+
2 (CΦ) < 1 ,

in contrast with the one-dimensional case ([10, Theorem 3.4]).
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Understanding where the difference really lies when we pass to the mul-
tidimensional case is a big challenge: it does not seem to be a matter of
regularity of the boundary, and a similar example probably holds for the
Hardy space of the ball. It might be a matter of boundary: the Shilov
boundary of the ball is its usual boundary, but that of the polydisk is its
distinguished boundary:

∂eD
N = {z = (zj) ; |zj | = 1 for all j = 1, . . . , N} = T

N

(indeed, the distinguished maximum principle tells that, for f analytic in
D
N and continuous on DN , it holds maxz∈DN |f(z)| = maxz∈∂eDN |f(z)|).

The aim of this paper is to show that this is not the case and, improving on
([13, Theorem 5.12]) and (3.3), to build an analytic self-map Φ: D2 → D

2,
continuous on D2, non-degenerate and such that:

(3.5) Φ(T2) ∩ ∂eD
2 6= ∅ , but β+

2 (CΦ) < 1 .

The paper is organized as follows. In Section 4, we recall with some
detail the definition and main properties of a so-called cusp map χ ∈ A(D),
to be of essential use in our counterexample. In Section 5, we prove several
lemmas which constitute the core or the proof. In Section 6, we state and
prove our main theorem.

4 The cusp map

The cusp map χ : D → D is analytic in D and extends continuously on
D. The boundary of its image is formed by three circular arcs of respec-
tive centers 1

2 , 1 + i
2 , 1 − i

2 , and of radius 1
2 (see Figure 1). However, the

parametrization t 7→ χ(eit) involves logarithms.
It was often used by the authors ([11], [8]) as an extremal example.
We first recall the definition of χ.
Let D

+ = {z ∈ D ; Re z > 0} be the right half-disk. Let now H be the
upper half-plane, and T : D → H defined by:

T (u) = i
1 + u

1− u
, with T−1(s) =

s− i

s+ i
·

Taking the square root of T , we map D onto the first quadrant defined by
Q1 = {z ∈ C ; Re z > 0}; we go back to the half-disk {z ∈ D ; Im z < 0} by
T−1. Finally, make a rotation by i to go onto D

+. We get:

χ0(z) =

( z − i

iz − 1

)1/2
− i

−i
( z − i

iz − 1

)1/2
+ 1

·

5



10

Figure 1: Cusp map domain

One has χ0(1) = 0, χ0(−1) = 1, χ0(i) = −i, and χ0(−i) = i. The half-circle
{z ∈ T ; Re z ≥ 0} is mapped by χ0 onto the segment [−i, i] and the segment
[−1, 1] onto the segment [0, 1].

Set now, successively:

(4.1) χ1(z) = logχ0(z) , χ2(z) = −
2

π
χ1(z) + 1 , χ3(z) =

1

χ2(z)

and finally:

(4.2) χ(z) = 1− χ3(z) .

We now summarize the properties of the cusp map χ in the following
proposition.

Proposition 4.1. The cusp map satisfies:

1) 1− |χ(z)| .
1

log(2/|1 − z|)
;

2) |1−χ(z)| ≤ K(1−|χ(z)|) for all z ∈ D, where K is a positive constant;

3) χ(D) is the intersection of the open disk D
(

1
2
, 1
2

)

with the exterior of

the two open disks D
(

1 + i
2
, 1
2

)

and D
(

1− i
2
, 1
2

)

;

4) χ(1) = 1, χ(z) = χ(z) and |χ(z)− 1| ≤ 1 for all z ∈ D;

5) for 0 < |t| ≤ π/4, we have 1−Reχ(eit) ≈ 1/(log 1/|t|);

6) χ(D) ⊆ {z = x+ iy ; 0 ≤ x ≤ 1 and |y| ≤ 2(1 − x)2}.
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Proof. Items 1) to 5) are proved in [11, Lemma 4.2]. To prove 6), write
χ(z) = (1 − h) + iy. Since χ(z) = χ(z), we can assume y ≥ 0. Since
χ(D) ∩D

(

1 + i
2
, 1
2

)

= ∅, we have
∣

∣χ(z)−
(

1 + i
2

)
∣

∣ ≥ 1
2 ; hence:

h2 +
(

y −
1

2

)2
=

∣

∣

∣

∣

χ(z)−
(

1 +
i

2

)

∣

∣

∣

∣

2

≥
1

4
,

so that y ≤ y2 + h2. But y ≤ 1/2, since χ(z) ∈ D
(

1
2
, 1
2

)

; therefore y2 ≤ y/2,
so we get y ≤ 2h2.

5 Preliminary lemmas

In this section, we collect some lemmas, which will reveal essential in the
proof of our counterexample.

We consider the map ϕ = ϕθ, 0 < θ < 1, defined, for z ∈ D \ {1}, by:

(5.1) ϕ (z) = exp
(

− (1− z)−θ
)

.

We observe, since Re (1− z) ≥ 0 for z ∈ D, that:

(5.2) |ϕ (z)| ≤ exp
(

− δ |1− z|−θ
)

,

where δ = cosπθ/2 > 0. Moreover, (5.2) shows that ϕ ∈ A(D), since:

lim
z→1,z∈D

ϕ (z) = 0 =: ϕ (1) .

Our first lemma will allow us to define our symbol Φ.

Lemma 5.1. One can adjust 0 < c < 1 so as to get:

(5.3) |χ(z)| + 2 c |ϕ ◦ χ(z)| < 1 for all z ∈ D .

Hence, if we set, for any g ∈ A(D) with ‖g‖∞ ≤ 1:

(5.4) Φ(z1, z2) =
(

χ(z1), χ(z1) + c (ϕ ◦ χ)(z1) g(z2)
)

,

we have Φ(D2) ⊆ D
2.

Remark. The factor 2 in (5.3) is needed in order to get the following
inequalities, to be used later, for z ∈ D and w = χ(z) + c (ϕ ◦ χ)(z)u, with
|u| ≤ 1:

(5.5) |w| ≤
1 + |χ(z)|

2
,
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or, equivalently:

(5.6) 1− |w| ≥
1− |χ(z)|

2
·

Indeed:

|w| ≤ |χ(z)| + c |ϕ ◦ χ(z)| ≤ |χ(z)| +
1− |χ(z)|

2
=

1 + |χ(z)|

2
·

Proof of Lemma 5.1. Set X = |1 − χ(z)|, so that, with K the constant of
Proposition 4.1, 2):

(5.7) |χ(z)| ≤ 1−
|1− χ(z)|

K
= 1−

X

K
·

For z ∈ D and X close enough to zero, say X < η, we have 2 exp(−δX−θ) <
X
K . If we adjust 0 < c < 1 so as to have c < η

2K , it follows from (5.2) and
(5.7) that, for X < η:

|χ(z)| + 2 c |ϕ ◦ χ(z)| ≤ 1−
X

K
+ 2exp(−δX−θ) < 1 .

However, for X ≥ η, (5.7) says that |χ(z)| ≤ 1− η
K , so:

|χ(z)|+ 2 c |ϕ ◦ χ(z)| ≤ 1−
η

K
+ 2 c < 1 ,

as well and this ends the proof of Lemma 5.1.

Our second lemma estimates some integrals and ensures that Φ induces
a compact composition operator on H2(D2).

Lemma 5.2. For 0 < h ≤ 1, the following estimate holds:

(5.8) I0(h) :=

∫

|χ(eit)−1|≤h

1

(1− |χ(eit)|)2
dt . e−τ/h ,

Proof. By Proposition 4.1, 5), there exist two constants c1, c2 such that:

c1
log 1/|t|

≤ |χ(eit)− 1| ≤
c2

log 1/|t|
, |t| ≤ π ;

hence:

I0(h) .

∫

|t|≤e−c1/h
[log(1/|t|)]2 dt = 2

∫ ∞

c1/h
x2 e−x dx . h−2e−c1/h .
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Corollary 5.3. For g ∈ A(D) with 0 < ‖g‖∞ ≤ 1, set:

I(h) :=

∫

|χ(eit1 )−1|≤h

dt1 dt2
(1− |χ(eit1)|)(1 − |χ(eit1) + c (ϕ ◦ χ)(eit1) g(eit2)|)

·

Then:

I(h) . e−τ/h .

Consequently, the composition operator CΦ defined in (5.4) is bounded from

H2(D2) to H2(D2) and is compact.

Proof. Using (5.6), we have, thanks to (5.8):

I(h) ≤

∫

|χ(eit1 )−1|≤h

2

(1− |χ(eit1)|)2
dt1 dt2 . e−τ/h .

In particular, I(1) < ∞, showing that CΦ is Hilbert-Schmidt and hence
bounded.

For the rest of the paper, we fix a number σ in (0, 1), that for convenience
we take as:

(5.9) σ =
7

8
,

a positive integer j0 such that:

(5.10) 2σj0 ≤ 1/8

(i.e. j0 ≥ 21), and we set:

(5.11) aj = 1− σj

and:

(5.12) ρj =
σj

4
=

1

4
(1− aj) .

We also define, for n ≥ 1 and θ being the parameter used in (5.1):

(5.13) Nn =

[

log 2n

θ log 1/σ

]

+ 1 >
log 2n

log 1/σ
·

The next lemma gives a cutting off for χ(D).
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Lemma 5.4. For every n ≥ 1, the image χ(D) of the cusp map, deprived of

the closed Euclidean disk D(0, 1 − σj0/K) and of χ(D) ∩ S(1, 1/n), can be

covered by the open Euclidean disks D(aj, ρj), with j0 ≤ j ≤ Nn.

Proof. Let z ∈ D such that |χ(z)| > 1 − σj0/K and |χ(z) − 1| > 1/n. We
write χ(z) = x+ iy =: 1− h+ iy.

Let j with aj ≤ x < aj+1, i.e. σj+1 < h ≤ σj . We have j ≥ j0, since
h < σj0 .

Now, since 0 ≤ x− aj < aj+1 − aj = σj+1 − σj , that y2 ≤ 4h4 (Proposi-
tion 4.1, 6)), and h ≤ σj , we have:

|χ(z)− aj |
2 < (σj − σj+1)2 + y2 ≤ (1− σ)2σ2j + 4σ4j ;

hence:
|χ(z)− aj | < σj(1− σ) + 2σ2j = σj(1− σ + 2σj) .

Subsequently, since 1− σ = 1/8, j ≥ j0, and 2σj0 ≤ 1/8:

|χ(z)− aj | < σj(1− σ + 2σj0) ≤
σj

4
= ρj ,

showing that χ(z) ∈ D(aj, ρj).
Moreover, we have j ≤ Nn. Indeed, if j > Nn, we would have:

|χ(z)−1| ≤ |χ(z)−aj |+(1−aj) ≤ ρj+σj =
5

4
σj ≤

5

4
σNn+1 ≤ 2σNn ≤ 1/n ,

contradicting the fact that χ(z) /∈ S(1, 1/n).

Our next two lemmas give estimates on derivatives for the functions
belonging to H2(D2).

Lemma 5.5. Let f ∈ H2(D2), k a non-negative integer, b ∈ D, and let

hk(z) = (D k
2 f)(z, z). Then:

|hk(b)| ≤
k! 2k+1

(1− |b|)k+1
‖f‖2 .

Proof. The Cauchy inequalities give for 0 < s < 1− |b| and α ∈ N
2:

|Dαf(b, b)| ≤
α!

s|α|
sup

|w1−b|=s,|w2−b|=s
|f(w1, w2)| .
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The choice s = 1−|b|
2 gives 1 − |wj | ≥

1−|b|
2 for |wj − b| = s, j = 1, 2; hence,

thanks to the estimate (3.2):

|f(w1, w2)| ≤
‖f‖2

√

(1− |w1|)(1 − |w2|)
≤

2

1− |b|
‖f‖2 ·

Specializing to α = (0, k) now gives the result.

Lemma 5.6. With the notations of Lemma 5.5, assume that h
(l)
k (a) = 0 for

some a ∈ D and for 0 ≤ l < n. Then, for 0 < ρ < 1 and |b−a| ≤ ρ
2 (1−|a|),

it holds:

|hk(b)| ≤ ρn
k! 4k+1

(1− |a|)k+1
‖f‖2 .

Proof. We may assume ‖f‖2 ≤ 1. Consider the function defined, for w ∈ D,
by:

Hk(w) = hk

(

a+ w
1− |a|

2

)

.

It is a bounded and holomorphic function in D.
For w ∈ D, let β = a+w 1−|a|

2 , which satisfies 1−|β| ≥ 1−|a|
2 . Lemma 5.5

gives:

|Hk(w)| = |hk(β)| ≤
k! 4k+1

(1− |a|)k+1
·

Now, H
(l)
k (0) = h

(l)
k (a) = 0 for 0 ≤ l < n; hence the Schwarz lemma says

that Hk satisfies |Hk(w)| ≤ |w|n ‖Hk‖∞ for all w ∈ D. Take w = 2(b−a)
1−|a| ,

which satisfies |w| ≤ ρ, to get:

|hk(b)| = |Hk(w)| ≤ |w|n ‖Hk‖∞ ≤ ρn
k! 4k+1

(1− |a|)k+1
·

6 The main result

Recall that χ is the cusp map and that ϕ is defined in (5.1). The map
g appearing in the formula below plays an inert role, and is just designed to
ensure that Φ is non-degenerate; we can take, for example g(z2) = z2. This
seems to mean that non-degeneracy is not the only issue in the question of
estimating β+

2 (CΦ).

Our example appears as a perturbation of the diagonal map defined by
∆(z1, z2) =

(

χ(z1), χ(z1)
)

for which we already know ([15, Theorem 2.4])
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that ∆(1, 1) = (1, 1) and β+
2 (C∆) < 1. This map is degenerate, but the per-

turbation clearly gives a non degenerate one since its Jacobian is JΦ(z1, z2) =
c (ϕ ◦ χ)(z1)χ

′(z1) g
′(z2).

Theorem 6.1. Let:

Φ(z1, z2) =
(

χ(z1), χ(z1) + c (ϕ ◦ χ)(z1) g(z2)
)

be the function defined in (5.4).
Then:

1) Φ(D2) ⊆ D
2 and CΦ : H

2(D2) → H2(D2) is compact;

2) Φ is non degenerate, and its components belong to the bidisk algebra;

3) Φ(T2) ∩ T
2 = Φ(T2) ∩ ∂eD

2 6= ∅;

4) an2(CΦ) . exp(−τn), for some τ > 0, implying β+
2 (CΦ) < 1.

Proof. That Φ maps D2 to itself is proved in Lemma 5.1 and that the compo-
sition operator CΦ : H

2(D2) → H2(D2) is compact, in Corollary 5.3. Item 2)
is due to the presence of g, as explained above. The fact that Φ(T2)∩T

2 6= ∅
is clear since Φ(1, 1) = (1, 1). It remains to prove 4).

Once more, the proof will be conveniently divided into several steps. We
begin by a lemma which is in fact obvious, but explains well what is going
on.

Lemma 6.2. Let λ = 1 − σj0

2K , where σ, K and j0 are as in (5.9), Propo-

sition 4.1, 2), and (5.10). Let rn = 1 − 1
n , and let µ1, µ2, µ3 the respective

restrictions of mΦ to the disk λD2, the annulus rnD
2 \λD2, and the annulus

D
2 \ rnD

2. We then have:

CΦ = T1 ⊕ T2 ⊕ T3 ,

where Tj is the canonical injection of H2(D2) into L2(µj).

This is indeed obvious since:

‖CΦf‖
2 =

∫

D2

|f |2dmΦ ,

and by splitting the integral into three parts.

We now majorize separately the numbers ap(Tj), for j = 1, 2, 3. In the
sequel, the positive constant τ may vary from one formula to another.

Step 1. It holds:

(6.1) an2(T1) . e−τn .

12



Proof. Let V = zn1H
2(D2) + zn2H

2(D2); this is a subspace of H2(D2) of
codimension ≤ n2, since:

V =
{

f ∈ H2(D2) ; D j
1D

k
2 f(0, 0) = 0 for 0 ≤ j, k < n

}

.

If f(z) =
∑

max(j,k)≥n aj,k z
j
1z

k
2 ∈ V and ‖f‖2 = 1, one can write:

f(z) = zn1 q1(z1, z2) + zn2 q2(z1, z2) ,

with:

q1(z) =
∑

j≥n,k≥0

aj,k z
j−n
1 zk2 and q2(z) =

∑

j<n,k≥n

aj,k z
j
1z

k−n
2 ,

which satisfy ‖qj‖2 ≤ ‖f‖2 = 1, j = 1, 2.

An easy estimate now gives (since max(|z1|
n, |zn2 |) ≤ λn on λD2):

‖T1f‖
2 ≤ 2

(
∫

λD2

(

|zn1 |
2|q1(z1, z2)|

2 + |zn2 |
2|q2(z1, z2)|

2
)

dmΦ

)

. λ2n

∫

λD2

(

|q1|
2 + |q2|

2
)

dmΦ . λ2n
(

‖q1‖
2
2 + ‖q2‖

2
2

)

. λ2n ,

since we know by Corollary 5.3 that CΦ is bounded on H2(D2) and hence
that mΦ is a Carleson measure for H2(D2). Alternatively, we could majorize
|qj(z1, z2)| uniformly on the support of µ1. We hence obtain:

(6.2) an2+1(T1) = cn2+1(T1) . e−τn .

Step 2. It holds:

(6.3) an2(T3) . e−τn .

Proof. In one variable, we could use the Carleson embedding theorem; but
this theorem for the bidisk and the Hardy space H2(D2) notably has a more
complicated statement ([3]; see also [5]), and cannot be used efficiently here.
Our strategy will be to replace it by a sharp estimation of a Hilbert-Schmidt
norm.

We set hn = 1− rn = 1/n.
Clearly, denoting by S2 the Hilbert-Schmidt class:

‖T3‖
2 ≤ ‖T3‖

2
S2

=

∫

dµ3(w)

(1− |w1|2)(1− |w2|2)
≤

∫

dµ3(w)

(1− |w1|)(1 − |w2|)
·

13



Now, if w = (w1, w2) =
(

χ(z1), χ(z1) + c (ϕ ◦ χ)(z1) g(z2)) belongs to the
support of µ3, we have max(|w1|, |w2|) ≥ rn = 1− hn, and, recalling (5.5):

(6.4) |w1| ≥ 2 |w2| − 1 ,

we have in either case |w1| ≥ 1 − 2hn. By Proposition 4.1, 2), this implies
that:

|1− w1| ≤ 2Khn .

Corollary 5.3 gives:

‖T3‖
2 .

∫

|χ(eit1 )−1|≤2Khn

dt1 dt2
(1− |χ(eit1)|)(1 − |χ(eit1) + c (ϕ ◦ χ)(eit1) g(eit2)|)

= I(2Khn) . e−τ/hn .

But hn = 1/n, so that:

(6.5) an2(T3) ≤ ‖T3‖ . e−τn .

Step 3. It holds:

(6.6) an2(T2) . e−τn .

This estimate follows from the following key auxiliary lemma. In fact,
this lemma will give, for the Gelfand numbers, cn2(T2) . e−τn, and we know
that they are equal to the approximation numbers.

Let M : H2(D2) → Hol(D) be the linear map defined by:

Mf(z) = f(z, z) ,

Recall that aj = 1− σj and Nn =
[

log 2n
θ log 1/σ

]

+ 1.

Lemma 6.3. Let E be the closed subspace of H2(D2) defined by:

E =
{

f ∈ H2(D2) ;
[

M(D k
2 f)

](l)
(aj) = 0

for 0 ≤ l < n, 0 ≤ k ≤ mj, 1 ≤ j ≤ Nn

}

.

Then, we can adjust the numbers mj so as to guarantee that, for some

positive constant τ :
codimE . n2

and, for all f ∈ E with ‖f‖2 ≤ 1:

‖T2(f)‖2 . exp(−τn) .

14



Proof. This is the most delicate part.
Recall that:

hn = 1/n , rn = 1− hn , λ = 1−
σj0

2K
·

We need a uniform estimate of |f(w)| for f ∈ E with ‖f‖2 ≤ 1 and for:

w = (w1, w2) ∈ suppmΦ ∩ (rnD
2 \ λD2) .

This estimate will be given by Lemma 5.4, Lemma 5.5 and Lemma 5.6.
Note that we have:

χ(z1) ∈ D \ [S(1, 1/n) ∪D(0, 2λ− 1)] .

Indeed, if (w1, w2) = Φ(z1, z2) /∈ λD2, we have max(|w1|, |w2|) > λ; so
either |w1| > λ ≥ 2λ − 1, or |w2| > λ and again |w1| > 2λ − 1 since
|w1| ≥ 2 |w2| − 1, by (5.5). Hence w1 /∈ D(0, 2λ − 1). Moreover, we have
|1− w1| ≥ 1− |w1| > 1/n, so w1 /∈ S(1, 1/n).

Using Lemma 5.4, select j0 ≤ j ≤ Nn such that |χ(z1)− aj | ≤
1
4 (1− aj).

Now set:

A =
(

χ(z1), χ(z1)) and ∆ =
(

0, (ϕ ◦ χ)(z1) g(z2)
)

.

Our strategy will be the following. We write:

f [Φ(z1, z2)] = f(A+∆) =

∞
∑

k=0

D k
2 f(A)

k!
∆k

=

∞
∑

k=0

M(D k
2 f)[χ(z1)]

k!
∆k =

∞
∑

k=0

hk[χ(z1)]

k!
∆k ,

with hk = M(D k
2 f), and we put:

Sj =

mj
∑

k=0

hk[χ(z1)]

k!
∆k

and

Rj =
∑

k>mj

hk[χ(z1)]

k!
∆k .

We will estimate separately Sj and Rj .

15



a) Estimation of Rj .

Recall that j is such that j0 ≤ j ≤ Nn and |χ(z1) − aj | ≤
1
4 (1 − aj).

We saw in the proof of this Lemma 5.4 that 1− |χ(z1)| ≤ |1− χ(z1) ≤
5
4 σ

j .
Hence:

|∆| ≤ |(ϕ ◦ χ)(z1)| ≤ exp

(

−
δ

|1− χ(z1)|θ

)

. exp(−τ σ−jθ) .

Now, use Lemma 5.5 and (5.2) to get:

|Rj | ≤
∑

k>mj

2k+1

(1− |χ(z1)|)k+1
|∆|k .

∑

k>mj

2kσ−jk exp(−τk σ−jθ)

. 2mjσ−jmj exp(−τmjσ
−jθ) . exp(−τmjσ

−jθ)

for some absolute constant τ > 0, that is:

(6.7) |Rj| . exp(−τn)

if we take:

(6.8) mj = [nσjθ] + 1 .

b) Estimation of Sj .

We saw in the estimation of Rj that 1 − |χ(z1)| & σj. Now, remember

that h
(l)
k (aj) = 0 for l < n, since f ∈ E, we then use Lemma 5.6 to get,

when we take the values:

a = aj , 1− aj = σj , b = χ(z1) , ρ =
1

2
,

a good upper bound for hk[χ(z1)]
k! when k ≤ mj, namely:

∣

∣

∣

∣

hk[χ(z1)]

k!

∣

∣

∣

∣

.
4k+1

σj(k+1)
ρn .

We then obtain an estimate of the form:

|Sj| .

mj
∑

k=0

ρn
4k+1

σj(k+1)
. ρn

4mj

σjmj
= exp

(

− n log 2 +mj log 4− jmj log
7

8

)

. exp(−4τn +Bjmj)
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with τ = 1
4 log 2 and B ≤ log 4 + log(8/7) ≤ 2; or else, using (6.8):

|Sj| . exp(−4τn+Bjnσjθ +Bj) .

But since σ = 7/8 < 1, the implied exponent, for j0 ≤ j ≤ Nn:

−4τn+Bjnσjθ +Bj = n(−4τ +Bj σjθ) +Bj ,

is ≤ −2τn+B′ log n, provided that we choose j0 large enough, namely such

that j0
(

7
8

)j0θ ≤ 1/4. This implies an inequality of the form:

(6.9) |Sj | . e−2τnnB′

. e−τn .

Putting the estimates (6.7) and (6.9) on Rj and Sj together, we obtain,
for every f ∈ E with ‖f‖2 ≤ 1:

(6.10) ‖T2f‖ . e−τn .

It remains to bound from above the codimension of E. Since Nn =
[ log 2n
θ log 1/σ

]

+ 1 with σ = 7/8 and mj = [nσjθ] + 1, we see that:

codimE ≤
n−1
∑

l=0

Nn
∑

j=1

mj ≤
n−1
∑

l=0

Nn
∑

j=1

(nσjθ + 1) . n2
∞
∑

j=1

σjθ + n log n < q n2 .

Therefore (6.10) can be read as well, remembering the equality of approxi-
mation numbers and Gelfand numbers:

(6.11) aq n2(T2) = cq n2(T2) . e−τn.

Putting the estimates (6.2), (6.5), and (6.11) together ends the proof of
Lemma 6.3.

Finally, Lemma 6.2 and (2.5) give:

a3n2(CΦ) = a3n2(T1 ⊕ T2 ⊕ T3) ≤ an2(T1) + an2(T2) + an2(T3) . e−τn ,

thereby finishing the proof of Theorem 6.1.
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