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1 Introduction

This short paper was motivated by a question of J. Wengenroth ([19])
about entropy numbers of composition operators on Hardy spaces H2, which
stand a little apart in the jungle of “s-numbers”, even though they seem
the most natural for the study of compactness, since their membership in
c0 characterizes compactness, even in the general framework of arbitrary
Banach spaces. Indeed, in various papers (see [1, 10, 11, 12, 13]), we studied
in detail the approximation numbers of composition operators, and here
we will essentially transfer those results to entropy numbers thanks to the
polar (Schmidt) decomposition and a general result on entropy numbers of
diagonal operators on ℓ2.

So, the proofs are easy, but the statements feature a very different be-
havior of those entropy numbers. In particular, we will investigate a few
properties related with a so-called “spectral radius type formula” which we
obtained, in dimension one through a result of Widom ([12]), and, partially
in dimension N ([13, 14]), through a result of Nivoche ([16]) and Zakharyuta
([22]).
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2 Entropy numbers

We begin by recalling some facts on s-numbers.
Given an operator T : X → Y between Banach spaces, recall ([4]) that

we can attach to this operator five non-increasing sequences (an), (bn),
(cn), (dn), (en) of non-negative numbers (depending on T ), respectively the
sequences of approximation, Bernstein, Gelfand, Kolmogorov, and entropy

numbers of T . The latter are defined ([4, Chapter 1], or [17, Chapter 5]), for
n ≥ 1 by:

(2.1) en(T ) = inf{ε > 0 ; N
(

T (BX), εBY

)

≤ 2n−1} ,

where BX and BY are the respective closed unit balls of X and Y , and
where, for A,B ⊆ Y , N(A,B) denotes the smallest number of translates of
B needed to cover A.

All those sequences (an), (bn), (cn), (dn), (en), say (un), share the ideal
property:

un(ATB) ≤ ‖A‖un(T ) ‖B‖ .
For Hilbert spaces, it turns out that an = bn = cn = dn = sn, where

(sn) designates the sequence of singular numbers, but entropy numbers stay
a little apart.

For general Banach spaces X and Y and T : X → Y , we have, in general
([3, Theorem 1], see also [17, Theorem 5.2]), for α > 0:

sup
1≤k≤n

kαek(T ) ≤ Cα sup
1≤k≤n

kαak(T ) ,

and, if X and Y ∗ are of type 2:

an(T ) ≤ K en(T ) , for all n ≥ 1

([7, Corollary 1.6]), where K = κ [T2(X)T2(Y
∗)]2; in particular, if T acts

between Hilbert spaces (see [17, Theorem 5.3]):

an(T ) ≤ 4 en(T ) , for all n ≥ 1 .

Those inequalities indicate that entropy numbers are always bigger than
singular numbers, up to a constant, and that, as far as the scale of powers nα
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is implied, they are dominated by approximation numbers in a weak sense.
But it turns out that, individually, they can be much bigger than the latter
for composition operators, as we shall see.

We will rely on the following estimate ([4, p. 17]), in which ℓ2 denotes
the space of square-summable sequences x = (xk)k≥1 of complex numbers.
This estimate is given for the sequence (εn) of covering numbers and with
the scale of powers of 2, but en = ε2n−1 , by definition, and the change of 2
to e only affects constants.

Theorem 2.1. (see [4, p. 17]) There exist absolute constants 0 < a < b
such that, for any diagonal compact operator ∆: ℓ2 → ℓ2 with positive and

non-increasing eigenvalues (σk)k≥1, namely ∆
(

(xk)k
)

= (σkxk)k, we have,

for all n ≥ 1:

(2.2) a sup
k≥1

[

e−n/k

( k
∏

j=1

σj

)1/k]

≤ en(∆) ≤ b sup
k≥1

[

e−n/k

( k
∏

j=1

σj

)1/k]

.

A useful corollary of Theorem 2.1 is the following.

Theorem 2.2. Let T : H1 → H2 be a compact operator between the Hilbert

spaces H1 and H2, and let (an)n≥1 be its sequence of approximation numbers.

Then, for all n ≥ 1:

(2.3) α sup
k≥1

[

e−n/k

( k
∏

j=1

aj

)1/k]

≤ en(T ) ≤ β sup
k≥1

[

e−n/k

( k
∏

j=1

aj

)1/k]

,

where α and β are positive numerical constants.

Proof. Let Tx =
∑∞

n=1 sn(x | un)vn the Schmidt decomposition of T , where
(un)n and (vn)n are orthonormal sequences of H1 and H2, respectively, and
(sn)n is the sequence of singular numbers of T . Let ∆: ℓ2 → ℓ2 the diagonal
operator with diagonal values sn, n ≥ 1. Then T = V1∆U1 and ∆ = V2TU2,
with U1x =

(

(x | un)
)

n
, V1

(

(tn)n
)

=
∑

n tnvn, U2

(

(tn)n
)

=
∑

n tnun and

V2x =
(

(x | vn)
)

n
. We have ‖U1‖, ‖V1‖, ‖U2‖, ‖V2‖ ≤ 1; hence the result

follows from Theorem 2.1 and the ideal property.

This theorem might be thought useless, because we don’t know better
the an’s than the en’s! In our situation, this is not the case, since we made
a more or less systematic study of the an’s for composition operators in
[1, 11, 10, 12] for example.

We now pass to applications to composition operators Cϕ, defined as
Cϕ(f) = f ◦ ϕ when they act on the Hardy space H2(DN ) (which is always
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the case if N = 1). Here, ϕ denotes an analytic and non-degenerate self-
map of DN . For clarity, we separate the cases of dimension N = 1 and of
dimension N ≥ 2.

3 Applications in dimension 1

3.1 General results

In [12], we had coined the parameter:

(3.1) β1(T ) = lim
n→∞

[

an(T )
]1/n

and its versions β+
1 (T ), β

−
1 (T ) with a upper limit and a lower limit respec-

tively. The following result ([12]) shows in particular that no lower or upper
limit is needed for β = β1, and provides a simpler proof of the second item
in Theorem 3.1 than in our initial proof of [10].

For the definition of the Green capacity Cap (A) of a Borel subset A of
D, 0 ≤ Cap (A) ≤ ∞, we refer to [12].

Theorem 3.1. Let Ω = ϕ(D), with ϕ : D → D a non-constant analytic map.

Then:

1) One always has β−
1 (Cϕ) = β+

1 (Cϕ) =: β1(Cϕ) and:

(3.2) β1(Cϕ) = exp[−1/Cap (Ω)] > 0 .

2) In particular, one has the equivalence:

(3.3) β1(Cϕ) = 1 ⇐⇒ ‖ϕ‖∞ = 1 .

Here, another parameter emerges.

(3.4) γ1(T ) = lim
n→∞

[

en(T )
]1/

√
n

and its γ+1 (T ), γ
−
1 (T ) versions.

Theorem 3.2. Let ϕ : D → D be a symbol and Ω = ϕ(D). Then:

1) γ−1 (Cϕ) = γ+1 (Cϕ) =: γ1(Cϕ) and:

(3.5) γ1(Cϕ) = exp
[

−
√

2/Cap (Ω)
]

> 0 .

2) In particular, one has the equivalence:

(3.6) γ1(Cϕ) = 1 ⇐⇒ ‖ϕ‖∞ = 1 .
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Proof. Set ρ = 1/Cap (Ω) for simplicity of notations. Let ε > 0, and Cε a
positive constant which depends only on ε and can vary from a formula to
another. Theorem 3.1 implies ak ≤ Cε e

εke−kρ, whence:

(a1 · · · ak)1/k ≤ Cε e
εk/2e−ρk/2 .

Theorem 2.2 now gives:

en(Cϕ) ≤ Cε sup
k≥1

[

eεk/2 e−(n/k+ρk/2)
]

.

This supremum is essentially attained for k =
[
√

2n/ρ
]

where [ . ] stands for
the integer part, and gives:

en(Cϕ) ≤ Cεe
ε
√

n/(2ρ)e−
√
2nρ .

This implies γ+1 (Cϕ) ≤ eε
√

1/(2ρ)e−
√
2ρ, and finally:

γ+1 (Cϕ) ≤ e−
√
2ρ .

The lower bound γ−1 (Cϕ) ≥ e−
√
2ρ is proved similarly.

This clearly ends the proof, since we know from [12] that Cap (Ω) = ∞
if ond only if ‖ϕ‖∞ = 1.

3.2 Specific results

For 0 < θ < 1, the lens map λθ of parameter θ is defined by:

(3.7) λθ(z) =
(1 + z)θ − (1− z)θ

(1 + z)θ + (1− z)θ

(see [18] or [10]).

Theorem 3.3. Let λθ be the lens map with parameter θ. Then, with positive

constants a, b, a′, b′ depending only on θ:

(3.8) a′ e−b′n1/3 ≤ en(Cλθ
) ≤ a e−bn1/3

.

Proof. We proved in [8, Theorem 2.1] (see also [10, Proposition 6.3] that

ak = ak(Cλθ
) ≤ a e−b

√
k. It follows, using Theorem 2.2, that (a1 · · · ak)1/k ≤

a e−b
√
k and that, for some positive constant C:

en(Cλθ
) ≤ C exp

[

−
(

(n/k) + bk1/2
)]

.

Taking k = [n2/3] gives the claimed upper bound. The lower bound is proved
similarly, using the left inequality in Theorem 2.2, since we know ([12]) that

ak ≥ a′ e−b′
√
k.
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We refer to [11, Section 4.1] for the definition of the cusp map χ. We
have:

Theorem 3.4. Let χ be the cusp map. Then, with positive constants a, b,
a′, b′:

(3.9) a′ e−b′
√

n/ logn ≤ en(Cχ) ≤ a e−b
√

n/ logn .

Proof. We proved in [11] that:

(3.10) a′ e−b′k/ log k ≤ ak(Cχ) ≤ a e−bk/ log k .

The proof then follows the same lines as in Theorem 3.3, with the choice
k = [

√
n log n].

4 The multidimensional case

4.1 General results

Let ϕ : DN → D
N be an analytic map. We will say that ϕ is non-

degenerate if ϕ(DN ) has non-empty interior, equivalently if detϕ ′(z) 6= 0 for
at least one point z ∈ D

N .
Let now ϕ : DN → D

N be a non-degenerate analytic map inducing a
bounded composition operator Cϕ : H

2(DN ) → H2(DN ) (this is not always
the case as soon as N > 1, even if ϕ is injective and hence non-degenerate,
see for example [5, p. 246], when the polydisk is replaced by the ball; but
similar examples exist for the polydisk). Assume moreover that Cϕ is a
compact operator.

Theorem 4.1. Let Cϕ : H
2(DN ) → H2(DN ) be a compact composition op-

erator, with ϕ non-degenerate. We have:

1) en(Cϕ) ≥ c exp
(

−C n
1

N+1
)

, for some constants C > c > 0, depending

on ϕ;

2) if ‖ϕ‖∞ < 1, then en(Cϕ) ≤ C exp
(

− c n
1

N+1
)

, with C > c > 0
depending on ϕ.

Proof. 1) It is proved in [1, Theorem 3.1] that, for a non-degenerate map ϕ,
it holds:

ak(Cϕ) ≥ a′ e−b′k1/N .
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As in the previous section, it follows from Theorem 2.2, that (a1 · · · ak)1/k ≥
e−b′′k1/N , and then, taking k = [nN/(N+1)], that:

en(Cϕ) ≥ c e−Cn1/(N+1)
.

2) Similarly, for ‖ϕ‖∞ < 1, it is proved in [1, Theorem 5.2] that:

ak(Cϕ) ≤ C e−ck1/N ;

and we get the result from Theorem 2.2.

Those estimates motivate the introduction of the parameter:

(4.1) γN (Cϕ) = lim
n→∞

[

en(Cϕ)
]

1

n1/(N+1) .

We define similarly γ±N (Cϕ), and will say more on it in next section.

4.2 Specific results

4.2.1 Multi-lens maps

Let λθ be lens maps with parameter θ. We define the multi-lens map Λθ

of parameter θ on the polydisk D
N as:

(4.2) Λθ(z1, . . . , zN ) =
(

λθ(z1), λθ(z2), . . . , λθ(zN )
)

,

for (z1, . . . , zN ) ∈ D
N .

The following result is proved in [1, Theorem 6.1].

Theorem 4.2. Let Λθ be the multi-lens map with parameter θ. Then, for

positive constants a, b, a′, b′ depending only on θ and N , one has:

(4.3) a′ e−b′n1/(2N) ≤ an(CΛθ
) ≤ a e−b n1/(2N)

.

The version of Theorem 4.2 for entropy numbers, stated without proof,
is:

Theorem 4.3. Let Λθ be the multi-lens map with parameter θ. Then:

(4.4) a′ exp (−b′n1/(2N+1)) ≤ en(CΛθ
) ≤ a exp (−b n1/(2N+1)) .
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4.2.2 Multi-cusp maps

Let χ : D → D be the cusp map and ϕ : DN → D
N be the multi-cusp map

defined by:

(4.5) Ξ (z1, . . . , zN ) =
(

χ(z1), χ(z2), . . . , χ(zN )
)

.

It is proved in [1, Theorem 6.2]:

Theorem 4.4. Let χ : D → D be the cusp map and Ξ: DN → D
N be the

multi-cusp map. Then:

(4.6) a′ e−b′ n1/N/ logn ≤ an(CΞ) ≤ a e−b n1/N/ logn ,

where a, b, a′, b′ are positive constants depending only on N .

The version of Theorem 4.4 for entropy numbers, stated without proof,
is:

Theorem 4.5. let χ : D → D be the cusp map and Ξ: DN → D
N be the

multi-cusp map. Then:

a′ exp
[

− b′ n1/(N+1) (log n)−N/(N+1)
]

≤ en(CΞ) ≤ a exp
[

− b n1/(N+1) (log n)−N/(N+1)
]

.
(4.7)

5 Connections with pluricapacity and Zakharyuta’s

results

Here, in dimension N ≥ 2, the situation is satisfactory for upper bounds
(see [13]); for lower bounds, see [14]. The notion involved is now that of
pluricapacity, or Monge-Ampère capacity, coined by Bedford and Taylor in
[2]. More precisely, if A is a Borel subset of DN , we refer to [13] or [14] for
the definition of its pluricapacity CapN (A), belonging to [0,+∞], and set:

τN (A) =
1

(2π)N
CapN (A)(5.1)

ΓN (A) = exp

[

−
( N !

τN(A)

)1/N
]

(5.2)

β+
N (T ) = lim sup

n→∞

[

an(T )
]1/n1/N

.(5.3)

We temporarily assume that ‖ϕ‖∞ < 1 so that K = ϕ(DN ) is a compact
subset of DN . We proved in [13, Theorem 6.4], relying on positive results
of Nivoche ([16]) and Zaharyuta ([22, Proposition 6.1]) on the so-called Kol-
mogorov conjecture, that:
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Theorem 5.1. It holds:

(5.4) β+
N (Cϕ) ≤ ΓN (K) .

We have the following result, which extends the previous result in dimen-
sion 1.

Theorem 5.2. The following upper bound holds:

(5.5) γ+N (Cϕ) ≤ exp
(

− βNρN/(N+1)
)

,

where:

(5.6) ρ =

(

N !

τN (K)

)1/N

= 2π

(

N !

CapN (K)

)1/N

,

and

βN =

(

N

N + 1

)N/(N+1)
(

N−N/(N+1)+N1/(N+1)
)

≥ e−1/(N+1)N1/(N+1) .

(5.7)

Proof. Abbreviate an(Cϕ) and en(Cϕ) to an and en, and set α = N/(N +1).
Let ε > 0. Theorem 5.1 implies:

ak ≤ Cε e
εk1/N e−ρk1/N ,

so:
(a1 · · · ak)1/k ≤ Cε e

εk1/N e−ραk1/N .

Apply once more Theorem 2.2 to obtain:

en ≤ Cε sup
k≥1

eεk
1/N

exp
[

− (n/k + ραk1/N )
]

.

The supremum is essentially attained for k the integral part of (N/ρα)αnα

and then, in view of (5.7) and α/N = 1− α, up to a negligible term:

n

k
+ ρα k1/N = n1−α

(

ρα

N

)α

+ ραn1−α

(

N

ρα

)1−α

= n1−α(ρα)α(N−α +N1−α) .

Finally,

en ≤ Cε e
εn1−α

exp (−βNραn1−α) = Cε e
εn1/(N+1)

exp (−βNραn1/(N+1)) .

This clearly ends the proof of Theorem 5.2.
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Remark. We have so far no sharp lower bound for entropy numbers, at
least when ‖ϕ‖∞ = 1, since we already fail to have one in general for ap-
proximation numbers (see however [14]).

Besides, let J : H∞(DN ) → C(K) be the canonical embedding, when K ⊆
D
N is a “condenser”, namely a compact subset of DN such that any bounded

analytic function on D
N which vanishes on K vanishes identically, which is

moreover “regular”. The positive solution to the Kolmogorov conjecture can
be expressed in terms of the Kolmogorov numbers dn(J) of J or equivalently,
in terms of the entropy numbers en(J) of J ([21, Theorem 5], generalizing
Erokhin’s result in dimension 1 appearing in his posthumous paper [6] and
methods due to Mityagin [15] and Levin and Tikhomirov [9]; see also [22,
Lemma 2.2]). The result is that, taking K = ϕ(DN ), one has, with sharp
constants cK , c′K depending on the pluricapacity of K in D

N :

(5.8) dn(J) ≈ e−cK n1/N
and en(J) ≈ e−c′K n1/(N+1)

.

This jump from the exponent 1/N to the exponent 1/(N +1) is reflected in
our Theorem 5.2, through the new parameter γ+N .
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