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Composition operators with surjective

symbol and small approximation numbers

Daniel Li, Hervé Queffélec, Luis Rodríguez-Piazza

November 12, 2018

Abstract. We give a new proof of the existence of a surjective symbol whose
associated composition operator on H2(D) is in all Schatten classes, with the
improvement that its approximation numbers can be, in some sense, arbitrar-
ily small. We show, as an application, that, contrary to the 1-dimensional
case, for N ≥ 2, the behavior of the approximation numbers an = an(Cϕ),

or rather of β−N = lim infn→∞[an]
1/n1/N

or β+N = lim supn→∞[an]
1/n1/N

, of
composition operators on H2(DN ) cannot be determined by the image of the
symbol.
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1 Introduction

We start by recalling some notations and facts.
Let D be the open unit disk, H2 the Hardy space on D, and ϕ : D → D

a non-constant analytic self-map. It is well-known ([14]) that ϕ induces a
composition operator Cϕ : H

2 → H2 by the formula:

Cϕ(f) = f ◦ ϕ ,

and the connection between the “symbol” ϕ and the properties of the operator
Cϕ : H

2 → H2, in particular its compactness, can be further studied ([14]).
We also recall that the nth approximation number an(T ), n = 1, 2, . . .,

of an operator T : H1 → H2, between Hilbert spaces H1 and H2, is defined
as the distance of T to operators of rank < n, for the operator-norm:

(1.1) an(T ) = inf
rankR<n

‖T −R‖ .
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The p-Schatten class Sp(H1,H2), p > 0 consists of all T : H1 → H2 such
that

(

an(T )
)

n
∈ ℓp. The approximation numbers have the ideal property:

an(ATB) ≤ ‖A‖ an(T ) ‖B‖ .

Let now, for ξ ∈ T = ∂D and h > 0, the Carleson window S(ξ, h) be
defined as:

(1.2) S(ξ, h) = {z ∈ D ; |z − ξ| ≤ h} .

For a symbol ϕ, we definemϕ = ϕ∗(m) wherem is the Haar measure of T and
ϕ∗ : T → D the (almost everywhere defined) radial limit function associated
with ϕ, namely:

ϕ∗(ξ) = lim
r→1−

ϕ(rξ) .

Finally, we set for h > 0:

(1.3) ρϕ(h) = sup
ξ∈T

mϕ[S(ξ, h)] .

It is known ([14]) that ρϕ(h) = O (h) and ([12]) that Cϕ is compact if
and only if ρϕ(h) = o (h) as h → 0. Simpler criteria ([14]) exist when ϕ
is injective, or even p-valent, meaning that for any w ∈ D, the equation
ϕ(z) = w has at most p solutions.

A measure µ on D is called α-Carleson, α ≥ 1, if sup|ξ|=1 µ[S(ξ, h)] =
O (hα).

B. MacCluer and J. Shapiro showed in [13, Example 3.12] the following
result, paradoxical at first glance.

Theorem 1.1 (MacCluer-Shapiro). There exists a surjective and four-valent
symbol ϕ : D → D such that the composition operator Cϕ : H

2 → H2 is
compact.

Observe that such a symbol ϕ cannot be one-valent (injective), because
it would be an automorphism of D, and Cϕ would be invertible and therefore
not compact. In [6, Theorem 4.1], we gave the following improved statement.

Theorem 1.2. For every non-decreasing function δ : (0, 1) → (0, 1), there
exists a two-valent symbol and nearly surjective (i.e. ϕ(D) = D\{0}) symbol
ϕ, and 0 < h0 < 1, such that:

(1.4) m({z ∈ T ; |ϕ∗(z)| ≥ 1− h}) ≤ δ(h) for 0 < h ≤ h0 .

As a consequence, there exists a surjective and four-valent symbol ψ : D → D

such that the composition operator Cψ : H
2 → H2 is in every Schatten class

Sp(H
2), p > 0.
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Our proof was rather technical and complicated, and based on arguments
of barriers and harmonic measures.

The goal of this paper is to give a more precise statement of Theorem 1.2
in terms of approximation numbers an(Cϕ), and not only in terms of Schatten
classes, and with a simpler proof. We then apply this result to show that for
the polydisk D

N , N ≥ 2, the nature (boundedness, compactness, asymptotic
behavior of approximation numbers) of the composition operator cannot
be determined by the geometry of the image ϕ(DN ) of its symbol ϕ. For
certain asymptotic behavior of approximation numbers, this is contrary to
the 1-dimensional case (see [10, Theorem 3.1 and Theorem 3.14]).

The notation A . B means that A ≤ C B for some positive constant C,
and A ≈ B that A . B and B . A.

2 Background and preliminary results

We initiated the study of approximation numbers of composition opera-
tors on H2 in [8], and proved the following basic results:

Theorem 2.1. If ϕ is any symbol, then, for some δ > 0 and r > 0, or a > 0:

an(Cϕ) ≥ δ rn = δ e−an .

Moreover, as soon as ‖ϕ‖∞ = 1, there exists some sequence εn tending to 0
such that:

an(Cϕ) ≥ δ e−nεn .

We also proved in [8, Theorem 5.1] that:

Proposition 2.2. For any symbol ϕ, we have:

an(Cϕ) . inf
0<h<1

[

e−nh +

√

ρϕ(h)

h

]

.

We also recall (see [8]) that, for γ > −1, the weighted Bergman space Bγ
is the space of functions f(z) =

∑∞
n=0 anz

n such that:

(2.1) ‖f‖2γ :=
∞
∑

n=0

|an|2
(n+ 1)γ+1

<∞ .

Equivalently, Bγ is the space of analytic functions f : D → C such that:

(2.2)

∫

D

|f(z)|2 (γ + 1)(1− |z|2)γ dA(z) <∞ ,
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where dA is the normalized area measure on D, and then:

(2.3)

∫

D

|f(z)|2 (γ + 1)(1 − |z|2)γ dA(z) ≈ ‖f‖2γ .

The case γ = 0 corresponds to the usual Bergman space B2, and the
limiting case γ = −1 to the Hardy space H2. We wish to note in passing (we
will make use of that elsewhere) that the proof of Theorem 5.1 in [8] easily
gives the following result.

Proposition 2.3. Let γ > −1 and ϕ a symbol inducing a bounded composi-
tion operator Cϕ : Bγ → H2. Then:

an(Cϕ : Bγ → H2) . inf
0<h<1

(

(n+ 1)(γ+1)/2 e−nh + sup
0<t≤h

√

ρϕ(t)

t2+γ

)

·

Proof. Take E = znBγ ; this is a subspace of Bγ of codimension ≤ n. Let
f ∈ E with ‖f‖γ = 1. Writing f = zng with ‖g‖2γ ≤ (n+1)γ+1 and splitting
the integral into two parts, we have, for 0 < h < 1:

‖Cϕf‖2H2 =

∫

D

|f |2 dmϕ ≤ (1− h)2n
∫

(1−h)D
|g|2 dmϕ +

∫

D\(1−h)D
|f |2 dmϕ .

For the first integral, we have:

(2.4)

∫

(1−h)D
|g|2 dmϕ ≤

∫

D

|g|2 dmϕ = ‖Cϕ g‖2H2 ≤ ‖Cϕ‖2Bγ→H2‖g‖2γ .

For the second integral, we have:
∫

D\(1−h)D
|f |2 dmϕ ≤ ‖J : Bγ → L2(µh)‖2 ,

where µh is the restriction of mϕ to the annulus {z ∈ D ; 1 − h < |z| < 1}
and J the canonical injection of Bγ into L2(µh). Hence Stegenga’s version
of the Carleson embedding theorem for Bγ ([16, Theorem 1.2]; see [4] for the
unweighted case; see also [3, p. 62] or [17, p. 167]) gives us:

(2.5)

∫

D\(1−h)D
|f |2 dmϕ . sup

0<t≤h

ρϕ(t)

t2+γ
·

Putting (2.4) and (2.5) together, that gives:

‖Cϕf‖H2 . e−nh(n+ 1)(γ+1)/2 + sup
0<t≤h

√

ρϕ(t)

t2+γ
·
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In other terms, using the Gelfand numbers ck:

cn+1(Cϕ : Bγ → H2) . (n+ 1)(γ+1)/2 e−nh + sup
0<t≤h

√

ρϕ(t)

t2+γ
·

As an+1 = cn+1 and as we can ignore the difference between an and an+1,
that finishes the proof.

As an application, we mention the following result. We refer to [9, Sec-
tion 4.1] for the definition of the cusp map, denoted χ.

Theorem 2.4. Let χ : D → D be the cusp map and Φ: DN → D
N the

diagonal map defined by:

(2.6) Φ(z1, z2, . . . , zN ) =
(

χ(z1), χ(z1), . . . , χ(z1)
)

.

Then, the composition operator CΦ maps H2(DN ) to itself and:

(2.7) an(CΦ) . e−d
√
n

where d is a positive constant depending only on N .

Remark. We have to compare with [1, Theorem 6.2] where, for:

Ψ(z1, . . . , zN ) =
(

χ(z1), . . . , χ(zN )
)

,

it is shown that, for constants b ≥ a > 0 depending only on N :

e−b (n
1/N/ logn) . an(CΨ) . e−a (n

1/N/ logn) .

Note also that for N = 1, the estimate of Theorem 2.4 is very crude.

Proof of Theorem 2.4. Take γ = N−2. As in [11, Section 4], we have thanks
to the Cauchy-Schwarz inequality, and the fact that

∑

|α|=n 1 ≈ (n+1)N−1,
a factorization:

CΦ = JCχM ,

where M : H2(DN ) → Bγ is defined by Mf = g with:

(2.8) g(z) = f(z, z, . . . , z) =
∞
∑

n=0

(

∑

|α|=n
aα

)

zn , z ∈ D ,

for
f(z1, z2, . . . , zN ) =

∑

α

aαz
α1
1 · · · zαN

N ,
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and where J : H2(D) → H2(DN ) is the canonical injection given by:

(2.9) (Jh)(z1, z2, . . . , zN ) = h(z1) .

This corresponds to a diagram:

(2.10) H2(DN )
M−→Bγ

Cχ−→H2(D)
J−→H2(DN ) ,

where Cχ : Bγ = BN−2 → H2(D) is a bounded operator. Indeed, we have
the behavior ([9, Lemma 4.2]):

|1− χ∗(eiθ)| ≈ 1

log(1/|θ|)
,

and this implies, with c an absolute constant:

mχ[S(ξ, h)] . mχ[S(1, h)] = m({|χ∗(eiθ)− 1| < h)

. m[{c/ log(1/|θ|) < h}] ≤ e−c/h ;
(2.11)

in particular ρχ(h) ≤ e−c/h = O(hN ), so mχ is an N -Carleson measure and
the Stengenga-Carleson theorem ([16, Theorem 1.2]) says that the operator
Cχ : BN−2 → H2(D) is bounded.

Now Proposition 2.3 with (2.11) give:

an(Cχ : Bγ → H2) . inf
0<h<1

[

(n+ 1)(N−1)/2 e−nh + e−c/hh−N/2
]

.

Adjusting h = 1/
√
n, we get an(Cχ : Bγ → H2) . e−d

√
n for some positive

constant d. Finally, the factorization CΦ = JCχM and the ideal property of
approximation numbers give the result.

In the case of lens maps, Proposition 2.3 gives very poor estimates. We
avoid using this theorem in [11, Section 4], when N = 2, using the semi-group
property of those lens maps. The same proof gives for arbitrary N ≥ 2 the
following result.

Theorem 2.5. Let λθ the lens map with parameter θ, 0 < θ < 1, and let
Φ: DN → DN be the diagonal map defined by:

(2.12) Φ(z1, z2, . . . , zN ) =
(

λθ(z1), λθ(z1), . . . , λθ(z1)
)

.

Then:

1) if θ > 1/N , CΦ is unbounded on H2(DN );
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2) if θ = 1/N , CΦ is bounded and not compact on H2(DN );

3) if θ < 1/N , CΦ is compact on H2(DN ) and moreover:

(2.13) an(CΦ) . e−d
√
n

for a constant d > 0 depending only on θ and N .

Remark. In [1, Theorem 6.1], it is shown that, for:

Ψ(z1, . . . , zN ) =
(

λθ(z1), . . . , λθ(zN )
)

,

we have, for constants b ≥ a > 0, depending only on θ and N :

e−b n
1/(2N)

. an(CΨ) . e−an
1/(2N)

.

Proof of Theorem 2.5. That had been proved, for N = 2 in [11, Theorem 4.2
and Theorem 4.4]. For convenience of the reader, we sketch the proof.

Assume first θ ≤ 1/N , and write λθ = λNθ ◦ λ1/N , where we set, for
convenience, λ1(z) = z, so Cλ1 = Id. As in the proof of Theorem 2.4 (see
[11, Section 4]), we have a factorization:

CΦ = JCλNθ
Cλ1/NM ,

where M and J are defined in (2.8) and (2.9).
This corresponds to a diagram (recall that γ = N − 2):

H2(DN )
M−→Bγ

Cλ1/N−→ H2(D)
CλNθ−→ H2(D)

J−→H2(DN ) .

The second arrow is bounded, since we know ([7, Lemma 3.3]) that the
pullback measure mλ1/N is N -Carleson, so that Cλ1/N maps BN−2 to H2(D)
by the Stegenga-Carleson embedding theorem ([16, Theorem 1.2]).

For θ < 1/N , we have Nθ < 1 and CλNθ
is compact and, for some

constant b = b(θ), we have an(CλNθ
) . e−b

√
n ([7, Theorem 2.1]). Hence CΦ

is compact and an(CΦ) . e−b
√
n.

Now, for θ ≥ 1/N , we consider the reproducing kernels:

Ka1,...,aN (z1, . . . , zN ) =

N
∏

j=1

1

1− ajzj
·

We have:

‖Ka1,...,aN ‖2 =

N
∏

j=1

1

1− |aj |2
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and:
C∗
Φ(Ka1,...,aN ) = Kλθ(a1),...,λθ(a1) ,

so:

‖C∗
Φ(Ka1,...,aN )‖2 =

(

1

1− |λθ(a1)|2
)N

·

Since:
1− |λθ(a1)|2 ≈ 1− |λθ(a1)| ≈ (1− |a1|)θ ,

we see that ‖C∗
Φ(Ka1,...,aN )‖/‖Ka1 ,...,aN ‖ is not bounded for θ > 1/N , so Cϕ

is then not bounded; and it does not converge to 0 for θ = 1/N , so CΦ is
then not compact.

3 Surjectivity

Let us come back to our surjectivity issues.

Let us first remark that Theorem 1.2 gives the following result.

Theorem 3.1. For every non-decreasing function δ : (0, 1) → (0, 1), there
exists a surjective and four-valent symbol ψ, and 0 < h0 < 1, such that, for
0 < h ≤ h0:

(3.1) m({z ∈ T ; |ϕ∗(z)| ≥ 1− h}) ≤ δ(h) .

Proof. Just observe that the passage from “ϕ two-valent and nearly surjec-
tive” to “ψ four-valent and surjective” is harmless: for this, consider the
Blaschke product:

B(z) =

(

z − a

1− az

)2

,

where 0 < a < 1, and take ψ = B ◦ϕ; we observe that B(D \ {0}) = D since
a2 = B

(

2a
1+a2

)

, and, for z ∈ D:

1− |B(z)|
1− |z| ≥

1− | z − a

1− az
|2

1− |z|2 =
1− a2

|1− az|2 ≥ 1− a2

4
,

so that:

m(|ψ∗| > 1− h) = m(1− |B ◦ ϕ∗| < h) ≤ m
(

1− |ϕ∗| ≤ κah
)

,

with κa = 4/(1 − a2). Hence, this map ψ is surjective, four-valent, and
satisfies (3.1), as well, up to a change of δ(h) to δ(h/κa) for ϕ at the begin-
ning.
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3.1 A more precise statement

Our new statement is as follows.

Theorem 3.2. For every positive sequence (εn)n with limit 0, there exists a
surjective and four-valent symbol ϕ such that:

an(Cϕ) . e−nεn .

Consequently, there exists a surjective and four-valent symbol ϕ : D → D

such that the composition operator Cϕ : H
2 → H2 is in every Schatten class

Sp(H
2), p > 0.

Proof. Observe first that ‖ϕ‖∞ = 1 when ϕ is surjective, so that, in view
of Theorem 2.1, we cannot dispense with the numbers εn, even if they can
tend to 0 arbitrarily slowly.

Now, we can choose δ : (0, 1) → (0, 1) non-decreasing such that δ(εn) ≤
e−nεn for all n, and then, using Theorem 3.1, we get a surjective and four-
valent symbol ϕ, satisfying for all h small enough:

ρϕ(h) ≤ h δ 2(h) .

Proposition 2.2 gives:

an(Cϕ) . inf
0<h<1

[

e−nh + δ(h)
]

.

Adjusting h = εn, we get an(Cϕ) . e−nεn .
To get the second part of the theorem, just take εn = n−1/2.

3.2 A simplified proof of Theorem 1.2

We give here the announced simplified proof of Theorem 1.2. This proof
is based on the following key lemma, in which H(D) denotes the set of
holomorphic functions on D.

Lemma 3.3. There exists a numerical constant C such that, if f ∈ H(D)
satisfies, for some α ∈ R:

{

Im [f(0)] < α

f(D) ⊆ {z ∈ C ; 0 < Re z < π} ∪ {z ∈ C ; Im z < α} ,

then:
m({Im f∗ > y}) ≤ C eα−y , for y ≥ α .
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We first show how this lemma allows us to conclude.

Proof of Theorem 1.2. Let g : (0,∞) → (0,∞) be a continuous decreasing
function such that:

lim
t→0+

g(t) = +∞ , g(π) = π , lim
t→+∞

g(t) = 0 .

Then let Ω be the simply connected region defined by:

Ω = {x+ iy ; x > 0 , g(x) < y < g(x) + 4π} ,

and f : D → Ω be a Riemann map such that f(0) = π + 3iπ. Observe
that we can apply Lemma 3.3 to f with α = 5π since Im f(0) = 3π and if
f(z) = x+ iy with x ≥ π; hence:

Im f(z) = y < g(x) + 4π ≤ g(π) + 4π = 5π .

Finally, consider the symbol ϕ = e−f . It is nearly surjective: ϕ(D) = D\{0},
and two-valent, as easily checked.

For 0 < h ≤ 1/2, we have for ξ ∈ T and |ϕ∗(ξ)| > 1− h:

e−2h ≤ 1− h < |ϕ∗(ξ)| = exp
(

−Re f∗(ξ)
)

;

hence Re f∗(ξ) < 2h.
But if 2h > x = Re f∗(ξ), we have g(x) > g(2h). As f∗(ξ) = x+ iy ∈ Ω,

we get Im f∗(ξ) = y ≥ g(x) > g(2h). Lemma 3.3 now gives:

(3.2) m({ξ ; |ϕ∗(ξ)| > 1−h}) ≤ m({ξ ; Im f∗(ξ) > g(2h)}) ≤ C e5π−g(2h) .

It is now enough to adjust g so as to have eg(t) ≥ C e5π/δ(t/2) for t small
enough to get (1.4) from (3.2).

Proof of Lemma 3.3. We now prove Lemma 3.3. If ey−α < 2, there is nothing
to prove, since then:

m(Im f∗ > y) ≤ 1 ≤ 2 eα−y .

We can hence assume that ey−α ≥ 2. First, we make a comment. If the
Riemann mapping theorem is very general and flexible, it gives very few
informations on the parametrization t 7→ f∗(eit) when f : D → Ω is a con-
formal map, except in some specific cases (lens maps, cusps, etc.: see [9]).
Here, the Kolmogorov weak type inequality provides a substitute. Write:

f = u+ iv
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and set:

f1 = −if + i
π

2
− α = v − α+ i

(

π

2
− u

)

and:
F1 = 1 + ef1 = (1 + ev−α sinu) + iev−α cos u .

If v < α, then ReF1 > 1 − | sinu| ≥ 0. If v ≥ α, then 0 < u < π and
ReF1 ≥ 1. Hence F1 maps D to the right half-plane C0 = {z ; Re z > 0}.
Finally, let F = U + iV : D → C0 be defined by:

F = F1 − iImF1(0) ,

so that V (0) = 0. By the Kolmogorov inequality for the conjugation map
U 7→ V , and the harmonicity of U , we have, for all λ > 0 (a designating an
absolute constant):

(3.3) m(|F ∗| > λ) ≤ a

λ
‖U∗‖1 =

a

λ

∫

T

U∗ dm =
a

λ
U(0) .

Next, we claim that:

(3.4) |ImF1(0)| < 1 and U(0) < 2 .

Indeed, v(0) < α by hypothesis, so that |ImF1(0)| = ev(0)−α| cos u(0)| < 1,
and U(0) = 1 + ev(0)−α sinu(0) < 2. Suppose now that, for some y > α and
z ∈ D, we have v(z) > y. Then, 0 < u(z) < π by our second assumption,
and this implies Re ef1(z) = ev(z)−α sinu(z) > 0, so that, using |1 +w| ≥ |w|
if Rew > 0 and (3.4), and remembering that ey−α ≥ 2:

|F (z)| =
∣

∣1 + ef1(z) − iImF1(0)
∣

∣ ≥
∣

∣1 + ef1(z)
∣

∣− 1

≥
∣

∣ef1(z)
∣

∣− 1 = ev(z)−α − 1 > ey−α − 1 ≥ 1

2
ey−α .

Taking radial limits and using (3.3) and (3.4), we get:

m(Im f∗ > y) ≤ m(|F ∗| > ey−α/2) ≤ 4a eα−y .

This ends the proof of Lemma 3.3 with C = max(2, 4a).
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4 Application to the multidimensional case

In this section, we apply Theorem 3.1 and Theorem 3.2 to show that,
for N ≥ 2, the image of the symbol cannot determine the behavior of the
approximation numbers, or rather of βN (Cϕ), of the associated composition
operator Cϕ : H

2(DN ) → H2(DN ).

Recall that for an operator T : H1 → H2, we set:

(4.1) β−N (T ) = lim inf
n→∞

[an(T )]
1/n1/N

and β+N (T ) = lim sup
n→∞

[an(T )]
1/n1/N

,

and write βN (T ) when β−N (T ) = β+N (T ).

Theorem 4.1. For N ≥ 2, there exist pairs of symbols Φ1,Φ2 : D
N → D

N ,
such that Φ1(D

N ) = Φ2(D
N ) and:

1) CΦ1 is not bounded, but CΦ2 is compact, and even βN (CΦ2) = 0;

2) CΦ1 is bounded but not compact, so βN (CΦ1) = 1, and CΦ2 is compact,
with βN (CΦ2) = 0;

3) CΦ1 is compact, with β−N (CΦ1) > 0 and β+N (CΦ1) < 1, and CΦ2 is
compact, with βN (CΦ2) = 0;

4) CΦ1 is compact, with βN (CΦ1) = 1, and CΦ2 is compact, but with
βN (CΦ2) = 0.

Proof. Let σ : D → D be a surjective symbol such that ρσ(h) ≤ hN e−2/h2

given by Theorem 3.1. By Proposition 2.3, we have, with γ = N − 2:

an(Cσ : Bγ → H2) . inf
0<h<1

(n(N−1)/2e−nh + e−1/h2) ,

and, with h = 1/n1/3, we get an(Cσ : Bγ → H2) . e−dn
2/3

.
We choose the exponent 2/3 for fixing the ideas, but every exponent

α > 1/2, with α < 1, (i.e. an(Cσ : Bγ → H2) . e−d n
α
) would be suitable.

1) We take Φ1(z1, z2, z3, . . . , zN ) = (z1, z1, . . . , z1). The composition
operator CΦ1 is not bounded because if fn(z1, . . . , zN ) =

(

z1+z2
2

)n
, then

‖fn‖22 = 4−n
∑n

k=0

(

n
k

)2
= 4−n

(

2n
n

)

≈ 1/
√
n, though (CΦ1fn)(z1, . . . , zN ) =

zn1 and ‖CΦ1fn‖2 = 1.
We define Φ2 by:

Φ2(z1, z2, . . . , zN ) =
(

σ(z1), σ(z1), . . . , σ(z1)
)

.
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Since σ is surjective, we have Φ2(D
N ) = Φ1(D

N ). Now, as in the proof of
Theorem 2.4, we have CΦ2 = JCσM , so:

an(CΦ2) ≤ an(Cσ : BN−2 → H2) . e−d n
2/3
,

by the ideal property. Hence [an(CΦ2)]
1/n1/N

. e−dn
2
3−

1
N and therefore

βN (CΦ2) = 0 since 2
3 − 1

N > 0.

2) We consider the lens map λ = λ1/N of parameter 1/N . We define:

{

Φ1(z1, . . . , zN ) =
(

λ(z1), λ(z1), . . . , λ(z1)
)

Φ2(z1, . . . , zN ) =
(

λ[σ(z1)], λ[σ(z1)], . . . , λ[σ(z1)]
)

.

Since σ is surjective, we have Φ1(D
N ) = Φ2(D

N ) and we saw in Theorem 2.5
that CΦ1 is bounded but not compact.

On the other hand, we have the factorization CΦ2 = JCσCλM . Hence
CΦ2 is compact, and, as in 1), βN (CΦ2) = 0.

3) For this item, the map σ does not suffice, and we will use another
surjective symbol s : D → D. By Theorem 3.1, there exists such a map s
with:

(4.2) ρs(t) ≤ t2e−2/t2

and

(4.3) ρs(t) ≤ t δ 2(t)

for t small enough, where δ : (0, 1) → (0, 1) is a non-decreasing function such
that δ(εn) ≤ e−nεn and:

(4.4) εn = n−
1

4N−7 .

By the proof of Theorem 3.2, (4.3) implies that:

(4.5) an(Cs) ≤ e−nεn .

We also consider a lens map λ = λθ, with parameter θ < 1/N , and we
set:











Φ1(z1, . . . , zN ) =
(

λ(z1), λ(z1),
z3
2
, . . . ,

zN
2

)

Φ2(z1, . . . , zN ) =
(

λ[s(z1)], λ[s(z1)],
s(z3)

2
, . . . ,

s(zN )

2

)

.
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Since s is surjective, we have Φ1(D
N ) = Φ2(D

N ).

a) Let us prove that β−N (CΦ1) > 0 and β+N (CΦ1) < 1.
Note that:

CΦ1 = Cu ⊗ Cv3 ⊗ · · · ⊗ CvN ,

where u : D2 → D
2 is defined by u(z1, z2) =

(

λ(z1), λ(z1)
)

and vj : D → D is
defined by vj(zj) = zj/2. In fact, if f ∈ H2(D2) and gj ∈ H2(D), 3 ≤ j ≤ N ,
we have:

[CΦ1(f ⊗ g3 ⊗ · · · ⊗ gN )](z1, z2, z3, . . . , zN )

= (f ⊗ g3 ⊗ · · · ⊗ gN )
(

u(z1, z2), v3(z3), . . . , vN (zN )
)

= f [λ(z1), λ(z1)] g3[v3(z3)] · · · gN [vN (zN )]
= (Cuf)(z1, z2) (Cv3g3)(z3) · · · (CvN gN )(zN )

= [(Cu ⊗ Cv3 ⊗ · · · ⊗ CvN )(f ⊗ g3 ⊗ · · · ⊗ gN )](z1, z2, z3, . . . , zN ) ,

hence the result since H2(D2) ⊗H2(D) ⊗ · · · ⊗H2(D) is dense in H2(DN ).
That proves in particular that CΦ1 is compact since Cu and Cv3 , . . . , CvN are
(by Theorem 2.5 for Cu).

By the supermultiplicativity of singular numbers of tensor products (see
[11, Lemma 3.2]), it ensues that:

anN (CΦ1) ≥ an2(Cu)

N
∏

j=3

an(Cvj ) = an2(Cu)
(1

2

)n(N−2)
.

By [11, Remark at the end of Section 4], we have an2(Cu) & e−bn for some
positive constant b = b(θ). Indeed, if J = J2 : H

2(D) → H2(D2) is the
canonical injection defined by (Jh)(z1, z2) = h(z1) and Q : H2(D2) → H2(D)
is defined by (Qf)(z1) = f(z1, 0), we have Cλ = QCuJ . Hence ak(Cu) &

ak(Cλ) & e−b
√
k.

Therefore we get:
anN (CΦ1) & e−cn

for some positive constant depending only on θ and N . It follows that
β−N (CΦ1) > 0.

To see that β+N (CΦ1) < 1, we need the following lemma, whose proof is
postponed.
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Lemma 4.2. Let S : H1 → H1 and T : H2 → H2 be two operators between
Hilbert spaces and A,B a pair of positive numbers. Then, whenever:

a[nA](S) ≤ e−cn and a[nB](T ) ≤ e−cn ,

where [ . ] stands for the integer part, we have, for some constant integer
M =M(A,B) > 0:

aM [nA+B](S ⊗ T ) ≤ e−cn .

Let S = Cu and T = Cv3 ⊗ · · · ⊗ CvN . For c small enough, we have
anN−2(T ) ≤ C (1/2)n ≤ e−cn and, using (2.13), an2(S) ≤ e−dn ≤ e−cn.
Hence, with A = 2, B = N − 2, Lemma 4.2 gives:

aMnN (CΦ1) . e−cn .

Therefore β+N (CΦ1) ≤ e−c/M
1/N

< 1.

b) Define Ψ: DN → D
N by:

Ψ(z1, z2, z3, . . . , zN ) =
(

s(z1), s(z1), s(z3), . . . , s(zN )
)

.

If τ1 : D
2 → D

2 is defined by τ1(z1, z2) =
(

s(z1), s(z1)
)

and the map
τ2 : D

N−2 → D
N−2 by τ2(z3, . . . , zN ) =

(

s(z3), . . . , s(zN )
)

, we have:

CΨ = Cτ1 ⊗ Cτ2 .

As in the proof of Theorem 2.4, we have the factorization:

τ1 : H
2(D2)

M−→B0 = B2 Cs−→H2(D)
J−→H2(D2) .

Hence an(Cτ1) ≤ ‖M‖ ‖J‖ an(Cs : B2 → H2).
By Proposition 2.3, we have:

an(Cs : B2 → H2) . inf
0<h<1

(√
n e−nh + sup

0<t≤h

√

ρs(t)

t2

)

;

so (4.2) implies that an(Cs : B2 → H2) . inf0<h<1(
√
n e−nh + e−1/h2) and,

taking h = n−1/3, we get, with some c small enough:

an(Cs : B2 → H2) . e−cn
2/3
.

It follows that an(Cτ1) . e−c n
2/3

and hence:

(4.6) a[n3/2](Cτ1) . e−c n .

15



On the other hand, [1, Theorem 5.5] says that:

an(Cτ2) ≤ 2N−3‖Cs‖N−2 inf
n3···nN≤n

(

an3(Cs) + · · ·+ anN
(Cs)

)

.

Taking n3 = · · · = nN = n
1

N−2 , we get, using (4.5):

an(Cτ2) ≤ KNN exp
(

− n
1

N−2 ε
n

1
N−2

)

.

Using (4.4), that gives:

an(Cτ2) . exp
(

− n
1

N−2
(1− 1

4N−7
)) = exp

(

− n
4

4N−7
)

,

or:

(4.7) a[
nN−

7
4

](Cτ2) . e−n ≤ e−cn .

Now, (4.6) and (4.7) allow to use Lemma 4.2 with A = 3/2 and B =
N − 7/4, and we get:

a
M
[

nN−

1
4

](CΨ) . e−cn .

Equivalently:

ak(CΨ) . exp
(

− c′k
4

4N−1
)

and:

(

ak(CΨ)
)1/k1/N

. exp
(

− c′k
4

4N−1
− 1

N
)

= exp
(

− c′k
1

N(4N−1)
)

,

which gives βN (CΨ) = 0.
To end the proof, it suffices to remark that CΦ2 = CΨ ◦ CΦ1 , since

Φ2 = Φ1 ◦Ψ, and hence β+N (CΦ2) ≤ β+N (CΨ) = 0, so βN (CΦ2) = 0.

4) We use a Shapiro-Taylor map. This one-parameter map ςθ , θ > 0, was
introduced by J. Shapiro and P. Taylor in 1973 ([15]) and was further studied,
with a slightly different definition, in [5, Section 5]. J. Shapiro and P. Taylor
proved that Cςθ : H

2 → H2 is always compact, but is Hilbert-Schmidt if and
only if θ > 2. Let us recall their definition.

For 0 < ε < 1, we set Vε = {z ∈ C ; Re z > 0 and |z| < ε}. For
ε = εθ > 0 small enough, one can define:

fθ(z) = z(− log z)θ,

16



for z ∈ Vε, where log z will be the principal determination of the logarithm.
Let now gθ be the conformal mapping from D onto Vε, which maps T = ∂D
onto ∂Vε, defined by gθ(z) = εϕ0(z), where ϕ0 is given by:

ϕ0(z) =

( z − i

iz − 1

)1/2
− i

−i
( z − i

iz − 1

)1/2
+ 1

·

Then, we define:
ςθ = exp(−fθ ◦ gθ).

We proved in [9, Section 4.2] (though it is not sharp) that:

(4.8) an(Cςθ) &
1

nθ/2
·

We define Φ1 : D
N → D

N as:

(4.9) Φ1(z1, z2, . . . , zN ) =
(

ςθ(z1), 0, . . . , 0
)

.

If J = JN : H2(D) → H2(DN ) is the canonical injection defined by
(Jh)(z1, . . . , zN ) = h(z1) and Q = QN : H2(DN ) → H2(D) is defined by
(Qf)(z1) = f(z1, 0, . . . , 0), then CΦ1 = JCςθQ; hence CΦ1 is compact. On
the other hand, we also have QCΦ1J = Cςθ , which implies that an(CΦ1) &
an(Cςθ ) & n−θ/2. It follows that:

βN (CΦ1) ≥ lim
n→∞

(n−θ/2)1/n
1/N

= 1 ,

and hence βN (CΦ1) = 1.
Now, if:

Φ2(z1, . . . , zN ) =
(

ςθ[σ(z1)], 0, . . . , 0
)

,

since σ is surjective, we have Φ1(D
N ) = Φ2(D

N ). Moreover, we have CΦ2 =
JCςθ◦σQ = JCσCςθQ, so an(CΦ2) . an(Cσ). Since ρσ(h) ≤ hN+1 e−2/h2 ,
Proposition 2.2 gives, with h = 1/n1/3:

an(Cσ) . e−cn
2/3
,

so [an(CΦ2)]
1/n1/N

. exp(−c n 2
3
− 1

N ) and βN (CΦ2) = 0.

Proof of Lemma 4.2. In [11], we observed that the singular numbers of S⊗T
are the non-increasing rearrangement of the numbers sjtk, where sj and tk
denote respectively the j-th and the k-th singular number of S and T . We
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can assume s1 = t1 = 1. Using this observation, we will majorize the
number of pairs (j, k) such that sjtk > e−cn. Let (j, k) be such a pair. Since
sj ≤ s1 = 1, we have tk ≥ e−cn so that k ≤ [nB] ≤ nB. Hence, for some
2 ≤ l ≤ n, we have (l − 1)B < k ≤ lB . Then, due to the assumption on T ,
tk < e−c(l−1) and sj ≥ e−cnt−1

k & e−c(n−l+1), implying that j . (n− l+1)A,
thanks to the assumption on S. As a consequence, since the number of
integers k such that (l− 1)B < k ≤ lB is dominated by lB−1, the number νn
of pairs (j, k) such that sjtk > e−cn is dominated by:

n
∑

l=1

(n− l + 1)AlB−1 ∼ nA+B
∫ 1

0
tA(1− t)B dt ,

by a Riemann sum argument. Next, let M ∈ N big enough to have:

n
∑

l=1

(n− l + 1)AlB−1 ≤MnA+B − 1 , for all n .

By definition, aM [nA+B](S⊗T ) ≤ aνn+1(S⊗T ) ≤ e−cn, giving the result.
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