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Abstract. For suitable bounded hyperconvex sets Ω in CN , in particular the
ball or the polydisk, we give estimates for the approximation numbers of com-
position operators Cϕ : H2(Ω)→ H2(Ω) when ϕ(Ω) is relatively compact in Ω,
involving the Monge-Ampère capacity of ϕ(Ω).
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1 Introduction

Let D be the unit disk in C, H2(D) the corresponding Hardy space, ϕ a
non-constant analytic self-map of D and Cϕ : H2(D) → H2(D) the associated
composition operator. In [40], we proved a formula connecting the approxima-
tion numbers an(Cϕ) of Cϕ, and the Green capacity of the image ϕ(D) in D,
namely, when [ϕ(D)] ⊂ D, we have:

(1.1) β(Cϕ) := lim
n→∞

[an(Cϕ)]1/n = exp
(
− 1/Cap [ϕ(D)]

)
,

where Cap [ϕ(D)] is the Green capacity of ϕ(D).

A non-trivial consequence of that formula was the following:

(1.2) ‖ϕ‖∞ = 1 =⇒ an(Cϕ) ≥ δ e−nεn where εn → 0+ .

In other terms, as soon as ‖ϕ‖∞ = 1, we cannot hope better for the numbers
an(Cϕ) than a subexponential decay, however slowly εn tends to 0.

In [41], we pursued that line of investigation in dimension N ≥ 2, namely on
H2(DN ), and showed that in some cases the implication (1.2) still holds ([41,
Theorem 3.1]):

(1.3) ‖ϕ‖∞ = 1 =⇒ an(Cϕ) ≥ δ e−n
1/Nεn where εn → 0+ ,
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(the substitution of n by n1/N is mandatory as shown by the results of [4]).

We show in this paper that, in general, for non-degenerate symbols, we have
similar formulas to (1.1) at our disposal for the parameters:

(1.4) β−N (Cϕ) = lim inf
n→∞

[anN (Cϕ)]1/n and β+
N (Cϕ) = lim sup

n→∞
[anN (Cϕ)]1/n .

These bounds are given in terms of the Monge-Ampère (or Bedford-Taylor) ca-
pacity of ϕ(DN ) in DN , a notion which is the natural multidimensional extension
of the Green capacity when the dimension N is ≥ 2 ([41, Theorem 6.4]). We
show that we have β−N (Cϕ) = β+

N (Cϕ) for well-behaved symbols.

2 Notations and background

2.1 Complex analysis

Let Ω be a domain in CN ; a function u : Ω→ R∪{−∞} is said plurisubhar-
monic (psh) if it is u.s.c. and if for every complex line L = {a + zw ; z ∈ C}
(a ∈ Ω, w ∈ CN ), the function z 7→ u(a + zw) is subharmonic in Ω ∩ L. We
denote PSH(Ω) the set of plurisubharmonic functions in Ω. If f : Ω → C is
holomorphic, then log |f | and |f |α, α > 0, are psh. Every real-valued convex
function is psh (convex functions are those whose composition with all R-linear
isomorphisms are subharmonic, though plurisubharmonic functions are those
whose composition with all C-linear isomorphisms are subharmonic: see [30,
Theorem 2.9.12]).

Let ddc = 2i∂∂̄, and (ddc)N = ddc∧· · ·∧ddc (N times). When u ∈ PSH(Ω)∩
C2(Ω), we have:

(ddcu)N = 4NN ! det

(
∂2u

∂zj∂z̄k

)
dλ2N (z) ,

where dλ2N (z) = (i/2)Ndz1∧dz̄1∧· · ·∧dzN ∧dz̄N is the usual volume in CN . In
general, the current (ddcu)N can be de�ned for all locally bounded u ∈ PSH(Ω)
and is actually a positive measure on Ω ([5]).

Given p1, . . . , pJ ∈ Ω, the pluricomplex Green function with poles p1, . . . , pJ
and weights c1, . . . , cN > 0 is de�ned as:

g(z) = g(z, p1, . . . , pJ) = sup{v(z) ; v ∈ PSH(Ω) , v ≤ 0 and

v(z) ≤ cj log |z − pj |+ O (1) ,∀j = 1, . . . , J} .

In particular, for J = 1 and p1 = a, c1 = 1, g( · , a) is the pluricomplex Green
function of Ω with pole a ∈ Ω. If 0 ∈ Ω and a = 0, we denote it by gΩ and call
it the pluricomplex Green function of Ω; hence:

ga(z) = g(z, a) = sup{u(z) ; u ∈ PSH(Ω) , u ≤ 0 and u(z) ≤ log |z−a|+O (1)} .

2



Let Ω be an open subset of CN . A continuous function ρ : Ω → R is an
exhaustion function if there exists a ∈ (−∞,+∞] such that ρ(z) < a for all
z ∈ Ω, and the set Ωc = {z ∈ Ω ; ρ(z) < c} is relatively compact in Ω for every
c < a.

A domain Ω in CN is said hyperconvex if there exists a continuous psh
exhaustion function ρ : Ω→ (−∞, 0) (see [30, p. 80]). We may of course replace
the upper bound 0 by any other real number. Without this upper bound, Ω is
said pseudoconvex.

Let Ω be a hyperconvex domain, with negative continuous psh exhaustion
function ρ and µρ,r the associated Demailly-Monge-Ampère measures, de�ned
as:

(2.1) µu,r = (ddcur)
N − 1Ω\BΩ,u(r)(dd

cu)N ,

for r < 0, where ur = max(u, r) and:

BΩ,u(r) = {z ∈ Ω ; u(z) < r} .

The nonnegative measure µu,r is supported by SΩ,u(r) := {z ∈ Ω ; u(z) = r}.
If: ∫

Ω

(ddcρ)N <∞ ,

these measures, considered as measures on Ω, weak-∗ converge, as r goes to 0,
to a positive measure µ = µΩ,ρ supported by ∂Ω and with total mass

∫
Ω

(ddcρ)N

([16, Théorème 3.1], or [30, Lemma 6.5.10]).

For the pluricomplex Green function ga with pole a, we have (ddcga)N =
(2π)Nδa ([16, Théorème 4.3]) and ga(a) = −∞, so a ∈ BΩ,ga(r) for every r < 0
and 1Ω\BΩ,ga (r)(dd

cga)N = 0. Hence the Demailly-Monge-Ampère mesure µga,r

is equal to
(
ddc(ga)r

)N
. By [51, Lemma 1], we have (1/|r|)

(
ddc(ga)r

)N
=

uB̄Ω,ga (r),Ω, the relative extremal function of B̄Ω,ga(r) = {z ∈ Ω ; ga(z) ≤ r}
in Ω (see (3.2) for the de�nition), and this measure is supported, not only by
SΩ,ga(r), but merely by the Shilov boundary of B̄Ω,ga(r) (see Section 2.2.1 for
the de�nition).

Since (ddcga)N = (2π)Nδa has mass (2π)N < ∞, these measures weak-∗
converge, as r goes to 0, to a positive measure µ = µΩ,ga supported by ∂Ω
with mass (2π)N . Demailly ([16, Dé�nition 5.2] call the measure 1

(2π)N
µΩ,ga

the pluriharmonic measure of a. When Ω is balanced (az ∈ Ω for every z ∈ Ω
and |a| = 1), the support of this pluriharmonic measure is the Shilov boundary
of Ω ([51, very end of the paper]).

A bounded symmetric domain of CN is a bounded open and convex subset
Ω of CN which is circled (az ∈ Ω for z ∈ Ω and |a| ≤ 1) and such that for every
point a ∈ Ω, there is an involutive bi-holomorphic map γ : Ω → Ω such that a
is an isolated �xed point of γ (equivalently, γ(a) = a and γ′(a) = −id: see [52,
Proposition 3.1.1]). For this de�nition, see [13, De�nition 16 and Theorem 17],
or [14, De�nition 5 and Theorem 4]. Note that the convexity is automatic
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(Hermann Convexity Theorem; see [27, p. 503 and Corollary 4.10]). É. Cartan
showed that every bounded symmetric domain of CN is homogeneous, i.e. the
group Γ of automorphisms of Ω acts transitively on Ω: for every a, b ∈ Ω, there
is an automorphism γ of Ω such that γ(a) = b (see [52, p. 250]). Conversely,
every homogeneous bounded convex domain is symmetric, since σ(z) = −z is a
symmetry about 0 (see [52, p. 250] or [26, Remark 2.1.2 (e)]). Moreover, each
automorphism extends continuously to Ω (see [22]).

The unit ball BN and the polydisk DN are examples of bounded symmetric
domains. Another example is, for N = p q, bi-holomorphic to the open unit ball
of M(p, q) = L(Cq,Cp) for the operator norm (see [27, Theorem 4.9]). Every
product of bounded symmetric domains is still a bounded symmetric domain.
In particular, every product of balls Ω = Bl1 × · · · × Blm , l1 + · · ·+ lm = N , is
a bounded symmetric domain.

If Ω is a bounded symmetric domain, its gauge is a norm ‖ . ‖ on CN whose
open unit ball is Ω. Hence every bounded symmetric domain is hyperconvex
(take ρ(z) = ‖z‖ − 1).

2.2 Hardy spaces on hyperconvex domains

2.2.1 Hardy spaces on bounded symmetric domains

We begin by de�ning the Hardy space on a bounded symmetric domain,
because this is easier.

The Shilov boundary (also called the Bergman-Shilov boundary or the dis-
tinguished boundary) ∂SΩ of a bounded domain Ω is the smallest closed set
F ⊆ ∂Ω such that supz∈Ω |f(z)| = supz∈F |f(z)| for every function f holomor-
phic in some neighborhood of Ω (see [13, � 4.1]).

When Ω is a bounded symmetric domain, it is also, since Ω is convex, the
Shilov boundary of the algebra A(Ω) of the continuous functions on Ω which are
holomorphic in Ω (because every function f ∈ A(Ω) can be approximated by fε
with fε(z) = f

(
εz0 + (1− ε)z

)
, where z0 ∈ Ω is given: see [20, pp. 152�154]).

The Shilov boundary of the ball BN is equal to its topological boundary,
but the Shilov boundary of the bidisk is ∂SD2 = {(z1, z2) ∈ C2 ; |z1| =
|z2| = 1}, whereas, its usual boundary ∂D2 is (T × D) ∪ (D × T); for the
unit ball BN , the Shilov boundary is equal to the usual boundary SN−1 ([13,
� 4.1]). Another example of a bounded symmetric domain, in C3, is the set
Ω = {(z1, z2, z3) ∈ C3 ; |z1|2 + |z2|2 < 1 , |z3| < 1} and its Shilov boundary is
∂SΩ = {(z1, z2, z3) ; |z1|2 + |z2|2 = 1 , |z3| = 1}. For p ≥ q, the matrix A is
in the topological boundary of M(p, q) if and only if ‖A‖ = 1, but A is in the
Shilov boundary if and only if A∗A = Iq; therefore the two boundaries coincide
if and only if q = 1, i.e. Ω = BN (see [14, Example 2, p. 30]).

Equivalently (see [24, Corollary 9], or [13, Theorem 33], [14, Theorem 10]),
∂SΩ is the set of the extreme points of the convex set Ω.

The Shilov boundary ∂SΩ is invariant by the group Γ of automorphisms
of Ω and the subgroup Γ0 = {γ ∈ Γ ; γ(0) = 0} act transitively on ∂SΩ (see
[22]). A theorem of H. Cartan states that the elements of Γ0 are linear trans-
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formations of CN and commute with the rotations (see [24, Theorem 1] or [26,
Proposition 2.1.8]). It follows that the Shilov boundary of a bounded symmet-
ric domain Ω coincides with its topological boundary only for Ω = BN (see [35,
p. 572] or [36, p. 367]); in particular the open unit ball of CN for the norm ‖ . ‖p,
1 < p <∞, is never a bounded symmetric domain, unless p = 2.

The unique Γ0-invariant probability measure σ on ∂SΩ is the normalized
surface area (see [22]). Then the Hardy space H2(Ω) is the space of all complex-
valued holomorphic functions f on Ω such that:

‖f‖H2(Ω) :=

(
sup

0<r<1

∫
∂SΩ

|f(rξ)|2 dσ(ξ)

)1/2

is �nite (see [22] and [23]). It is known that the integrals in this formula are
non-decreasing as r increases to 1, so we can replace the supremum by a limit.
The same de�nition can be given when Ω is a bounded complete Reinhardt
domain (see [1]).

The space H2(Ω) is a Hilbert space (see [22, Theorem 5]) and for every
z ∈ Ω, the evaluation map f ∈ H2(Ω) 7→ f(z) is uniformly bounded on compacts
subsets of Ω, by a depending only on that compact set, and of Ω ([22, Lemma 3]).

For every f ∈ H2(Ω), there exists a boundary values function f∗ such that
‖fr − f∗‖L2(∂SΩ)−→

r→1
0, where fr(z) = f(rz) ([9, Theorem 3]), and the map

f ∈ H2(Ω) 7→ f∗ ∈ L2(∂SΩ) is an isometric embedding ([22, Theorem 6]).

2.2.2 Hardy spaces on hyperconvex domains

For hyperconvex domains, the de�nition of Hardy spaces is more involved.
It was done by E. Poletsky and M. Stessin ([47, Theorem 6]). Those domains
are associated to a continuous negative psh exhaustion function u on Ω and the
de�nition of the Hardy spaces uses the Demailly-Monge-Ampère measures. The
space H2

u(Ω) is the space of all holomorphic functions f : Ω→ C such that:

sup
r<0

∫
SΩ,u(Ω)

|f |2 dµu,r <∞

and its norm is de�ned by:

‖f‖H2
u(Ω) = sup

r<0

(
1

(2π)N

∫
SΩ,u(Ω)

|f |2 dµu,r
)1/2

.

We can replace the supremum by a limit since the integrals are non-decreasing
as r increases to 0 ([16, Corollaire 1.9].

The space H∞(Ω) of bounded holomorphic functions in Ω is contained in
H2
u(Ω) (see [47], remark before Lemma 3.4).
These spaces H2

u(Ω) are Hilbert spaces ([47, Theorem 4.1]), but depends on
the exhaustion function u (even when N = 1: see for instance [49]). Never-
theless, they all coincide, with equivalent norms, for the functions u for which
the measure (ddcu)N is compactly supported ([47, Lemma 3.4]); this is the case
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when u(z) = g(z, a) is the pluricomplex Green function with pole a ∈ Ω (because
then (ddcu)N = (2π)Nδa: see [16, Théorème 4.3], or [30, Theorem 6.3.6]).

When Ω is the ball BN and u(z) = log ‖z‖2, then (ddcu)N = C δ0 and
µu,r = (2π)Ndσt, where dσt is the normalized surface area on the sphere of
radius t := er (see [47, Section 4] or [17, Example 3.3]). When Ω is the polydisk
DN and u(z) = log ‖z‖∞, then (ddcu)N = (2π)Nδ0 ([18, Corollary 5.4]) and

1
(2π)N

µu,r is the Lebesgue measure of the torus rTN (see [17, Example 3.10]).

Note that in [17] and [18], the operator dc is de�ned as i
2π (∂̄ − ∂) instead of

i(∂̄ − ∂), as usually used.
In these two cases, the Hardy spaces are the same as the usual ones (see [2,

Remark 5.2.1]).

In the sequel, we only consider the exhausting function u = gΩ; hence we
will write BΩ(r), SΩ(r) and H2(Ω) instead of BΩ,u(r), SΩ,u(r) and H2

u(Ω).

The two notions of Hardy spaces for a bounded symmetric domain are the
same:

Proposition 2.1. Let Ω be a bounded symmetric domain in CN . Then the
Hardy space H2(Ω) coincides with the subspace of the Poletski-Stessin Hardy
space HgΩ(Ω), with equality of the norms.

Proof. First let us note that if ‖ . ‖ is the norm whose open unit ball is Ω, then
gΩ(z) = log ‖z‖ (see [7, Proposition 3.3.2]).

Let µΩ be the measure which is the ∗-weak limit of the Demailly-Monge-
Ampère measures µr =

(
ddc(gΩ)r

)N
. We saw that it is supported by ∂SΩ. By

the remark made in [16, pp. 536-537], since the automorphisms of Ω continuously
extend on ∂Ω, the measure µΩ is Γ-invariant. By unicity, the harmonic measure
µ̃Ω = (2π)−NµΩ at 0 hence coincides with the normalized area measure on ∂SΩ.
We have, for f : Ω→ C holomorphic and 0 < s < 1:∫
∂SΩ

|f(sz)|2 dµ̃Ω(z) =

∫
∂Ω

|f(sz)|2 dµ̃Ω(z) = lim
r→0

1

(2π)N

∫
SΩ(r)

|f(sz)|2 dµr(z) ,

because z 7→ |f(sz)|2 is continuous on Ω. Now, since gΩ(z) = log ‖z‖, we have
SΩ(r) = er∂Ω and (gΩ)r(z)+t = (gΩ)r+t(sz); hence µr(sA) = µr+t(A) for every
Borel subset A of ∂Ω, where t = log s. It follows that:∫

SΩ(r)

|f(sz)|2 dµr(z) =

∫
SΩ(r+t)

|f(ζ)|2 dµr+t(ζ) .

By letting r and t going to 0, we get:

‖f‖2H2(Ω) = lim
r,t→0

1

(2π)N

∫
SΩ(r+t)

|f(ζ)|2 dµr+t(ζ) = ‖f‖2H2
gΩ

;

hence f ∈ H2(Ω) if and only if f ∈ H2
g0

(Ω), with the same norms.

We have ([47, Theorem 3.6]):
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Proposition 2.2 (Poletsky-Stessin). For every z ∈ Ω, the evaluation map
f ∈ H2(Ω) 7→ f(z) is uniformly bounded on compacts subsets of Ω, by a constant
depending only on that compact set, and of Ω.

Hence H2(Ω) has a reproducing kernel, de�ned by:

(2.2) f(a) = 〈f,Ka〉 , for f ∈ H2(Ω) ,

and for each r < 0:

(2.3) Lr := sup
a∈BΩ(r)

‖Ka‖2 <∞ .

2.3 Composition operators

A Schur map, associated with the bounded hyperconvex domain Ω, is a
non-constant analytic map of Ω into itself. It is said non degenerate if its
Jacobian is not identically null. It is equivalent to say that the di�erential
ϕ′(a) : CN → CN is an invertible linear map for at least one point a ∈ Ω. In [4],
we used the terminology truly N -dimensional. Then, by the implicit function
theorem, this is equivalent to saying that ϕ(Ω) has non-void interior. We say
that the Schur map ϕ is a symbol if it de�nes a bounded composition operator
Cϕ : H2(Ω)→ H2(Ω) by Cϕ(f) = f ◦ ϕ.

Let us recall that although any Schur function generates a bounded com-
position operator on H2(D), this is no longer the case on H2(DN ) as soon as
N ≥ 2, as shown for example by the Schur map ϕ(z1, z2) = (z1, z1). Indeed (see
[3]), if say N = 2, taking f(z) =

∑n
j=0 z

j
1z
n−j
2 , we see that:

‖f‖2 =
√
n+ 1 while ‖Cϕf‖2 = ‖(n+ 1)zn1 ‖2 = n+ 1 .

The same phenomenon occurs on H2(BN ) ([43]; see also [11], [12], and [15]; see
also [47]).

2.4 s-numbers of operators on a Hilbert space

We begin by recalling a few operator-theoretic facts. Let H be a Hilbert
space. The approximation numbers an(T ) = an of an operator T : H → H are
de�ned as:

(2.4) an = inf
rankR<n

‖T −R‖ , n = 1, 2, . . .

The operator T is compact if and only if limn→∞ an(T ) = 0.
According to a result of Allahverdiev [10, p. 155], an = sn, the n-th singular

number of T , i.e. the n-th eigenvalue of |T | :=
√
T ∗T when those eigenvalues

are rearranged in non-increasing order.
The n-th width dn(K) of a subset K of a Banach space Y measures the

defect of �atness of K and is by de�nition:

(2.5) dn(K) = inf
dimE<n

[
sup
f∈K

dist (f,E)

]
,

7



where E runs over all subspaces of Y with dimension < n and where dist (f,E)
denotes the distance of f to E. If T : X → Y is an operator between Banach
spaces, the n-th Kolmogorov number dn(T ) of T is the nth-width in Y of T (BX)
where BX is the closed unit ball of X, namely:

(2.6) dn(T ) = inf
dimE<n

[
sup
f∈BX

dist (Tf,E)

]
.

In the case where X = Y = H, a Hilbert space, we have:

(2.7) an(T ) = dn(T ) for all n ≥ 1 ,

and ([40]) the following alternative de�nition of an(T ):

(2.8) an(T ) = inf
dimE<n

[
sup
f∈BH

dist (Tf, TE)

]
.

In this work, we use, for an operator T : H → H, the following notation:

(2.9) β−N (T ) = lim inf
n→∞

[anN (T )]1/n

and:

(2.10) β+
N (T ) = lim sup

n→∞
[anN (T )]1/n .

When these two quantities are equal, we write them βN (T ).

3 Pluripotential theory

3.1 Monge-Ampère capacity

Let K be a compact subset of an open subset Ω of CN . The Monge-Ampère
capacity of K has been de�ned by Bedford and Taylor ([5]; see also [30, Part II,
Chapter 1]) as:

Cap (K) = sup

{∫
K

(ddcu)N ; u ∈ PSH(Ω) and 0 ≤ u ≤ 1 on Ω

}
.

When Ω is bounded and hyperconvex, we have a more convenient formula
([5, Proposition 5.3], [30, Proposition 4.6.1]):

(3.1) Cap (K) =

∫
Ω

(ddcu∗K)N =

∫
K

(ddcu∗K)N ,

(the positive measure (ddcu∗K)N is supported by K; actually by ∂K: see [17,
Properties 8.1 (c)]), where uK = uK,Ω is the relative extremal function of K,
de�ned, for any subset E ⊆ Ω, as:

(3.2) uE,Ω = sup{v ∈ PSH(Ω) ; v ≤ 0 and v ≤ −1 on E} ,
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and u∗E,Ω is its upper semi-continuous regularization:

u∗E,Ω(z) = lim sup
ζ→z

uE,Ω(ζ) , z ∈ Ω ,

called the regularized relative extremal function of E.

For an open subset ω of Ω, its capacity is de�ned as:

Cap (ω) = sup{Cap (K) ; K is a compact subset of ω} .

When ω ⊂ Ω is a compact subset of Ω, we have ([5, equation (6.2)], [30, Corol-
lary 4.6.2]):

(3.3) Cap (ω) =

∫
Ω

(ddcuω)N .

The outer capacity of a subset E ⊆ Ω is:

Cap ∗(E) = inf{Cap (ω) ; ω ⊇ E and ω open} .

If Ω is hyperconvex and E relatively compact in Ω, then ([30, Proposition 4.7.2]):

Cap ∗(E) =

∫
Ω

(ddcu∗E,Ω)N .

Remark. A. Zeriahi ([57]) pointed out to us the following result.

Proposition 3.1. Let K be a compact subset of Ω. Then:

Cap (K) = Cap (∂K) .

Proof. Of course uK ≤ u∂K since ∂K ⊆ K. Conversely, let v ∈ PSH(Ω)
non-positive such that v ≤ −1 on ∂K. By the maximum principle (see [30,
Corollary 2.9.6]), we get that v ≤ −1 on K. Hence v ≤ uK . Taking the
supremum over all those v, we obtain u∂K ≤ uK , and therefore u∂K = uK .

By (3.1), it follows that:

(3.4) Cap (K) =

∫
Ω

(ddcu∗K)N =

∫
Ω

(ddcu∗∂K)N = Cap (∂K) .

3.2 Regular sets

Let E ⊆ CN be bounded. Recall that the polynomial convex hull of E is:

Ê = {z ∈ C ; |P (z)| ≤ sup
E
|P | for every polynomial P} .

A point a ∈ Ê is called regular if u∗E,Ω(a) = −1 for an open set Ω ⊇ Ê
(note that we always have uE,Ω = uE,Ω = −1 on the interior of E: see [17,
Properties 8.1 (c)]). The set E is said to be regular if all points of Ê are
regular.
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The pluricomplex Green function of E, also called the L-extremal function
of E, is de�ned, for z ∈ CN , as:

VE(z) = sup{v(z) ; v ∈ L , v ≤ 0 on E} ,

where L is the Lelong class of all functions v ∈ PSH(CN ) such that, for some
constant C > 0:

v(z) ≤ C + log(1 + |z|) for all z ∈ CN .

A point a ∈ Ê is called L-regular if V ∗E(a) = 0, where V ∗E is the upper semi-
continuous regularization of VE . The set E is L-regular if all points of Ê are
L-regular.

By [28, Proposition 2.2] (see also [30, Proposition 5.3.3, and Corollary 5.3.4]),
for E bounded and non pluripolar, and Ω a bounded open neigbourhood of Ê,
we have:

(3.5) m(uE,Ω + 1) ≤ VE ≤M(uE,Ω + 1)

for some positive constants m,M . Hence the regularity of a ∈ Ê is equivalent
to its L-regularity.

Recall that E is pluripolar if there exists an open set Ω containing E and
v ∈ PSH(Ω) such that E ⊆ {v = −∞}. This is equivalent to say that there
exists a hyperconvex domain Ω of CN containing E such that u∗E,Ω ≡ 0 (see
[30, Corollary 4.7.3 and Theorem 4.7.5]). By Josefson's theorem ([30, Theo-
rem 4.7.4]), E is pluripolar if and only if there exists v ∈ PSH(CN ) such that
E ⊆ {v = −∞}. Recall also that E is pluripolar if and only if its outer capacity
Cap ∗(E) is null ([30, Theorem 4.7.5]).

When Ω is hyperconvex and E is compact, non pluripolar, the regularity
of E implies that uE,Ω and VE are continuous, on Ω and CN respectively ([30,
Proposition 4.5.3 and Corollary 5.1.4]). Conversely, if uE,Ω is continuous, for
some hyperconvex neighbourhood Ω of E, then uE,Ω(z) = −1 for all z ∈ E;
hence VE(z) = 0 for all z ∈ E, by (3.5); but VE = VÊ when E is compact

([30, Theorem 5.1.7]), so VE(z) = 0 for all z ∈ Ê; by (3.5) again, we obtain
that uE,Ω(z) = −1 for all z ∈ Ê; therefore E is regular. In the same way, the
continuity of VE implies the regularity of E. These results are due to Siciak
([50, Proposition 6.1 and Proposition 6.2]).

Every closed ball B = B(a, r) of an arbitrary norm ‖ . ‖ on CN is regular
since its L-extremal function is:

VB(z) = log+
(
‖z − a‖/r)

([50, p. 179, � 2.6]).

3.3 Zakharyuta's formula

We will need a formula that Zakharyuta, in order to solve a problem raised
by Kolmogorov, proved, conditionally to a conjecture, called Zakharyuta's con-
jecture, on the uniform approximation of the relative extremal function uK,Ω
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by pluricomplex Green functions. This conjecture has been proved by Nivoche
([45, Theorem A]), in a more general setting that we state below:

Theorem 3.2 (Nivoche). Let K be a regular compact subset of a bounded hy-
perconvex domain Ω of CN . Then for every ε > 0 and δ small enough, there
exists a pluricomplex Green function g on Ω with a �nite number of logarithmic
poles such that:

1) the poles of g lie in W = {z ∈ Ω ; uK(z) < −1 + δ};
2) we have, for every z ∈ Ω \W :

(1 + ε) g(z) ≤ uK(z) ≤ (1− ε) g(z) .

In order to state Zakharyuta's formula, we need some additional notations.
Let K be a compact subset of Ω with non-empty interior, and AK the set

of restrictions to K of those functions that are analytic and bounded by 1, i.e.
those functions belonging to the unit ball BH∞(Ω) of the space H∞(Ω) of the
bounded analytic functions in Ω, considered as a subset of the space C(K) of
complex functions de�ned on K, equipped with the sup-norm on K.

Let dn(AK) be the nth-width of AK in C(K), namely:

(3.6) dn(AK) = inf
L

[
sup
f∈AK

dist (f, L)

]
,

where L runs over all k-dimensional subspaces of C(K), with k < n.
Equivalently, dn(AK) is the nth-Kolmogorov number of the natural injection

J of H∞(Ω) into C(K) (recall that K has non-empty interior). It is convenient
to set, as in [56]:

(3.7) τN (K) =
1

(2π)N
Cap (K)

and:

(3.8) ΓN (K) = exp

[
−
(

N !

τN (K)

)1/N
]
,

i.e.:

(3.9) ΓN (K) = exp

[
− 2π

(
N !

Cap (K)

)1/N]
.

Observe that Cap (K) > 0 since we assumed that K has non-empty interior.
Now, we have ([56, Theorem 5.6]; see also [55, Theorem 5] or [54, pages 30�32],
for a detailed proof):

Theorem 3.3 (Zakharyuta-Nivoche). Let Ω be a bounded hyperconvex domain
and K a regular compact subset of Ω with non-empty interior, which is holo-
morphically convex in Ω (i.e. K = K̃Ω). Then:

(3.10) − log dn(AK) ∼
(

N !

τN (K)

)1/N

n1/N .

11



Here K̃Ω is the holomorphic convex hull of K in Ω, that is:

K̃Ω = {z ∈ Ω ; |f(z)| ≤ sup
K
|f | for every f ∈ O(Ω)} ,

where O(Ω) is the set of all functions holomorphic in Ω.

Relying on that theorem, which may be seen as the extension of a result
of Erokhin, proved in 1958 (see [19]; see also Widom [53] which proved a more
general result, with a di�erent proof), to dimension N > 1, and as a result
on the approximation of functions, we will give an application to the study
of approximation numbers of a composition operator on H2(Ω) for a bounded
symmetric domain of CN .

4 The spectral radius type formula

In [41, Section 6.2], we proved the following result.

Theorem 4.1. Let ϕ : DN → DN be given by ϕ(z1, . . . , zN ) = (r1z1, . . . , rNzN )
where 0 < rj < 1. Then:

βN (Cϕ) = ΓN
[
ϕ(DN )

]
= ΓN

[
ϕ(DN )

]
.

The proof was simple, based on result of Blocki [8] on the Monge-Ampère
capacity of a cartesian product, and on the estimation, when A → ∞, of the
number νA of N -tuples α = (α1, . . . , αN ) of non-negative integers αj such that∑N
j=1 αjσj ≤ A, where the numbers σj > 0 are �xed. The estimation was:

(4.1) νA ∼
AN

N !σ1 · · ·σN
·

As J. F. Burnol pointed out to us, this is a consequence of the following ele-
mentary fact. Let λN be the Lebesgue measure on RN , and let E be a compact
subset of RN such that λN (∂E) = 0. Then:

λN (E) = lim
A→∞

A−N |(A× E) ∩ ZN | .

Then, just take E = {(x1, . . . , xN ) ; xj ≥ 0 and
∑N
j=1 xjσj ≤ 1}.

In any case, this lets us suspect that the formula of Theorem 4.1 holds in
much more general cases. This is not quite true, as evidenced by our counterex-
ample of [41, Theorem 5.12]. Nevertheless, in good cases, this formula holds, as
we will see in the next sections.

In remaining of this section, we consider functions ϕ : Ω → Ω such that
ϕ(Ω) ⊆ Ω. If ρ is an exhaustion function for Ω, there is some R0 < 0 such
that ϕ(Ω) ⊆ BΩ(R0), and that implies that Cϕ maps H2(Ω) into itself and is a
compact operator (see [47, Theorem 8.3], since, with their notations, for r > R0,
we have T (r) = ∅ and hence δϕ(r) = 0) .
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4.1 Minoration

Recall that every hyperconvex domain Ω is pseudoconvex. By H. Cartan-
Thullen and Oka-Bremermann-Norguet theorems, being pseudoconvex is equiv-
alent to being a domain of holomorphy, and equivalent to being holomorphically
convex (meaning that if K is a compact subset in Ω, then its holomorphic hull
K̃ is also contained in Ω): see [33, Corollaire 7.7]. Now (see [32, Chapter 5,
Exercise 11], a domain of holomorphy Ω is said a Runge domain if every holo-
morphic function in Ω can be approximated uniformly on its compact subsets by
polynomials, and that is equivalent to saying that the polynomial hull and the
holomorphic hull of every compact subset of Ω agree. By [32, Chapter 5, Exer-
cise 13], every circled domain (in particular every bounded symmetric domain)
is a Runge domain.

De�nition 4.2. A hyperconvex domain Ω is said strongly regular if there exists
a continuous psh exhaustion function ρ such that all the sub-level sets:

Ωc = {z ∈ Ω ; ρ(z) < c}

(c < 0) have a regular closure.

For example, every bounded symmetric domain Ω is strongly regular since
if ‖ . ‖ is the associated norm, its sub-level sets Ωc (with ρ(z) = log ‖z‖) are the
open balls B(0, ec), and the closed balls are regular, as said above.

Theorem 4.3. Let Ω be a strongly regular bounded hyperconvex and Runge
domain in CN , and let ϕ : Ω → Ω be an analytic function such that ϕ(Ω) ⊆ Ω,
and which is non-degenerate. Then:

(4.2) ΓN
[
ϕ(Ω)

]
≤ β−N (Cϕ) .

Recall that if Ω is a domain in CN , a holomorphic function ϕ : Ω → CM
(M ≤ N) is non-degenerate if there exists a ∈ Ω such that ranka ϕ = M . Then
ϕ(Ω) has a non-empty interior.

Proof. Let (rj)j≥1 be an increasing sequence of negative numbers tending to
0. The set Hj = Ωrj is a regular compact subset of Ω, with non-void interior

(hence non pluripolar). Let Ĥj its polynomial convex hull; this compact set is
contained in Ω, since Ω being a Runge domain, we have Ĥj = H̃j , and since H̃j ⊆
Ω, because Ω is holomorphically convex (being hyperconvex). Moreover Ĥj is
regular since VE = VÊ for every compact subset of CN ([50, Corollary 4.14]).

Let Kj = ϕ
(
Ĥj

)
and let G be a subspace of H2(Ω) with dimension < nN .

The set Kj is regular because of the following result (see [30, Theorem 5.3.9],
[46, top of page 40], [29, Theorem 1.3], or [44, Theorem 4], with a detailed proof).

Theorem 4.4 (Ple±niak). Let E be a compact, polynomially convex, regular
and non pluripolar, subset of CN . Then if Ω is a hyperconvex domain such that
E ⊆ Ω and if ϕ : Ω → CN is a non-degenerate holomorphic function, the set
ϕ(E) is regular.
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As before, the polynomial convex hull K̂j of Kj is contained in Ω and is also
regular. Since ϕ is non-degenerate, Kj has a non-void interior; hence K̂j also.
We can hence use Zakharyuta's formula (Theorem 3.3) for the compact set K̂j .

By restriction, the subspace G can be viewed as a subspace of C(K̂j). By
Zakharyuta's formula, for 0 < ε < 1, there is nε ≥ 1 such that, for n ≥ nε:

dnN (A
K̂j

) ≥ exp

[
− (1 + ε) (2π)n

(
N !

Cap (K̂j)

)1/N]
·

Hence, there exists f ∈ BH∞ ⊆ BH2 such that, for all g ∈ G:

‖g − f‖C(K̂j)
≥ (1− ε) exp

[
− (1 + ε) (2π)n

(
N !

Cap (K̂j)

)1/N]
·

Since K̂j = K̃j and, by de�nition ‖ . ‖C(K̃j)
= ‖ . ‖C(Kj), we have:

‖g − f‖C(K̂j)
= ‖g − f‖C(Kj) = ‖Cϕ(g)− Cϕ(f)‖C(H̃j)

.

Equivalently, since, by de�nition ‖ . ‖C(H̃j)
= ‖ . ‖C(Hj), we have, for all g ∈ G:

‖Cϕ(g)− Cϕ(f)‖C(Hj) ≥ (1− ε) exp

[
− (1 + ε) (2π)n

(
N !

Cap (K̂j)

)1/N]
·

This implies, thanks to (2.3), that, for all g ∈ G:

‖Cϕ(g)− Cϕ(f)‖H2(Ω) ≥ L−1
rj (1− ε) exp

[
− (1 + ε) (2π)n

(
N !

Cap (K̂j)

)1/N]
·

Using (2.8), we get, since the subspace G is arbitrary:

anN (Cϕ) ≥ L−1
rj (1− ε) exp

[
− (1 + ε) (2π)n

(
N !

Cap (K̂j)

)1/N]
·

Taking the nth-roots and passing to the limit, we obtain:

β−N (Cϕ) ≥ exp

[
− (1 + ε) (2π)

(
N !

Cap (K̂j)

)1/N]
·

and then, letting ε go to 0:

β−N (Cϕ) ≥ exp

[
− (2π)

(
N !

Cap (K̂j)

)1/N]
= ΓN (K̂j) .

Now, the sequence (K̂j)j≥1 is increasing and
⋃
j≥1 K̂j ⊇ ϕ(Ω); hence, by [5,

Theorem 8.2 (8.3)], we have Cap (K̂j) −→
j→∞

Cap
(⋃

j≥1 K̂j

)
≥ Cap [ϕ(Ω)], so:

β−N (Cϕ) ≥ ΓN [ϕ(Ω)] ,

and the proof of Theorem 4.3 is �nished.
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4.2 Majorization

For the majorization, we assume di�erent hypotheses on the domain Ω.
Nevertheless these assumptions agree with that of Theorem 4.3 when Ω is a
bounded symmetric domain.

4.2.1 Preliminaries

Recall that a domain Ω of CN is a Reinhardt domain (resp. complete Rein-
hardt domain) if z = (z1, . . . , zN ) ∈ Ω implies that (ζ1z1, . . . , ζNzN ) ∈ Ω for
all complex numbers ζ1, . . . , ζN of modulus 1 (resp. of modulus ≤ 1). A com-
plete bounded Reinhardt domain is hyperconvex if and only if log jΩ is psh and
continuous in CN \{0}, where jΩ is the Minkowski functional of Ω (see [7, Exer-
cise following Proposition 3.3.3]). In general, the Minkowski functional jΩ of a
bounded complete Reinhardt domain Ω is usc and log jΩ is psh if and only if Ω
is pseudoconvex ([7, Theorem 1.4.8]). Other conditions for a bounded complete
Reinhardt domain to being hyperconvex can found in [34, Theorem 3.10].

For a bounded hyperconvex and complete Reinhardt domain Ω, its pluricom-
plex Green function with pole 0 is gΩ(z) = log jΩ(z), where jΩ is the Minkowski
functional of Ω ([7, Proposition 3.3.2]), and SΩ(r) = er∂Ω. Since ∂Ω is in par-
ticular invariant by the pluri-rotations z = (z1, . . . , zN ) 7→ (eiθ1z1, . . . , e

iθN zN ),
with θ1, . . . , θN ∈ R, the harmonic measure µ̃Ω at 0 (see the proof of Proposi-
tion 2.1) is also invariant by the pluri-rotations (note that it is supported by
the Shilov boundary of Ω: see [51, very end of the paper]). We have, as in the
proof of Proposition 2.1, for f ∈ H2(Ω):

sup
0<s<1

∫
∂Ω

|f(sz)|2 dµ̃Ω(z) = ‖f‖2H2(Ω) <∞ .

Since µ̃Ω is in particular invariant by the rotations z 7→ eiθz, θ ∈ R, there exists,
by [9, Theorem 3], a function f∗ ∈ L2(∂Ω, µ̃Ω) such that:∫

∂Ω

|f(sz)− f∗(z)|2 dµ̃Ω(z)−→
s→1

0 .

It ensues that the map f ∈ H2(Ω) 7→ f∗ ∈ L2(∂Ω, µ̃Ω) is an isometric embedding
(in fact, f∗ is the radial limit of f : see [21, Lemma 2]). Therefore, we can
consider H2(Ω) as a complemented subspace of L2(∂Ω, µ̃Ω), and we call P the
orthogonal projection of L2(∂Ω, µ̃Ω) onto H2(Ω).

Every holomorphic function f in a Reinhardt domain Ω containing 0 (in
particular if Ω is a complete Reinhardt domain) has a power series expansion
about 0:

f(z) =
∑
α

bαz
α

which converges normally on compact subsets of Ω ([32, Proposition 2.3.14]).
Recall that if z = (z1, . . . , zN ) and α = (α1, . . . , αN ), then zα = zα1

1 · · · z
αN

N ,
|α| = α1 + · · ·+ αN , and α! = α1! · · ·αN !.

We have:
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Proposition 4.5. Let Ω be a bounded hyperconvex and complete Reinhardt
domain, and set eα(z) = zα. Then the system (eα)α is orthogonal in H2(Ω).

Proof. We use the fact that the level sets S(r) and the Demailly-Monge-Ampère

measures µr =
(
ddc(gΩ)r

)N
are pluri-rotation invariant. For α 6= β, we choose

θ1, . . . , θN ∈ R such that 1, (θ1/2π), . . . , (θN/2π) are rationally independent.
Then exp

[
i
(∑N

j=1(αj − βj)θj
)]
6= 1. Hence, as in [25, p. 78], we have, making

the change of variables z = (eiθ1w1, . . . , e
iθNwN ):∫

S(r)

zαzβ dµr(z) = exp

[
i

( N∑
j=1

(αj − βj)θj
)]∫

S(r)

wαwβ dµr(w) ,

which implies that: ∫
S(r)

zαzβ dµr(z) = 0 ,

and hence:

(zα | zβ) := lim
r→0

∫
S(r)

zαzβ dµr(z) = 0 .

For the polydisk, we have ‖eα‖H2(DN ) = 1, and for the ball (see [48, Propo-
sition 1.4.9]):

‖eα‖2H2(BN ) =
(N − 1)!α!

(N − 1 + |α|)!
·

De�nition 4.6. We say that Ω is a good complete Reinhardt domain if, for
some positive constant CN and some positive integer c, we have, for all p ≥ 0:∑

|α|=p

|zα|2

‖eα‖2H2(Ω)

≤ CN pcN [jΩ(z)]2p ,

where jΩ is the Minkowski functional of Ω.

Examples

1. The polydisk DN is a good Reinhardt domain because ‖eα‖H2(DN ) = 1,

|zα| ≤ ‖z‖|α|∞ , and the number of indices α such that |α| = p is
(
N−1+p

p

)
≤ CNpN

(see [35, p. 498] or [37, pp. 213�214]).
2. The ball BN is a good Reinhardt domain. In fact, observe that:

(N − 1 + p)!

(N − 1)!
= p!

(p+ 1)(p+ 2) · · · (p+N − 1)

1× 2× · · · × (N − 1)
≤ p! (p+ 1)N−1 ≤ p! (p+ 1)N ;

hence: ∑
|α|=p

|zα|2

‖eα‖2H2(BN )

=
∑
|α|=p

|zα|2 (N − 1 + |α|)!
(N − 1)!α!

≤ (p+ 1)N
∑
|α|=p

|α|!
α!
|z1|2α1 · · · |zN |2αN

= (p+ 1)N (|z1|2 + · · ·+ |zN |2)p ,
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by the multinomial formula, so:∑
|α|=p

|zα|2

‖eα‖2H2(BN )

≤ (p+ 1)N‖z‖2p2 ≤ 2NpN‖z‖2p2 .

3. More generally, if Ω = Bl1 × · · · × Blm , l1 + · · ·+ lm = N , is a product of
balls, we have, writing α = (β1, . . . , βm), where each βj is an lj-tuple:

‖eα‖2H2(Ω) =

∫
Sl1×···×Sl2

|uβ1

1 |2 . . . |uβm
m |2 dσl1(u1) . . . dσlm(um)

=

m∏
j=1

(lj − 1)!βj !

(lj − 1 + |βj |)!
,

and, writing z = (z1, . . . , zm), with zj ∈ Blj :∑
|α|=p

|zα|2

‖eα‖2H2(Ω)

≤
∑

p1+···+pm=p

m∏
j=1

(pj + 1)lj‖zj‖
2pj
2

≤ Cmpm (p+ 1)l1+···+lm [jΩ(z)]2(p1+···+pm) ,

since jΩ(z) = max{‖z1‖2, . . . , ‖zm‖2}. Hence:∑
|α|=p

|zα|2

‖eα‖2H2(Ω)

≤ CNp2N [jΩ(z)]2p .

4.2.2 The result

Theorem 4.7. Let Ω be a bounded hyperconvex domain which is a good complete
Reinhardt domain in CN , and let ϕ : Ω → Ω be an analytic function such that
ϕ(Ω) ⊆ Ω. Then, for every compact subset K ⊇ ϕ(Ω) of Ω with non void
interior, we have:

(4.3) β+
N (Cϕ) ≤ ΓN (K) .

In particular, if ϕ is moreover non-degenerate, we have:

(4.4) β+
N (Cϕ) ≤ ΓN

[
ϕ(Ω)

]
.

The last assertion holds because ϕ(Ω) is open if ϕ is non-degenerate.

Corollary 4.8. Let Ω be a good complete bounded symmetric domain in CN ,
and ϕ : Ω→ Ω a non-degenerate analytic map such that ϕ(Ω) ⊆ Ω. Then:

ΓN
[
ϕ(Ω)

]
≤ β−N (Cϕ) ≤ β+

N (Cϕ) ≤ ΓN
[
ϕ(Ω)

]
.

For the proof of Theorem 4.7, we will use the following result ([56, Propo-
sition 6.1]), which do not need any regularity condition on the compact set
(because it may be written as a decreasing sequence of regular compact sets).
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Proposition 4.9 (Zakharyuta). If K is any compact subset of a bounded hy-
perconvex domain Ω of CN with non-empty interior, we have:

lim sup
n→∞

log dn(AK)

n1/N
≤ −

(
N !

τN (K)

)1/N

.

Proof of Theorem 4.7. In the sequel we write ‖ . ‖H2 for ‖ . ‖H2(Ω). We set:

ΛN = lim sup
n→∞

[dn(AK)]n
−1/N

.

Changing n into nN , Proposition 4.9 means that for every ε > 0, there exists,
for n large enough, an (nN − 1)-dimensional subspace F of C(K) such that, for
any g ∈ H∞(Ω), there exists h ∈ F such that:

(4.5) ‖g − h‖C(K) ≤ (1 + ε)nΛnN ‖g‖∞ .

Let l be an integer to be adjusted later, and

f(z) =
∑
α

bαz
α ∈ H2(Ω) with ‖f‖H2 ≤ 1 .

By Proposition 4.5, we have:

‖f‖2H2 =
∑
α

|bα|2‖eα‖2H2 .

We set:
g(z) =

∑
|α|≤l

bαz
α .

By the Cauchy-Schwarz inequality:

|g(z)|2 ≤
( ∑
|α|≤l

|bα|2‖eα‖2H2

)( ∑
|α|≤l

|zα|2

‖eα‖2H2

)
≤
∑
|α|≤l

|zα|2

‖eα‖2H2

·

Since Ω is a good complete Reinhardt domain and since jΩ(z) < 1 for z ∈ Ω,
we have:

|g(z)|2 ≤
l∑

p=0

pcN [jΩ(z)]2p ≤ (l + 1)cN+1 .

It follows from (4.5) that there exists h ∈ F such that:

‖g − h‖C(K) ≤ (1 + ε)nΛnN (l + 1)(cN+1)/2 .

Since Cϕf(z) − Cϕ g(z) = f
(
ϕ(z)

)
− g

(
ϕ(z)

)
and ϕ(Ω) ⊆ K, we have

‖Cϕf − Cϕg‖∞ ≤ ‖f − g‖C(K); therefore:

‖g ◦ ϕ− h ◦ ϕ‖H2 ≤ ‖g ◦ ϕ− h ◦ ϕ‖∞ ≤ ‖g − h‖C(K)

≤ (1 + ε)nΛnN (l + 1)(cN+1)/2 .
(4.6)
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Now, the subspace F̃ formed by functions v ◦ϕ, for v ∈ F , can be viewed as
a subspace of L∞(∂Ω, µ̃Ω) ⊆ L2(∂Ω, µ̃Ω) (indeed, since v is continuous, we can
write (v ◦ϕ)∗ = v ◦ϕ∗, where ϕ∗ denotes the almost everywhere existing radial
limits of ϕ(rz), which belong to K). Let �nally E = P (F̃ ) ⊆ H2(Ω) where
P : L2(∂Ω, µ̃Ω) → H2(Ω) is the orthogonal projection. This is a subspace of
H2(Ω) with dimension < nN , and we have dist (Cϕg,E) ≤ ‖g ◦ϕ−P (h◦ϕ)‖H2 ;
hence, by (4.6):

(4.7) dist (Cϕg,E) ≤ (1 + ε)nΛnN (l + 1)(cN+1)/2 .

Now, the same calculations give that:

|f(z)− g(z)|2 ≤
∑
p>l

pcN [jΩ(z)]2p ;

hence, for some positive constant MN :

|f(z)− g(z)| ≤MN (l + 1)(cN+1)/2 [jΩ(z)]l

(1− [jΩ(z)]2)(cN+1)/2
,

by using the following lemma, whose proof is postponed.

Lemma 4.10. For every non-negative integer m, there exists a positive constant
Am such that, for all integers l ≥ 0 and all 0 < x < 1, we have:∑

p≥l

pmxp ≤ Amlm
xl

(1− x)m+1
.

Since K is a compact subset of Ω, there is a positive number r0 < 1 such
that jΩ(z) ≤ r0 for z ∈ K. Since Cϕf(z) − Cϕg(z) = f

(
ϕ(z)

)
− g
(
ϕ(z)

)
and

ϕ(Ω) ⊆ K, we have ‖Cϕf − Cϕg‖∞ ≤ ‖f − g‖C(K), and we get:

(4.8) ‖Cϕf−Cϕg‖H2 ≤ ‖Cϕf−Cϕg‖∞ ≤MN (l+1)(cN+1)/2 rl0
(1− r2

0)(cN+1)/2
·

Now, (4.7) and (4.8) give:

dist (Cϕf,E) ≤MN (l + 1)(cN+1)/2

(
rl0

(1− r2
0)(cN+1)/2

+ (1 + ε)nΛnN

)
.

It ensues, thanks to (2.7), that:

[
anN (Cϕ)

]1/n ≤ [MN (l + 1)(cN+1)/2]1/n
[

r
l/n
0

(1− r2
0)(cN+1)/2n

+ (1 + ε) ΛN

]
.

Taking now for l the integer part of n log n, and passing to the upper limit as
n→∞, we obtain (since l/n→∞ and (log l)/n→ 0):

β+
N (Cϕ) ≤ (1 + ε) ΛN ,
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and therefore, since ε > 0 is arbitrary:

β+
N (Cϕ) ≤ ΛN .

That ends the proof, by using Proposition 4.9.

Proof of Lemma 4.10. We make the proof by induction on m. We set:

Sm =
∑
p≥l

pmxp

The result is obvious for m = 0, with A0 = 1, since then S0 =
∑
p≥l x

p = xl

1−x ·
Let us assume that it holds till m−1 and prove it for m. We observe that, since
pm − (p− 1)m ≤ mpm−1, we have:

(1− x)Sm =
∑
p≥l

pmxp −
∑
p≥l

pmxp+1 =
∑
p≥l

pmxp −
∑
p≥l+1

(p− 1)mxp

=
∑
p≥l+1

(pm − (p− 1)m)xp + lmxl ≤
∑
p≥l+1

mpm−1xp + lmxl

≤
∑
p≥l

mpm−1xp + lmxl ≤ mAm−1l
m−1 xl

(1− x)m
+ lmxl

≤ (mAm−1 + 1) lm
xl

(1− x)m
,

giving the result, with Am = mAm−1 + 1.

4.3 Equality

Proposition 4.11. Let Ω be a bounded hyperconvex domain and ω a relatively
compact open subset of Ω. Assume that:

For every a ∈ ∂ω, except on a pluripolar set E ⊆ ∂ω, there exists

z0 ∈ ω such that the open segment (z0, a) is contained in ω.
(4.9)

Then:
Cap (ω) = Cap (ω) .

In particular, if ϕ : Ω → Ω a non-degenerate holomorphic map such that
ϕ(Ω) ⊆ Ω and ω = ϕ(Ω) satis�es (4.9), we have:

Cap
[
ϕ(Ω)

]
= Cap

[
ϕ(Ω)

]
.

Before proving Proposition 4.11, let us give an example of such a situation.

Proposition 4.12. Let Ω be a bounded hyperconvex domain with C1 boundary.
Let U be an open neighbourhood of Ω and ϕ : U → CN be a non-degenerate
holomorphic function such that ϕ(Ω) ⊆ Ω. Then the condition (4.9) is satis�ed.
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Proof. Let ω = ϕ(Ω).
We may assume that U is connected, hyperconvex and bounded. Let Bϕ be

the set of points z ∈ U such that the complex Jacobian Jϕ is null. Since Jϕ
is holomorphic in Ω, we have log |Jϕ| ∈ PSH(U) and hence (see [31, proof of
Lemma 10.2]):

Bϕ = {z ∈ U ; Jϕ(z) = 0} = {z ∈ U ; log |Jϕ(z)| = −∞}

is pluripolar . Therefore (see [5, Theorem 6.9]), Cap (Bϕ, U) = 0. It follows (see
[5, page 2, line -8]) that Cap [ϕ(Bϕ)] := Cap [ϕ(Bϕ),Ω] = 0.

Now, for every a ∈ ∂ω ∩ [ϕ(U \Bϕ)], there is a tangent hyperplane Ha to ω,
and hence an inward normal to ∂ω (note that ∂ω ⊆ ϕ(∂Ω) ⊆ ϕ(U)). It follows
that there is z0 ∈ ω such that the open interval (z0, a) is contained in ω.

Proof of Proposition 4.11. Let a ∈ ∂ω and L be a complex line containing
(z0, a); we have a ∈ ω ∩ L. Assume now that this point a is a �ne (�e�lé�)
point of ω, i.e. that there exists u ∈ PSH(V ), for V a neighbourhood of a, such
that:

lim sup
z→a ,z∈ω

u(z) < u(a) .

By de�nition, the restriction ũ of u to ω ∩ L is subharmonic and we keep the
inequality:

lim sup
z→a ,z∈ω∩L

ũ(z) < ũ(a) = u(a) .

That means that a is a �ne point of ω∩L. But a ∈ ω ∩ L and ω∩L is connected,
so this is not possible, by [40, Lemma 2.4]. Hence no point of ∂ω \ E is �ne.

Let now ωf be the closure of ω for the �ne topology (i.e. the coarsest topology
on U for which all the functions in PSH(U) are continuous; it is known: see [6,
comment after Theorem 2.3], that it is the trace on U of the �ne topology on
CN ). It is also known (see [30, Corollary 4.8.10]) that ωf is the set of points of
ω which are not �ne. By the above reasoning, we thus have:

ω \ ωf ⊆ E .

Since Cap (E) = 0, we have:

Cap (ω \ ωf ) = 0 ,

and it follows that:

Cap (ω) = Cap [ωf ∪ (ω \ ωf )] ≤ Cap (ωf ) + Cap (ω \ ωf ) = Cap (ωf ) ,

and hence Cap (ωf ) = Cap (ω).
But, since, by de�nition, the psh functions are continuous for the �ne topol-

ogy, it is clear, that the relative extremal functions uω,Ω and uωf ,Ω are equal;
hence we have, by [30, Proposition 4.7.2]:

Cap (ω) =

∫
Ω

(ddcu∗ω,Ω)N =

∫
Ω

(ddcu∗ωf ,Ω)N = Cap (ωf ) .

Hence Cap (ω) = Cap (ω).
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4.4 Consequences of the spectral radius type formula

Theorem 4.3 has the following consequence.

Proposition 4.13. Let Ω be a regular bounded symmetric domain in CN , and
let ϕ : Ω→ Ω be a non-degenerate analytic function inducing a bounded compo-
sition operator Cϕ on H2(Ω).

Then, if Cap [ϕ(Ω)] =∞, we have βN (Cϕ) = 1.
In other words, if, for some constants C, c > 0, we have an(Cϕ) ≤ C e−cn

1/N

for all n ≥ 1, then Cap [ϕ(Ω)] <∞.

As a corollary, we can give a new proof of [41, Theorem 3.1].

Corollary 4.14. Let τ : D → D be an analytic map such that ‖τ‖∞ = 1 and
ψ : DN−1 → DN−1 such that the map ϕ : DN → DN , de�ned as:

ϕ(z1, z2, . . . , zN ) =
(
τ(z1), ψ(z2, . . . , zN )

)
,

is non-degenerate. Then βN (Cϕ) = 1.

Proof. Since the map ϕ is non-degenerate, ψ is also non-degenerate. Hence
(see [44, Proposition 2] ψ(DN−1) is not pluripolar, i.e. CapN−1[ψ(DN−1)] > 0.
On the other hand, it follows from [40, Theorem 3.13 and Theorem 3.14] that
Cap1[τ(D)] = +∞. Then, by [8, Theorem 3], we have:

CapN [ϕ(DN )] = CapN [τ(D)× ψ(DN−1)]

= Cap1[τ(D)]× CapN−1[ψ(DN−1)] = +∞ .

It follows from Proposition 4.13 that βN (Cϕ) = 1.

Proof of Proposition 4.13. If R : H2(Ω) → H2(Ω) is a �nite-rank operator, we
set, for t < 0:

(Rtf)(w) = (Rf)(etw) , f ∈ H2(Ω) .

Then the rank of the operator Rt is less or equal to that of R.
Recall that if ‖ . ‖ is the norm whose unit ball is Ω, then the pluricomplex

Green function of Ω is gΩ(z) = log ‖z‖, and hence the level set S(r) is the sphere
S(0, er) = er∂Ω for this norm. Since:∫
S(r)

|f [ϕ(etw)]− (Rf)(etw)|2 dµr(w) =

∫
S(r+t)

|f [ϕ(z)]− (Rf)(z)|2 dµr+t(z) ,

we have, setting ϕt(w) = ϕ(etw):

‖Cϕt
(f)−Rt(f)‖H2 ≤ ‖Cϕ(f)−R(f)‖H2 .

It follows that an(Cϕt
) ≤ an(Cϕ) for every n ≥ 1. Therefore β−N (Cϕt

) ≤
β−N (Cϕ).
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By Theorem 4.3, we have:

exp

[
− 2π

(
N !

Cap [ϕt(Ω)]

)1/N
]
≤ β−N (Cϕt) .

Since ϕt(Ω) = ϕ(etΩ) increases to ϕ(Ω) as t ↑ 0, we have (see [30, Corol-
lary 4.7.11]):

Cap [ϕ(Ω)] = lim
t→0

Cap [ϕt(Ω)] .

As Cap [ϕ(Ω)] =∞, we get:

β−N (Cϕ) ≥ lim sup
t→0

β−N (Cϕt) = 1 .

Remark 1. In [41, Theorem 5.12], we construct a non-degenerate analytic
function ϕ : D2 → D2 such that ϕ(D2) ∩ ∂D2 6= ∅ and for which β+

2 (Cϕ) < 1.
We hence have Cap [ϕ(D2)] <∞.

Remark 2. The capacity cannot tend to in�nity too fast when the compact
set approaches the boundary of Ω; in fact, we have the following result, that we
state for the ball, but which holds more generally.

Proposition 4.15. For every compact set K of BN , we have, for some constant
CN :

Cap (K) ≤ CN
[dist (K, SN )]N

·

Proof. We know that:

Cap (K) =

∫
BN

(ddcu∗K)N .

Let ρ(z) = |z|2 − 1 and aK := minz∈K [−ρ(z)] = −maxz∈K ρ(z). Then ρ is in
PSH and is non-positive. Since aK > 0, the function:

v(z) =
ρ(z)

aK

is in PSH, non-positive on BN , and v ≤ −1 on K. Hence v ≤ uK ≤ u∗K .
Since v(w) = 0 for all w ∈ SN and (see [5, Proposition 6.2 (iv)], or [30,

Proposition 4.5.2]):
lim
z→w

u∗K(z) = 0 ,

for all w ∈ SN , the comparison theorem of Bedford and Taylor ([5, Theorem 4.1];
[30, Theorem 3.7.1] gives, since v ≤ u∗K and v, u∗K ∈ PSH:∫

BN

(ddcu∗K)N ≤
∫
BN

(ddcv)N =
1

aNK

∫
BN

(ddcρ)N .

As (ddcρ)N = 4NN ! dλ2N , we get, with CN := 4NN !λ2N (BN ):

Cap (K) ≤ CN
aNK
·
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That ends the proof since:

aK = min
z∈K

(1− |z|2) ≥ min
z∈K

(1− |z|) = dist (K,SN )

We have assumed that the symbol ϕ is non-degenerate. For a degenerate
symbol ϕ, we have:

Proposition 4.16. Let Ω be a bounded hyperconvex and good complete Rein-
hardt domain in CN , and let ϕ : Ω → Ω be an analytic function such that
ϕ(Ω) ⊆ Ω is pluripolar. Then βN (Cϕ) = 0.

Recall that ϕ(Ω) is pluripolar when ϕ is degenerate (see [44, Proposition 2]);
its closure is also pluripolar if it satis�es the condition (4.9).

Proof. Let K = ϕ(Ω). By hypothesis, we have Cap (K) = 0. For every ε > 0,
let Kε = {z ∈ Ω ; dist (z,K) ≤ ε}. By Theorem 4.7, we have β+

N (Cϕ) ≤
ΓN (Kε). As limε→0 Cap (Kε) = Cap (K) = 0 ([30, Proposition 4.7.1(iv)]), we
get βN (Cϕ) = 0.

Remark 1. In [41, Section 4], we construct a degenerate symbol ϕ on the
bi-disk D2, de�ned by ϕ(z1, z2) =

(
λθ(z1), λθ(z1)

)
, where λθ is a lens map, for

which β−(Cϕ) > 0. For this function ϕ(D2) ∩ ∂D2 6= ∅ and hence ϕ(D2) is not
a compact subset of D2.

Remark 2. In the one dimensional case, for any (non constant) analytic map
ϕ : D→ D, the parameter β(Cϕ) = β1(Cϕ) is determined by its range ϕ(D), as
shown by the formula:

β(Cϕ) = e−1/Cap [ϕ(D)]

proved in [40]. This is no longer true in dimension N ≥ 2. In [42], we construct
pairs of (degenerate) symbols ϕ1, ϕ2 : D2 → D2, such that ϕ1(D2) = ϕ2(D2)
and:

1) Cϕ1 is not bounded, but Cϕ2 is compact, and even β2(Cϕ2) = 0;

2) Cϕ1 is bounded but not compact, so β2(Cϕ1) = 1, and Cϕ2 is compact,
with β2(Cϕ2) = 0;

3) Cϕ1 is compact, with 0 < β2(Cϕ1) < 1, and Cϕ2 is compact, with
β2(Cϕ2

) = 0.
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