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Approximation numbers of composition

operators on the Hardy space of the

infinite polydisk

Daniel Li, Hervé Queffélec, L. Rodríguez-Piazza

March 14, 2017

Abstract. We study the composition operators of the Hardy space on D∞∩ ℓ1,
the ℓ1 part of the infinite polydisk, and the behavior of their approximation
numbers.

1 Introduction

Recently, in [2], we investigated approximation numbers an(Cϕ), n ≥ 1, of
composition operators Cϕ, Cϕ(f) = f ◦ ϕ, on the Hardy or Bergman spaces
H2(Ω), B2(Ω) over a bounded symmetric domain Ω ⊆ Cd. Assuming that ϕ(Ω)
has non-empty interior, one of the main results of this study was the following
theorem.

Theorem 1.1 ([2]). Let Cϕ : H
2(Ω) → H2(Ω) be compact. Then:

1) we always have an(Cϕ) ≥ c e−C n1/d

where c, C are positive constants;

2) if Ω is a product of balls and if ϕ(Ω) ⊆ rΩ for some r < 1, then:

an(Cϕ) ≤ C e−c n1/d

.

As a result, the minimal decay of approximation numbers is slower and
slower as the dimension d increases, which might lead one to think that, in
infinite-dimension, no compact composition operators can exist, since their ap-
proximation numbers will not tend to 0. After all, this is the case for the Hardy
space of a half-plane, which supports no compact composition operator ([12],
Theorem 3.1; in [9], it is moreover proved that ‖Cϕ‖e = ‖Cϕ‖ as soon as Cϕ

is bounded; see also [15] for a necessary and sufficient condition for H2(Ω) has
compact composition operators, where Ω is a domain of C). We will see that
this is not quite the case here, even though the decay will be severely limited. In

particular, we will never have a decay of the form C e−cnδ

for some c, C, δ > 0.

1



2 Framework and reminders

2.1 Hardy spaces on D∞

Let T = ∂D be the unit circle of the set of complex numbers. We consider
T∞ and equip it with its Haar measure m. This is a compact Abelian group
with dual Z(∞), the set of eventually zero sequences α = (αj)j≥1 of integers.
We denote L2

N(∞)(T
∞) the Hilbert subspace of L2(T∞) formed by the functions

f whose Fourier spectrum is contained in N
(∞):

f̂(α) :=

∫

T∞

f(z) zα dm(z) = 0 if α /∈ N
(∞) .

The set E := N(∞) is called the narrow cone of Helson, and we also denote
L2
N(∞)(T

∞) = L2
E(T

∞). Any element of that subspace can be formally written
as:

f =
∑

α≥0

cα eα with cα = f̂(α) and
∑

α≥0

|cα|
2 <∞ .

Here, (eα)α∈Z(∞) is the canonical basis of L2(T∞) formed by characters, and
accordingly (eα)α∈N(∞) is the canonical basis of L2

E(T
∞).

Now we consider Ω2 = D∞ ∩ ℓ2.

Any f ∼
∑

α≥0 cα eα ∈ L2
E(T

∞) defines an analytic function on the infinite-
dimensional Reinhardt domain Ω2 by the formula:

(2.1) f(z) =
∑

α≥0

cα z
α

where the series is absolutely convergent for each z = (zj)j≥1 ∈ Ω2, as the
pointwise product of two square-summable sequences. Indeed, using an Euler
type formula, we get for z ∈ Ω2:

∑

α≥0

|zα|2 =

∞∏

j=1

(1− |zj |
2)−1 <∞ ,

and hence, by the Cauchy-Schwarz inequality:

∑

α≥0

|cα z
α| ≤

(∑

α≥0

|cα|
2

)1/2(∑

α≥0

|zα|2
)1/2

<∞ .

If α ∈ E and z ∈ Ω2, we have set, as usual, zα =
∏

j≥1 z
αj

j .

This shows that L2
E(T

∞) can be identified with H2(Ω2), the Hardy-Hilbert
space of analytic functions f(z) =

∑
α≥0 cα z

α on Ω2 with

‖f‖2 :=
∑

α≥0

|cα|
2 <∞ .
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This setting is customary in connection with Dirichlet series (see [7]).

In this paper, for a technical reason appearing below in the proof of Propo-
sition 2.5, we will consider, instead of Ω2 = D∞ ∩ ℓ2, the sub-domain:

Ω = D
∞ ∩ ℓ1 ,

i.e. the open subset of ℓ1 formed by the sequences:

z = (zn)n≥1 such that |zn| < 1 , ∀n ≥ 1, and

∞∑

n=1

|zn| <∞ ,

and the restrictions to Ω of the functions f ∈ H2(Ω2). We denote H2(Ω) the
space of such restrictions.

Hence f ∈ H2(Ω) if and only if:

f(z) =
∑

α≥0

cα z
α with z ∈ Ω ,

and ‖f‖2 :=
∑

α≥0 |cα|
2 <∞.

We now identify the space L2
E(T

∞) with the space H2(Ω).

We more generally define Hardy spaces Hp(Ω), for 1 ≤ p <∞, in the usual
way:

Hp = Hp(Ω) = {f : Ω → C ; ‖f‖p <∞} ,

where f is analytic in Ω and ‖f‖p = sup0<r<1Mp(r, f) = limr→1− Mp(r, f)
with:

Mp(r, f) =

(∫

T∞

|f(rz)|p dm(z)

)1/p

, 0 < r < 1 .

We have ‖f‖ = ‖f‖2. Moreover, Hq contractively embeds into Hp for p < q.

2.2 Singular numbers

We begin with a reminder of operator-theoretic facts. We recall that the
approximation numbers an(T ) = an of an operator T : H → H (with H a
Hilbert space) are defined by:

an = inf
rankR<n

‖T −R‖ .

According to a 1957’s result of Allahverdiev (see [3], page 155), we have
an = sn, the n-th singular number of T . We also recall a basic result due to
H. Weyl and one obvious consequence:

Theorem 2.1. Let T : H → H be a compact operator with eigenvalues (λn)
rearranged in decreasing order and singular numbers (an). Then:

n∏

j=1

|λj | ≤

n∏

j=1

aj for all n ≥ 1 .

As a consequence:

|λ2n|
2 ≤ a1an.

3



2.3 Spectra of projective tensor products

The following operator-theoretic result will play a basic role in the sequel.
Let E1, . . . , En be Banach spaces and let E = ⊗n

i=1Ei their projective tensor
product (the only tensor product we shall use). If Ti ∈ L(Ei), we define as usual
their projective tensor product T = ⊗n

i=1Ti ∈ L(E) by its action on the atoms
of E, namely:

T (⊗n
i=1xi) = ⊗n

i=1Ti(xi) .

Denote in general σ(x) the spectrum of x ∈ A where A is a unital Banach
algebra. We recall ([13], chap.11, Theorem 11.23) the following result.

Lemma 2.2. Let A be a unital Banach algebra, and x1, . . . , xn be pairwise
commuting elements of A. Then:

σ(x1 · · ·xn) ⊆

n∏

i=1

σ(xi) .

Here,
∏n

i=1 σ(xi) is the product in the Minkowski sense, namely:

n∏

i=1

σ(xi) =

{ n∏

i=1

λi : λi ∈ σ(xi)

}
.

As a consequence, we then have the following lemma due to Schechter, which
we prove under a weakened form, sufficient here, and which is indeed already in
[1] (we just add a few details because this is a central point in our estimates).

Lemma 2.3. Let F be a Banach space, T1, . . . , Tn ∈ L(F ) and T = ⊗n
i=1Ti.

Then σ(T ) ⊂
∏n

i=1 σ(Ti).

Proof. To save notation, we assume n = 2. Let x1 = T1 ⊗ I2 and x2 = I1 ⊗ T2
where Ii is the identity of Ei. Clearly,

x1x2 = x2x1 = T1 ⊗ T2 = T and σ(xi) = σ(Ti)

where the spectrum of xi is in the Banach algebra L(E) and that of Ti in L(Ei).
Lemma 2.2 now gives:

σ(T ) = σ(x1x2) ⊆ σ(x1)σ(x2) = σ(T1)σ(T2) ,

hence the result.

2.4 Schur maps and composition operators

We now pass to some general facts on composition operators Cϕ, defined by
Cϕ(f) = f ◦ ϕ, associated with a Schur map, namely a non-constant analytic
self-map ϕ of Ω. We say that ϕ is a symbol for H2(Ω) if Cϕ is a bounded linear
operator from H2(Ω) into itself.

The differential ϕ′(a) of ϕ at some point a ∈ Ω is a bounded linear map
ϕ′(a) : ℓ1 → ℓ1.
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Definition 2.4. The symbol ϕ is said to be truly infinite-dimensional if the

differential ϕ′(a) is an injective linear map from ℓ1 into itself for at least one

point a ∈ Ω.

In finite dimension, this amounts to saying that ϕ(Ω) has non-void interior.

We have the following general result.

Proposition 2.5. Let (ϕj)j≥1 be a sequence of analytic self-maps of D such

that
∑

j≥1 |ϕj(0)| <∞. Then, the mapping ϕ : Ω → C∞ defined by the formula

ϕ(z) = (ϕj(zj))j≥1 maps Ω to itself and is a symbol for H2(Ω).

Proof. First, the Schwarz inequality:

|ϕj(zj)− ϕj(0)| ≤ 2 |zj|

shows that ϕ(z) ∈ Ω when z ∈ Ω. To see that ϕ is moreover a symbol for
H2(Ω), we use the fact ([8]) that:

(2.2) ‖Cϕj‖ ≤

√
1 + |ϕj(0)|

1− |ϕj(0)|
·

Now, by the separation of variables and Fubini’s theorem, we easily get:

(2.3) ‖Cϕ‖ ≤

∞∏

j=1

‖Cϕj‖ <∞ .

As
∑

j≥1 |ϕj(0)| <∞, by hypothesis, the infinite product

∏

j≥1

√
1 + |ϕj(0)|

1− |ϕj(0)|

converges and, in view of (2.2) and (2.3), Cϕ is bounded.

We also have the following useful fact.

Lemma 2.6. The automorphisms of Ω act transitively on Ω and define bounded

composition operators on H2(Ω).

Proof. Let a = (aj)j ∈ Ω and let Ψa : Ω → C∞ be defined by:

Ψa(z) =
(
Φaj (zj)

)
j≥1

where in general Φu : D → D is defined by Φu(z) = (z − u)/(1 − uz). The
Schwarz lemma gives |Φaj (zj)+aj | ≤ 2|zj|, and shows that Ψa maps Ω to itself.
Clearly, Ψa is an automorphism of Ω with inverse Ψ−a and Ψa(a) = 0. The
fact that the composition operator CΨa is bounded on H2(Ω) is a consequence
of Proposition 2.5.
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3 Spectrum of compact composition operators

We begin with the following definition, following [10].

Definition 3.1. Let ϕ : Ω → Ω be a truly infinite-dimensional symbol. We say

that ϕ is compact if ϕ(Ω) is a compact subset of Ω.

We then have the following result.

Lemma 3.2. If ϕ : Ω → Ω is a compact mapping, then:

1) Cϕ : H
2(Ω) → H2(Ω) is bounded and moreover compact.

2) If a ∈ Ω a fixed point of ϕ, ϕ′(a) ∈ L(ℓ1) is a compact operator.

Proof. 1) follows from a H. Schwarz type criterion via an Ascoli-Montel type
theorem: every sequence (fn) of H2(Ω) bounded in norm contains a subse-
quence which converges uniformly on compact subsets of Ω. Indeed, we have
the following ([4], chap. 17, p. 274): if A is a locally bounded set of holomorphic
functions on Ω, then A is locally equi-Lipschitz, namely every point a ∈ Ω has
a neighourhood U ⊂ Ω such that:

z, w ∈ U and f ∈ A =⇒ |f(z)− f(w)| ≤ CA,U ‖z − w‖ .

The Ascoli-Montel theorem easily follows from this. Then, if fn ∈ H2(Ω) con-
verges weakly to 0, it converges uniformly to 0 on compact subsets of Ω; in
particular on ϕ(Ω). This means that ‖Cϕ(fn)‖∞ = ‖fn ◦ ϕ‖∞ → 0, implying
‖fn ◦ ϕ‖2 → 0 and the compactness of Cϕ.

Actually, Cϕ is compact on every Hardy space Hp(Ω), 1 ≤ p ≤ ∞. This
observation will be useful later on.

For 2), we may indeed dispense ourselves with the invariance of a, and force
a = 0 to be a fixed point of ϕ. Indeed, we can replace ϕ by ψ = Ψb ◦ ϕ ◦ Ψa

where b = ϕ(a) is arbitrary, and use Lemma 2.6 as well as the ideal property of
compact linear operators. We set A = ϕ′(0). Expanding each coordinate ϕj of
ϕ in a series of homogeneous polynomials, we may write (since ϕ(0) = 0):

ϕ(z) =
∑

|α|=1

cαz
α +

∞∑

s=2

( ∑

|α|=s

cαz
α

)
= A(z) +

∞∑

s=2

( ∑

|α|=s

cαz
α

)
,

where cα = (cα,j)j≥1 ∈ C
∞. We clearly have (looking at the Fourier series of

ϕ(z eiθ)):

(3.1) ‖z‖1 < 1 =⇒ z ∈ Ω =⇒ A(z) =
1

2π

∫ 2π

0

ϕ(z eiθ) e−iθ dθ .

Since ϕ is compact, this clearly implies, with B the open unit ball of ℓ1, that
A(B) is totally bounded, proving the compactness of A.

The following extension of results of [11], then [1] and [6], which themselves
extend a theorem of G. Königs ([14], p. 93) will play an essential role for lower
bounds of approximation numbers.
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Theorem 3.3. Let ϕ : Ω → Ω be a compact symbol. Assume there is a ∈ Ω
such that ϕ(a) = a and that ϕ′(a) ∈ L(ℓ1) is injective. Then, the spectrum of

Cϕ : H
2(Ω) → H2(Ω) is exactly formed by the numbers λα, α ∈ N(∞), and 0, 1,

where (λj)j≥1 denote the eigenvalues of A := ϕ′(a) and:

λα =
∏

j≥1

λ
αj

j if α = (αj)j≥1 ∈ N
(∞) .

Proof. This is proved in [1] for the unit ball BE of an arbitrary Banach space
E and for the space H∞(BE), in four steps which are the following:

1. If ϕ(BE) lies strictly inside BE (namely if ϕ(BE) ⊆ rBE for some r < 1),
in particular when ϕ is compact, ϕ has a unique fixed point a ∈ BE , according
to a theorem of Earle and Hamilton.

2. The spectrum of Cϕ contains the numbers λ where λ is an eigenvalue of
ϕ′(a) or λ = 0, 1.

3. It is then proved that the spectrum of Cϕ contains the numbers λα and
0, 1.

4. It is finally proved that spectrum of Cϕ is contained in the numbers λα

and 0, 1.

Here, handling with the domain Ω, we see that:

1. True or not for Ω, the Earle-Hamilton theorem is not needed since we
will force, by a change of the compact symbol ϕ in another compact symbol
ψ = Ψb ◦ϕ◦Ψa, the point 0 to be a fixed point. Moreover A = ψ′(0) is injective
if ϕ′(a) is, since Ψ′

a and Ψ′
b are invertible.

2. The second step (non-surjectivity) is valid for any domain and for H2(Ω),
or Hp(Ω), in exactly the same way.

3. The third step consists of proving {λα} ⊆ σ(Cϕ).

For that purpose, assume that λα =
∏m

l=1 λl 6= 0 with λl an eigenvalue
of ϕ′(0) and with repetitions allowed. As we already mentioned, under the
assumption of compactness of ϕ, Cϕ is compact on Hp(Ω) as well, for any
p ≥ 1. We take here p = 2m. Step 2 provides us with non-zero functions
fi ∈ Hp(Ω) such that fi ◦ ϕ = λifi, 1 ≤ i ≤ m, since for the compact operator
Cϕ : H

p → Hp, non-surjectivity implies non-injectivity. Let f =
∏

1≤i≤m fi.
Then, using the integral representation of the norm and the Hölder inequality,
we see that f ∈ H2(Ω), f 6= 0 and f ◦ ϕ = λαf , proving our claim.

4. The fourth step is valid as well, with a slight simplification: we have
to show that, if µ 6= 1 is not of the form λα, then Cϕ − µI is injective. Let
f ∈ H2(Ω) satisfying f ◦ ϕ = µf and let:

f(z) =

∞∑

m=0

dmf(0)

m!
(zm)

be the Taylor expansion of f about z = 0 (observe that Ω is a Reinhardt
domain). As usual, dmf(0) =: Lm is an m-linear symmetric form on F = ℓ1

and the notation Lm(zm) means Lm(z, z, . . . , z).
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Observe that Lm can be isometrically identified with an element (denoted
Lm) of L(F⊗n) defined by the formula:

Lm(x1 ⊗ · · · ⊗ xn) = Lm(x1, . . . , xm) .

We will prove by induction that Ln = 0 for each n. For this, we can avoid the
appeal to transposes of [1] as follows: if the result holds for Lm with m < n,
one gets (comparing the terms in zn in both members of f ◦ ϕ = µf):

(3.2) µA = A ◦B where A = Ln and B = ϕ′(0)⊗n .

That is A(B − µI) = 0 where I is the identity map of F⊗n. Now, B − µI in
invertible in L(F ) by Lemma 3.3, so that A = A(B − µI)(B − µI)−1 = 0.

The proof is complete.

The following theorem summarizes and exploits the preceding theorem. Pos-
sibly, some restrictions can be removed, and we could only assume the compact-
ness of Cϕ, not of ϕ itself. After all, in dimension one, there are symbols ϕ with
‖ϕ‖∞ = 1 for which Cϕ : H

2 → H2 is compact.

Theorem 3.4. Let ϕ : Ω → Ω be a truly infinite-dimensional compact mapping

of Ω. Then:

1) Cϕ : H2(Ω) → H2(Ω) is bounded and even compact.

2) A = ϕ′(0) is compact.

3) No δ > 0 can exist such that an(Cϕ) ≤ C e−c nδ

for all n ≥ 1. More

precisely, the numbers an satisfy:

(3.3)
∑

n≥1

1

logp(1/an)
= ∞ for all p <∞ .

Proof. The proof is based on the previous Theorem 3.3. Without loss of gener-
ality, we can assume that ϕ(0) = 0 and ϕ′(0) is injective, by using a point a at
which ϕ′(a) is injective, and then the fact that automorphisms of Ω act transi-
tively on Ω, act boundedly on H2(Ω), and the ideal property of approximation
numbers. More precisely, we pass to Ψ = Ψb ◦ ϕ ◦Ψa with b = ϕ(a) and get:

Ψ(0) = 0 and Ψ′(b) = Ψ′
b(b)ϕ

′(a)Ψ′
a(0)

injective, since Ψ′
b(b) and Ψ′

a(0) are, and Ψa and Ψb are automorphisms of Ω.

We now have the following simple but crucial lemma.

Lemma 3.5. Whatever the choice of the numbers λj with 0 < |λj | < 1, denoting

by (δn)n≥1 the non-increasing rearrangement of the numbers λα, one has:

∑

n≥1

1

logp(1/δn)
= ∞ for all p <∞ .
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Proof of the Lemma. For any positive integer p, we set:

q = 2p , log 1/|λj| = Aj ,

and we use that:

∑

1≤j≤q

αj Aj ≤

( ∑

1≤j≤q

α2
j

)( ∑

1≤j≤q

A2
j

)
=: Cq

( ∑

1≤j≤q

α2
j

)
= Cq‖α‖

2 ,

where ‖ . ‖ stands for the euclidean norm in R
q. We then get:

∑

n≥1

1

logp(1/δn)
=

∑

α>0

1

logp(1/|λα|)

≥
∑

αj≥1, 1≤j≤q

1

logp(1/|λα1
1 | · · · 1/|λ

αq
q |)

=
∑

αj≥1, 1≤j≤q

1

(α1A1 + · · ·+ αqAq)p

≥ C−p
q

∑

αj≥1, 1≤j≤q

1

(α2
1 + · · ·+ α2

q)
p

= C−p
q

∑

αj≥1, 1≤j≤q

1

‖α‖q
= ∞ ,

because: ∫

x∈Rq, ‖x‖≥1

1

‖x‖q
dx = cq

∫ ∞

1

rq−1

rq
dr = ∞ .

This proves the lemma.

This can be transferred to the approximation numbers an = an(Cϕ) to end
the proof of Theorem 3.4. Indeed, we know from Lemma 3.5 that the non-
increasing rearrangement (δn) of the eigenvalues λα of Cϕ satisfies

∑

n≥1

1

logp(1/δn)
= ∞ .

Since a divergent series of non-negative and non-increasing numbers un satisfies∑
u2n = ∞, we further see that:

∑

n≥1

1

logp(1/δ2n)
= ∞ for all p <∞ .

Moreover, by Theorem 2.1 we have:

(3.4)

(
1

2 log 1/δ2n

)p

≤

(
1

log 1/(a1an)

)p

·

9



Since 1/(log 1/a1an) ∼ 1/(log 1/an), Lemma 3.5 then gives the result. This

clearly prevents an inequality of the form an ≤ C e−c nδ

for some positive num-
bers c, C, δ and all n ≥ 1. Indeed, this would imply:

∑

n≥1

1

logp(1/an)
<∞ for p > 1/δ ,

contradicting (3.3).

Remarks. Let us briefly comment on the assumptions in Theorem 3.4.

1) We do not need the Earle-Hamilton theorem under our assumptions. The
Schauder-Tychonoff theorem gives the existence (if not the uniqueness) of a
fixed point for ϕ in Ω (bounded and convex).

2) The Earle-Hamilton theorem is in some sense more general (for analytic
maps) since it remains valid when ϕ(Ω) is only assumed to lie strictly inside Ω,
i.e. when ϕ(Ω) ⊆ rΩ for some r < 1. But this assumption does not ensure the
compactness of Cϕ as indicated by the simple example ϕ(z) = rz, 0 < r < 1.
The coordinate functions z 7→ zn converge weakly to 0, while ‖Cϕ(zn)‖H2(Ω) =
r.

3) The mere assumption that ϕ(Ω) is compact is not sufficient either. Juste
take:

ϕ(z) =

(
1 + z1

2
, 0, . . . , 0, . . .

)
.

Since the composition operator Cϕ1 associated with ϕ1(z) =
1+z
2 is notoriously

non-compact onH2(D), neither is Cϕ onH2(Ω). Yet, ϕ(Ω) is obviously compact
in ℓ1.

4 Possible upper bounds

Recall that Ω = D∞ ∩ ℓ1.

4.1 A general example

Theorem 4.1. Let ϕ((zj)j) = (λjzj)j with |λj | < 1 for all j, so that ϕ(Ω) ⊆ Ω
and ϕ′(0) is the diagonal operator with eigenvalues λj, j ≥ 1, on the canonical

basis of ℓ1. Let p > 0. Then:

(λj)j ∈ ℓp =⇒ Cϕ ∈ Sp .

In particular, there exist truly infinite-dimensional symbols on Ω such that

the composition operator Cϕ : H
2(Ω) → H2(Ω) is in all Schatten classes Sp,

p > 0.

10



Proof. Since Cϕ is diagonal on the orthonormal basis (zα)α of the Hilbert space
H2(Ω), with Cϕ(z

α) = ϕα, its approximation numbers are the non-increasing
rearrangement of the moduli of eigenvalues λα, so that an Euler product-type
computation gives:

∞∑

n=1

apn =
∑

α∈E

|λα|p =
∑

αj∈N

∏

j≥1

|λj |
pαj =

∞∏

j=1

(1− |λj |
p)−1 <∞ .

To obtain Cϕ ∈
⋂

p>0 Sp, just take λn = e−n. This ends the proof.

4.2 A sharper upper bound

By making a more quantitative study, we can prove the following result.

Theorem 4.2. For any 0 < δ < 1, there exists a compact composition operator

on H2(Ω), with a truly infinite-dimensional symbol, such that, for some positive

constants c, C, b, we have:

an(Cϕ) ≤ C exp
(
− c eb (logn)δ

)
.

Proof. Take the same operator Cϕ as in Theorem 4.1, with λn = e−An where
the positive numbers An have to be adjusted. Its approximation numbers aN
are then the non-increasing rearrangement of the sequence of numbers (εn)n :=
(λα)α. This suggests using a generating function argument, namely considering∑
εnx

n, but the rearrangement perturbs the picture. Accordingly, we follow a
sligthly different route. Fix an integer N ≥ 1 and a real number r > 0. Observe
that, following the proof of Theorem 4.1:

N arN ≤

N∑

n=1

arn ≤

∞∑

n=1

arn =

∞∏

n=1

(1− e−rAn)−1.

First, consider the simple example An = n. We get:

N arN ≤ η (e−r)

where η is the Dedekind eta function (see [5]) given by:

η(x) =

∞∏

n=1

(1 − xn)−1 =

∞∑

n=0

p(n)xn , |x| < 1 ,

where p(n) is the number of partitions of the integer n. It is well-known ([5],
Ch. 7, p. 169) that η (e−r) ≤ eD/r with D = π2/6, so that:

aN ≤ exp

(
D

r2
−

logN

r

)
.

Optimizing with r = 2D/ logN , we get:

aN ≤ exp(−c log2N) ,

11



with c = 1/4D. This is more precise than Theorem 4.1.

We now show that if An increases faster, we can achieve the decay of Theo-
rem 4.2. As before, we get in general:

(4.1) aN ≤ inf
x>1

(
exp [x(logF (x−1)− logN)]

)
,

where

F (r) =
∞∏

n=1

(1− e−rAn)−1 .

We have:

logF (r) =
∞∑

n=1

( ∞∑

m=1

e−rmAn

m

)
=

∞∑

m=1

1

m

( ∞∑

n=1

e−rmAn

)
.

Now, take An = en
α

where α > 0 is to be chosen. We have:

∞∑

n=1

e−rm en
α

≤

∫ ∞

0

e−rm et
α

dt =: Im(r) .

Standard estimates now give, for r < 1:

Im(r) =

∫ ∞

1

e−rmx 1

α
(log x)

1
α−1 dx

x
=

∫ ∞

rm

e−y 1

α

(
log

y

rm

) 1
α−1

dy

y

.

(
log

1

r

) 1
α−1 ∫ ∞

rm

e−y dy

y
. e−rm

(
log

1

r

) 1
α

,

so that:

logF (r) . (log 1/r)
1
α

∞∑

m=1

m−1e−rm . (log 1/r)
1
α+1 .

Going back to (4.1), we get, for some constant C > 0, and for x = 1/r > 1:

aN ≤ C exp
[
C x

(
(log x)

1
α+1 − logN

)]
.

Adjusting x = xN > 1 so as to have (log x)
1
α+1 = logN − 1, that is:

xN = exp
[
(log(N/e))

α
α+1

]
,

we get aN ≤ C e−c xN , which is the claimed result with δ = α/(α+ 1).
This δ can be taken arbitrarily in (0, 1) by choosing α suitable, and we are

done.

Remark. Of course, δ = 1 is forbidden, because this would give an ≤ C e−cnb

,
implying:

∞∑

n=1

1

(log 1/an)p
.

∞∑

n=1

n−b p <∞ ,

for large p, and contradicting Theorem 3.4.
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