Daniel Li 
  
Hervé Queffélec 
  
L Rodríguez-Piazza 
  
Approximation numbers of composition operators on the Hardy space of the infinite polydisk

We study the composition operators of the Hardy space on D ∞ ∩ ℓ 1 , the ℓ 1 part of the infinite polydisk, and the behavior of their approximation numbers.

Introduction

Recently, in [START_REF] Bayart | Approximation numbers of composition operators on the Hardy and Bergman spaces of the ball and of the polydisk[END_REF], we investigated approximation numbers a n (C ϕ ), n ≥ 1, of composition operators C ϕ , C ϕ (f ) = f • ϕ, on the Hardy or Bergman spaces H 2 (Ω), B 2 (Ω) over a bounded symmetric domain Ω ⊆ C d . Assuming that ϕ(Ω) has non-empty interior, one of the main results of this study was the following theorem.

Theorem 1.1 ( [START_REF] Bayart | Approximation numbers of composition operators on the Hardy and Bergman spaces of the ball and of the polydisk[END_REF]). Let C ϕ : H 2 (Ω) → H 2 (Ω) be compact. Then:

1) we always have a n (C ϕ ) ≥ c e -C n 1/d where c, C are positive constants; 2) if Ω is a product of balls and if ϕ(Ω) ⊆ r Ω for some r < 1, then:

a n (C ϕ ) ≤ C e -c n 1/d .
As a result, the minimal decay of approximation numbers is slower and slower as the dimension d increases, which might lead one to think that, in infinite-dimension, no compact composition operators can exist, since their approximation numbers will not tend to 0. After all, this is the case for the Hardy space of a half-plane, which supports no compact composition operator ( [START_REF] Matache | Composition operators on Hardy spaces on a half-plane[END_REF], Theorem 3.1; in [START_REF] Elliott | Composition operators on Hardy spaces of a half plane[END_REF], it is moreover proved that C ϕ e = C ϕ as soon as C ϕ is bounded; see also [START_REF] Shapiro | Hardy spaces that support no compact composition operators[END_REF] for a necessary and sufficient condition for H 2 (Ω) has compact composition operators, where Ω is a domain of C). We will see that this is not quite the case here, even though the decay will be severely limited. In particular, we will never have a decay of the form C e -c n δ for some c, C, δ > 0.

2 Framework and reminders

Hardy spaces on D ∞

Let T = ∂D be the unit circle of the set of complex numbers. We consider T ∞ and equip it with its Haar measure m. This is a compact Abelian group with dual Z (∞) , the set of eventually zero sequences α = (α j ) j≥1 of integers. We denote L 2 N (∞) (T ∞ ) the Hilbert subspace of L 2 (T ∞ ) formed by the functions f whose Fourier spectrum is contained in N (∞) :

f (α) := T ∞ f (z) z α dm(z) = 0 if α / ∈ N (∞) .
The set E := N (∞) is called the narrow cone of Helson, and we also denote

L 2 N (∞) (T ∞ ) = L 2 E (T ∞ ).
Any element of that subspace can be formally written as:

f = α≥0 c α e α with c α = f (α) and α≥0 |c α | 2 < ∞ .
Here, (e α ) α∈Z (∞) is the canonical basis of L 2 (T ∞ ) formed by characters, and accordingly

(e α ) α∈N (∞) is the canonical basis of L 2 E (T ∞ ). Now we consider Ω 2 = D ∞ ∩ ℓ 2 . Any f ∼ α≥0 c α e α ∈ L 2 E (T ∞
) defines an analytic function on the infinitedimensional Reinhardt domain Ω 2 by the formula:

(2.1) f (z) = α≥0 c α z α
where the series is absolutely convergent for each z = (z j ) j≥1 ∈ Ω 2 , as the pointwise product of two square-summable sequences. Indeed, using an Euler type formula, we get for z ∈ Ω 2 :

α≥0 |z α | 2 = ∞ j=1 (1 -|z j | 2 ) -1 < ∞ ,
and hence, by the Cauchy-Schwarz inequality:

α≥0 |c α z α | ≤ α≥0 |c α | 2 1/2 α≥0 |z α | 2 1/2 < ∞ . If α ∈ E and z ∈ Ω 2 , we have set, as usual, z α = j≥1 z αj j . This shows that L 2 E (T ∞ ) can be identified with H 2 (Ω 2 ), the Hardy-Hilbert space of analytic functions f (z) = α≥0 c α z α on Ω 2 with f 2 := α≥0 |c α | 2 < ∞ .
This setting is customary in connection with Dirichlet series (see [START_REF] Cole | Representing measures and Hardy spaces for the infinite polydisk algebra[END_REF]).

In this paper, for a technical reason appearing below in the proof of Proposition 2.5, we will consider, instead of Ω 2 = D ∞ ∩ ℓ 2 , the sub-domain:

Ω = D ∞ ∩ ℓ 1 ,
i.e. the open subset of ℓ 1 formed by the sequences:

z = (z n ) n≥1 such that |z n | < 1 , ∀ n ≥ 1, and ∞ n=1 |z n | < ∞ ,
and the restrictions to Ω of the functions f ∈ H 2 (Ω 2 ). We denote H 2 (Ω) the space of such restrictions.

Hence f ∈ H 2 (Ω) if and only if:

f (z) = α≥0 c α z α with z ∈ Ω ,
and

f 2 := α≥0 |c α | 2 < ∞.
We now identify the space L 2 E (T ∞ ) with the space H 2 (Ω). We more generally define Hardy spaces H p (Ω), for 1 ≤ p < ∞, in the usual way:

H p = H p (Ω) = {f : Ω → C ; f p < ∞} ,
where f is analytic in Ω and

f p = sup 0<r<1 M p (r, f ) = lim r→1 -M p (r, f ) with: M p (r, f ) = T ∞ |f (rz)| p dm(z) 1/p , 0 < r < 1 .
We have f = f 2 . Moreover, H q contractively embeds into H p for p < q.

Singular numbers

We begin with a reminder of operator-theoretic facts. We recall that the approximation numbers a n (T ) = a n of an operator T : H → H (with H a Hilbert space) are defined by:

a n = inf rank R<n T -R .
According to a 1957's result of Allahverdiev (see [START_REF] Carl | Entropy, compactness and the approximation of operators[END_REF], page 155), we have a n = s n , the n-th singular number of T . We also recall a basic result due to H. Weyl and one obvious consequence: Theorem 2.1. Let T : H → H be a compact operator with eigenvalues (λ n ) rearranged in decreasing order and singular numbers (a n ). Then:

n j=1 |λ j | ≤ n j=1 a j for all n ≥ 1 .
As a consequence:

|λ 2n | 2 ≤ a 1 a n .

Spectra of projective tensor products

The following operator-theoretic result will play a basic role in the sequel. Let E 1 , . . . , E n be Banach spaces and let E = ⊗ n i=1 E i their projective tensor product (the only tensor product we shall use). If T i ∈ L(E i ), we define as usual their projective tensor product T = ⊗ n i=1 T i ∈ L(E) by its action on the atoms of E, namely:

T (⊗ n i=1 x i ) = ⊗ n i=1 T i (x i )
. Denote in general σ(x) the spectrum of x ∈ A where A is a unital Banach algebra. We recall ( [START_REF] Rudin | Functional Analysis[END_REF], chap.11, Theorem 11.23) the following result.

Lemma 2.2. Let A be a unital Banach algebra, and x 1 , . . . , x n be pairwise commuting elements of A. Then:

σ(x 1 • • • x n ) ⊆ n i=1 σ(x i ) .
Here, n i=1 σ(x i ) is the product in the Minkowski sense, namely:

n i=1 σ(x i ) = n i=1 λ i : λ i ∈ σ(x i ) .
As a consequence, we then have the following lemma due to Schechter, which we prove under a weakened form, sufficient here, and which is indeed already in [START_REF] Aron | Compact homomorphisms between algebras of analytic functions[END_REF] (we just add a few details because this is a central point in our estimates).

Lemma 2.3. Let F be a Banach space, T 1 , . . . , T n ∈ L(F ) and

T = ⊗ n i=1 T i . Then σ(T ) ⊂ n i=1 σ(T i ).
Proof. To save notation, we assume n = 2. Let x 1 = T 1 ⊗ I 2 and x 2 = I 1 ⊗ T 2 where I i is the identity of E i . Clearly,

x 1 x 2 = x 2 x 1 = T 1 ⊗ T 2 = T and σ(x i ) = σ(T i )
where the spectrum of x i is in the Banach algebra L(E) and that of T i in L(E i ). Lemma 2.2 now gives:

σ(T ) = σ(x 1 x 2 ) ⊆ σ(x 1 ) σ(x 2 ) = σ(T 1 ) σ(T 2 ) ,
hence the result.

Schur maps and composition operators

We now pass to some general facts on composition operators C ϕ , defined by

C ϕ (f ) = f • ϕ, associated with a Schur map, namely a non-constant analytic self-map ϕ of Ω. We say that ϕ is a symbol for H 2 (Ω) if C ϕ is a bounded linear operator from H 2 (Ω) into itself. The differential ϕ ′ (a) of ϕ at some point a ∈ Ω is a bounded linear map ϕ ′ (a) : ℓ 1 → ℓ 1 .
Definition 2.4. The symbol ϕ is said to be truly infinite-dimensional if the differential ϕ ′ (a) is an injective linear map from ℓ 1 into itself for at least one point a ∈ Ω.

In finite dimension, this amounts to saying that ϕ(Ω) has non-void interior.

We have the following general result. Proposition 2.5. Let (ϕ j ) j≥1 be a sequence of analytic self-maps of D such that j≥1 |ϕ j (0)| < ∞. Then, the mapping ϕ : Ω → C ∞ defined by the formula ϕ(z) = (ϕ j (z j )) j≥1 maps Ω to itself and is a symbol for H 2 (Ω).

Proof. First, the Schwarz inequality:

|ϕ j (z j ) -ϕ j (0)| ≤ 2 |z j |
shows that ϕ(z) ∈ Ω when z ∈ Ω. To see that ϕ is moreover a symbol for H 2 (Ω), we use the fact ( [START_REF] Cowen | Composition Operators on Spaces of Analytic Functions[END_REF]) that:

(2.2) C ϕj ≤ 1 + |ϕ j (0)| 1 -|ϕ j (0)| •
Now, by the separation of variables and Fubini's theorem, we easily get:

(2.3) C ϕ ≤ ∞ j=1 C ϕj < ∞ .
As j≥1 |ϕ j (0)| < ∞, by hypothesis, the infinite product

j≥1 1 + |ϕ j (0)| 1 -|ϕ j (0)|
converges and, in view of (2.2) and (2.3), C ϕ is bounded.

We also have the following useful fact.

Lemma 2.6. The automorphisms of Ω act transitively on Ω and define bounded composition operators on H 2 (Ω).

Proof. Let a = (a j ) j ∈ Ω and let Ψ a : Ω → C ∞ be defined by:

Ψ a (z) = Φ aj (z j ) j≥1
where in general

Φ u : D → D is defined by Φ u (z) = (z -u)/(1 -uz).
The Schwarz lemma gives |Φ aj (z j ) + a j | ≤ 2|z j |, and shows that Ψ a maps Ω to itself. Clearly, Ψ a is an automorphism of Ω with inverse Ψ -a and Ψ a (a) = 0. The fact that the composition operator C Ψa is bounded on H 2 (Ω) is a consequence of Proposition 2.5.

Spectrum of compact composition operators

We begin with the following definition, following [START_REF] Lefèvre | Generalized Essential Norm of Weighted Composition Operators on some Uniform Algebras of Analytic Functions[END_REF].

Definition 3.1. Let ϕ : Ω → Ω be a truly infinite-dimensional symbol. We say that ϕ is compact if ϕ(Ω) is a compact subset of Ω.

We then have the following result.

Lemma 3.2. If ϕ : Ω → Ω is a compact mapping, then: 1) C ϕ : H 2 (Ω) → H 2 (Ω) is bounded and moreover compact. 2) If a ∈ Ω a fixed point of ϕ, ϕ ′ (a) ∈ L(ℓ 1
) is a compact operator.

Proof. 1) follows from a H. Schwarz type criterion via an Ascoli-Montel type theorem: every sequence (f n ) of H 2 (Ω) bounded in norm contains a subsequence which converges uniformly on compact subsets of Ω. Indeed, we have the following ([4], chap. 17, p. 274): if A is a locally bounded set of holomorphic functions on Ω, then A is locally equi-Lipschitz, namely every point a ∈ Ω has a neighourhood U ⊂ Ω such that:

z, w ∈ U and f ∈ A =⇒ |f (z) -f (w)| ≤ C A,U z -w .
The Ascoli-Montel theorem easily follows from this. Then, if f n ∈ H 2 (Ω) converges weakly to 0, it converges uniformly to 0 on compact subsets of Ω; in particular on ϕ(Ω). This means that

C ϕ (f n ) ∞ = f n • ϕ ∞ → 0, implying f n • ϕ 2 → 0 and the compactness of C ϕ .
Actually, C ϕ is compact on every Hardy space H p (Ω), 1 ≤ p ≤ ∞. This observation will be useful later on.

For 2), we may indeed dispense ourselves with the invariance of a, and force a = 0 to be a fixed point of ϕ. Indeed, we can replace ϕ by ψ = Ψ b • ϕ • Ψ a where b = ϕ(a) is arbitrary, and use Lemma 2.6 as well as the ideal property of compact linear operators. We set A = ϕ ′ (0). Expanding each coordinate ϕ j of ϕ in a series of homogeneous polynomials, we may write (since ϕ(0) = 0):

ϕ(z) = |α|=1 c α z α + ∞ s=2 |α|=s c α z α = A(z) + ∞ s=2 |α|=s c α z α ,
where c α = (c α,j ) j≥1 ∈ C ∞ . We clearly have (looking at the Fourier series of ϕ(z e iθ )):

(3.1) z 1 < 1 =⇒ z ∈ Ω =⇒ A(z) = 1 2π 2π 0 ϕ(z e iθ ) e -iθ dθ .
Since ϕ is compact, this clearly implies, with B the open unit ball of ℓ 1 , that A(B) is totally bounded, proving the compactness of A.

The following extension of results of [START_REF] Maccluer | Spectra of compact composition operators on H p (B N )[END_REF], then [START_REF] Aron | Compact homomorphisms between algebras of analytic functions[END_REF] and [START_REF] Clahane | Spectra of compact composition operators over bounded symmetric domains[END_REF], which themselves extend a theorem of G. Königs ( [START_REF] Shapiro | Composition Operators and Classical Function Theory, Universitext[END_REF], p. 93) will play an essential role for lower bounds of approximation numbers. Theorem 3.3. Let ϕ : Ω → Ω be a compact symbol. Assume there is a ∈ Ω such that ϕ(a) = a and that ϕ ′ (a) ∈ L(ℓ 1 ) is injective. Then, the spectrum of C ϕ : H 2 (Ω) → H 2 (Ω) is exactly formed by the numbers λ α , α ∈ N (∞) , and 0, 1, where (λ j ) j≥1 denote the eigenvalues of A := ϕ ′ (a) and:

λ α = j≥1 λ αj j if α = (α j ) j≥1 ∈ N (∞) .
Proof. This is proved in [START_REF] Aron | Compact homomorphisms between algebras of analytic functions[END_REF] for the unit ball B E of an arbitrary Banach space E and for the space H ∞ (B E ), in four steps which are the following:

1. If ϕ(B E ) lies strictly inside B E (namely if ϕ(B E ) ⊆ rB E for some r < 1), in particular when ϕ is compact, ϕ has a unique fixed point a ∈ B E , according to a theorem of Earle and Hamilton.

2. The spectrum of C ϕ contains the numbers λ where λ is an eigenvalue of ϕ ′ (a) or λ = 0, 1.

3. It is then proved that the spectrum of C ϕ contains the numbers λ α and 0, 1.

4. It is finally proved that spectrum of C ϕ is contained in the numbers λ α and 0, 1.

Here, handling with the domain Ω, we see that: 1. True or not for Ω, the Earle-Hamilton theorem is not needed since we will force, by a change of the compact symbol ϕ in another compact symbol

ψ = Ψ b • ϕ • Ψ a , the point 0 to be a fixed point. Moreover A = ψ ′ (0) is injective if ϕ ′ (a) is, since Ψ ′ a and Ψ ′ b are invertible. 2.
The second step (non-surjectivity) is valid for any domain and for H 2 (Ω), or H p (Ω), in exactly the same way.

3. The third step consists of proving {λ α } ⊆ σ(C ϕ ).

For that purpose, assume that λ α = m l=1 λ l = 0 with λ l an eigenvalue of ϕ ′ (0) and with repetitions allowed. As we already mentioned, under the assumption of compactness of ϕ, C ϕ is compact on H p (Ω) as well, for any p ≥ 1. We take here p = 2m.

Step 2 provides us with non-zero functions

f i ∈ H p (Ω) such that f i • ϕ = λ i f i , 1 ≤ i ≤ m,
since for the compact operator C ϕ : H p → H p , non-surjectivity implies non-injectivity. Let f = 1≤i≤m f i . Then, using the integral representation of the norm and the Hölder inequality, we see that f ∈ H 2 (Ω), f = 0 and f • ϕ = λ α f , proving our claim.

4. The fourth step is valid as well, with a slight simplification: we have to show that, if µ = 1 is not of the form λ α , then

C ϕ -µI is injective. Let f ∈ H 2 (Ω) satisfying f • ϕ = µf and let: f (z) = ∞ m=0 d m f (0) m! (z m )
be the Taylor expansion of f about z = 0 (observe that Ω is a Reinhardt domain). As usual, d m f (0) =: L m is an m-linear symmetric form on F = ℓ 1 and the notation L m (z m ) means L m (z, z, . . . , z).

Observe that L m can be isometrically identified with an element (denoted L m ) of L(F ⊗n ) defined by the formula:

L m (x 1 ⊗ • • • ⊗ x n ) = L m (x 1 , . . . , x m ) .
We will prove by induction that L n = 0 for each n. For this, we can avoid the appeal to transposes of [START_REF] Aron | Compact homomorphisms between algebras of analytic functions[END_REF] as follows: if the result holds for L m with m < n, one gets (comparing the terms in z n in both members of f • ϕ = µf ):

(3.2) µA = A • B where A = L n and B = ϕ ′ (0) ⊗n .
That is A(B -µI) = 0 where I is the identity map of F ⊗n . Now, B -µI in invertible in L(F ) by Lemma 3.3, so that

A = A(B -µI)(B -µI) -1 = 0.
The proof is complete.

The following theorem summarizes and exploits the preceding theorem. Possibly, some restrictions can be removed, and we could only assume the compactness of C ϕ , not of ϕ itself. After all, in dimension one, there are symbols ϕ with ϕ ∞ = 1 for which

C ϕ : H 2 → H 2 is compact. Theorem 3.4. Let ϕ : Ω → Ω be a truly infinite-dimensional compact mapping of Ω. Then: 1) C ϕ : H 2 (Ω) → H 2 (Ω) is bounded and even compact. 2) A = ϕ ′ (0) is compact. 3) No δ > 0 can exist such that a n (C ϕ ) ≤ C e -c
n δ for all n ≥ 1. More precisely, the numbers a n satisfy:

(3.3) n≥1 1 log p (1/a n ) = ∞ for all p < ∞ .
Proof. The proof is based on the previous Theorem 3.3. Without loss of generality, we can assume that ϕ(0) = 0 and ϕ ′ (0) is injective, by using a point a at which ϕ ′ (a) is injective, and then the fact that automorphisms of Ω act transitively on Ω, act boundedly on H 2 (Ω), and the ideal property of approximation numbers. More precisely, we pass to Ψ = Ψ b • ϕ • Ψ a with b = ϕ(a) and get:

Ψ(0) = 0 and Ψ ′ (b) = Ψ ′ b (b) ϕ ′ (a) Ψ ′ a (0) injective, since Ψ ′ b (b)
and Ψ ′ a (0) are, and Ψ a and Ψ b are automorphisms of Ω. We now have the following simple but crucial lemma. Lemma 3.5. Whatever the choice of the numbers λ j with 0 < |λ j | < 1, denoting by (δ n ) n≥1 the non-increasing rearrangement of the numbers λ α , one has:

n≥1 1 log p (1/δ n ) = ∞ for all p < ∞ .
Proof of the Lemma. For any positive integer p, we set:

q = 2p , log 1/|λ j | = A j ,
and we use that:

1≤j≤q α j A j ≤ 1≤j≤q α 2 j 1≤j≤q A 2 j =: C q 1≤j≤q α 2 j = C q α 2 ,
where . stands for the euclidean norm in R q . We then get:

n≥1 1 log p (1/δ n ) = α>0 1 log p (1/|λ α |) ≥ αj ≥1, 1≤j≤q 1 log p (1/|λ α1 1 | • • • 1/|λ αq q |) = αj ≥1, 1≤j≤q 1 (α 1 A 1 + • • • + α q A q ) p ≥ C -p q αj ≥1, 1≤j≤q 1 (α 2 1 + • • • + α 2 q ) p = C -p q αj ≥1, 1≤j≤q 1 α q = ∞ , because: x∈R q , x ≥1 1 x q dx = c q ∞ 1 r q-1 r q dr = ∞ .
This proves the lemma.

This can be transferred to the approximation numbers a n = a n (C ϕ ) to end the proof of Theorem 3.4. Indeed, we know from Lemma 3.5 that the nonincreasing rearrangement (δ n ) of the eigenvalues λ α of C ϕ satisfies n≥1

1 log p (1/δ n ) = ∞ .
Since a divergent series of non-negative and non-increasing numbers u n satisfies u 2n = ∞, we further see that:

n≥1 1 log p (1/δ 2n ) = ∞ for all p < ∞ .
Moreover, by Theorem 2.1 we have:

(3.4) 1 2 log 1/δ 2n p ≤ 1 log 1/(a 1 a n ) p •
Since 1/(log 1/a 1 a n ) ∼ 1/(log 1/a n ), Lemma 3.5 then gives the result. This clearly prevents an inequality of the form a n ≤ C e -c n δ for some positive numbers c, C, δ and all n ≥ 1. Indeed, this would imply:

n≥1 1 log p (1/a n ) < ∞ for p > 1/δ , contradicting (3.3).
Remarks. Let us briefly comment on the assumptions in Theorem 3.4.

1)

We do not need the Earle-Hamilton theorem under our assumptions. The Schauder-Tychonoff theorem gives the existence (if not the uniqueness) of a fixed point for ϕ in Ω (bounded and convex).

2) The Earle-Hamilton theorem is in some sense more general (for analytic maps) since it remains valid when ϕ(Ω) is only assumed to lie strictly inside Ω, i.e. when ϕ(Ω) ⊆ rΩ for some r < 1. But this assumption does not ensure the compactness of C ϕ as indicated by the simple example ϕ(z) = rz, 0 < r < 1. The coordinate functions z → z n converge weakly to 0, while C ϕ (z n ) H 2 (Ω) = r.

3) The mere assumption that ϕ(Ω) is compact is not sufficient either. Juste take:

ϕ(z) = 1 + z 1 2
, 0, . . . , 0, . . . .

Since the composition operator C ϕ1 associated with ϕ 1 (z) = 1+z 2 is notoriously non-compact on H 2 (D), neither is C ϕ on H 2 (Ω). Yet, ϕ(Ω) is obviously compact in ℓ 1 .

Possible upper bounds

Recall that Ω = D ∞ ∩ ℓ 1 .

A general example

Theorem 4.1. Let ϕ((z j ) j ) = (λ j z j ) j with |λ j | < 1 for all j, so that ϕ(Ω) ⊆ Ω and ϕ ′ (0) is the diagonal operator with eigenvalues λ j , j ≥ 1, on the canonical basis of ℓ 1 . Let p > 0. Then:

(λ j ) j ∈ ℓ p =⇒ C ϕ ∈ S p .
In particular, there exist truly infinite-dimensional symbols on Ω such that the composition operator

C ϕ : H 2 (Ω) → H 2 (Ω) is in all Schatten classes S p , p > 0.
Proof. Since C ϕ is diagonal on the orthonormal basis (z α ) α of the Hilbert space H 2 (Ω), with C ϕ (z α ) = ϕ α , its approximation numbers are the non-increasing rearrangement of the moduli of eigenvalues λ α , so that an Euler product-type computation gives:

∞ n=1 a p n = α∈E |λ α | p = αj ∈N j≥1 |λ j | pαj = ∞ j=1 (1 -|λ j | p ) -1 < ∞ .
To obtain C ϕ ∈ p>0 S p , just take λ n = e -n . This ends the proof.

A sharper upper bound

By making a more quantitative study, we can prove the following result.

Theorem 4.2. For any 0 < δ < 1, there exists a compact composition operator on H 2 (Ω), with a truly infinite-dimensional symbol, such that, for some positive constants c, C, b, we have:

a n (C ϕ ) ≤ C exp -c e b (log n) δ .
Proof. Take the same operator C ϕ as in Theorem 4.1, with λ n = e -An where the positive numbers A n have to be adjusted. Its approximation numbers a N are then the non-increasing rearrangement of the sequence of numbers (ε n ) n := (λ α ) α . This suggests using a generating function argument, namely considering ε n x n , but the rearrangement perturbs the picture. Accordingly, we follow a sligthly different route. Fix an integer N ≥ 1 and a real number r > 0. Observe that, following the proof of Theorem 4.1:

N a r N ≤ N n=1 a r n ≤ ∞ n=1 a r n = ∞ n=1 (1 -e -rAn ) -1 .
First, consider the simple example A n = n. We get:

N a r N ≤ η (e -r )
where η is the Dedekind eta function (see [START_REF] Chandrasekharan | Arithmetical Functions, Grundlehren Math. Wiss[END_REF]) given by:

η(x) = ∞ n=1 (1 -x n ) -1 = ∞ n=0 p(n) x n , |x| < 1 ,
where p(n) is the number of partitions of the integer n. It is well-known ([5], Ch. 7, p. 169) that η (e -r ) ≤ e D/r with D = π 2 /6, so that:

a N ≤ exp D r 2 - log N r .
Optimizing with r = 2D/ log N , we get:

a N ≤ exp(-c log 2 N ) , with c = 1/4D. This is more precise than Theorem 4.1.

We now show that if A n increases faster, we can achieve the decay of Theorem 4.2. As before, we get in general: where

F (r) = ∞ n=1
(1 -e -rAn ) -1 .

We have:

log F (r) = ∞ n=1 ∞ m=1 e -rmAn m = ∞ m=1 1 m ∞ n=1 e -rmAn .
Now, take A n = e n α where α > 0 is to be chosen. We have: Standard estimates now give, for r < 1: Going back to (4.1), we get, for some constant C > 0, and for x = 1/r > 1:

I m (r) = ∞ 1 e -rmx 1 α (log x)
a N ≤ C exp C x (log x) 1 α +1 -log N .
Adjusting x = x N > 1 so as to have (log x)

1 α +1 = log N -1, that is:

x N = exp (log(N/e)) α α+1 , we get a N ≤ C e -c xN , which is the claimed result with δ = α/(α + 1). This δ can be taken arbitrarily in (0, 1) by choosing α suitable, and we are done.

Remark. Of course, δ = 1 is forbidden, because this would give a n ≤ C e -c n b , implying:

∞ n=1 1 (log 1/a n ) p ∞ n=1 n -b p < ∞ ,
for large p, and contradicting Theorem 3.4.

(4. 1 )

 1 a N ≤ inf x>1 exp [x(log F (x -1 ) -log N )] ,

∞e

  n=1 -rm e n α ≤ ∞ 0 e -rm e t α dt =: I m (r) .