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POINCARÉ DUALITY WITH CAP PRODUCTS IN INTERSECTION

HOMOLOGY

DAVID CHATAUR, MARTINTXO SARALEGI-ARANGUREN, AND DANIEL TANRÉ

Abstract. For having a Poincaré duality via a cap product between the intersection
homology of a paracompact oriented pseudomanifold and the cohomology given by the
dual complex, G. Friedman and J. E. McClure need a coefficient field or an additional
hypothesis on the torsion. In this work, by using the classical geometric process of
blowing-up, adapted to a simplicial setting, we build a cochain complex which gives a
Poincaré duality via a cap product with intersection homology, for any commutative
ring of coefficients. We prove also the topological invariance of the blown-up intersec-
tion cohomology with compact supports in the case of a paracompact pseudomanifold
with no codimension one strata.

This work is written with general perversities, defined on each stratum and not only
in function of the codimension of strata. It contains also a tame intersection homology,
suitable for large perversities.
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Introduction

Intersection homology was defined by M. Goresky and R. MacPherson in [17], [18],
with the existence of a Poincaré duality in the case of rational coefficients. If X is a
compact, oriented, n-dimensional PL-pseudomanifold, Goresky and MacPherson estab-
lish in their first paper on intersection homology ([17, Theorem 1], see also [12], [15])

the existence of an intersection product, ⋔ : Hp
i (X;Z) ×Hq

j (X;Z) → Hr
i+j−n(X;Z), for

perversities such that p+ q ≤ r. Let t be the top perversity defined by t(i) = i− 2. By

composing with an augmentation, ε : Ht
0(X;Z) → Z, the authors show ([17, Theorem

2]) that this correspondence gives a bilinear form,

Hp
i (X;Z) ×Ht−p

n−i(X;Z) → Ht
0(X;Z)

ε
−→ Z,

which is non degenerate after tensorisation with Q. As showed by Goresky and Siegel in
[20], an extension of this result to Z cannot remain without an hypothesis on the torsion
of the intersection homology of the links of the pseudomanifold (see [11] for an extension
to homotopically stratified spaces).

Besides, mention the different approach of M. Banagl ([1]) who associates a CW-
complex IpX to certain stratified spaces. The rational homology of these spaces satisfies
a generalized form of Poincaré duality and present some concrete advantages. Their ho-
mology being different from intersection homology, their study needs an ad’hoc approach
and they are not considered in this work.

There exists also an approach of Poincaré duality of a manifold by mixing homology
and cohomology with a cap product. This method was achieved with success in inter-
section homology and cohomology by G. Friedman et J.E. McClure ([16]) in the case of
field coefficients, or with an hypothesis on the torsion of the intersection homology of
the links ([9, Chapter 8]). Their intersection cohomology is defined as the homology of
the linear dual of the intersection chain complex; we denote it by H∗

p (X;R) with R a
commutative ring. In this context, the extension of such result to any commutative ring
is not possible.

In this work, we continue with the paradigm of chain and cochain complexes. But,
instead of taking the linear dual of the intersection chain complex, we consider a com-
plex coming from a simplicial adaptation of the geometric blow-up which was already
present in [2], [25]. For any commutative ring R, we define a cochain complex endowed

with a cup product, Ñ∗
• (X;R), whose homology in perversity p is denoted H ∗

p (X;R)

and called blown-up intersection cohomology (or Thom-Whitney cohomology in some
previous works, [3], [6], [4], [5]). A version with compact supports is introduced in Defi-
nition 2.2 and denoted H ∗

p,c(X;R). In the case of Goresky and MacPherson perversities

([17]), our main result can be stated as follows.

Main Theorem. Let R be a commutative ring and X an oriented, paracompact, n-
dimensional pseudomanifold. Then, for any Goresky and MacPherson perversity, the
cap product with the orientation class of X defines an isomorphism

D : H
i
p,c(X;R)

∼=−→ Hp
n−i(X;R).
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If we change of paradigm and consider the sheaf version of intersection homology ([18]),
the blown-up cohomology appears as the Deligne sheaf defining intersection homology.
We prove it explicitly with a direct approach in [7].

The complex Ñ∗
• (X;R) has several properties which facilitate its use. For instance, the

complex Ñ∗
• (X;R) is local in essence and it allows the determination of the admissibility

of a cochain by considering individually each simplex of its support. We quote also that
the operations cup and cap are defined from cochain complexes and not only in the
derived category. The existence of cupi products at the cochain level allowed in [6] an
explicit determination of the rank of perversities in the definition of Steenrod intersection
squares. As a consequence, we were able to give a positive answer ([6, Theorem B]) to
a conjecture of M. Goresky et W. Pardon ([19]).

Actually, we prove the Main Theorem in the setting of general perversities introduced
by MacPherson in [22], cf. Theorem B. These perversities are defined individually on
each stratum and not only as a function of their codimension (cf. Definition 1.4). This
allows a larger spectrum of the values taken by the perversities.

Without going too much into details at the level of this introduction, we may observe
that, in the case of a perversity p such that p ≤ t, each p-allowable simplex as well as its
boundary have a support which is not included in the singular part. As this property
disappears if p 6≤ t, we introduce what we call tame intersection homology and denote

H
p
∗(X;R). The tame intersection homology keeps the behavior of intersection homology

(see [4]) and is isomorphic to it when p ≤ t. We denote H∗
p(X;R) the associated coho-

mology and H∗
p,c(X;R) the variant with compact supports. In the case of a paracompact

oriented pseudomanifold, Theorem B gives an isomorphism between the blown-up inter-

section cohomology H ∗
p,c(X;R) and H

p
n−∗(X;R) for any commutative ring R and any

perversity p. We complete this work with a proof of the topological invariance of the
blown-up cohomology with compact supports in Theorem A.

Section 1 is a recall on intersection homology. To achieve the program above, we
define and establish the main properties of the blown-up cohomology with compact sup-
ports, H ∗

p,c(−), in Section 2: existence of a Mayer-Vietoris sequence (Proposition 2.12),

cohomology of a cone (Proposition 2.14), cohomology of the product X × R (Proposi-
tion 2.15) and comparison of H ∗

p,c(−) and H∗
p,c(−) (Proposition 2.20). In particular, we

prove H ∗
p,c(X;R) ∼= H∗

t−p,c
(X;R) if R is a field and X a paracompact pseudomanifold.

The topological invariance for a paracompact CS set with no codimension one strata
and a Goresky and MacPherson perversity is established in Section 3 as Theorem A.
Section 4 is concerned with the proof of Poincaré duality (Theorem B).

In all the text, R is a commutative ring (always supposed with unit) and we do not
mention it explicitly in the proofs. The degree of an element a of a graded module is
represented by |a|. For any topological space X, we denote by cX = X × [0, 1]/X × {0}
the cone on X and by c̊X = X × [0, 1[/X × {0} the open cone on X.

1. Background on intersection homology

We recall the basics we need, sending the reader to [17], [9] or [3] for more details.
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1.1. Pseudomanifolds.

Definition 1.1. A filtered space of dimension n, (X, (Xi)0≤i≤n), is a Hausdorff space
together with a filtration by closed subsets,

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ Xn = X,

such that Xn\Xn−1 6= ∅. The connected components S of Xi\Xi−1 are the strata of X
and we set dimS = i, codimS = dimX − dimS. The strata of Xn\Xn−1 are called
regular. The set of non-empty strata of X is denoted SX . The subspace Xn−1 is called
the singular set.

An open subset U of X is endowed with the induced filtration, defined by Ui = U ∩Xi.
If M is a manifold, the product filtration is defined by (M ×X)i = M ×Xi.

The CS sets introduced in [27] are a weaker version of pseudomanifolds that is sufficient
for the topological invariance property.

Definition 1.2. A CS set of dimension n is a filtered space,

X−1 = ∅ ⊆ X0 ⊆ X1 ⊆ · · · ⊆ Xn−2 ⊆ Xn−1 $ Xn = X,

such that, for each i ∈ {0, . . . , n}, Xi\Xi−1 is a topological manifold of dimension i or
the empty set. Moreover each x ∈ Xi\Xi−1 with i 6= n admits

(i) an open neighborhood V of x in X, endowed with the induced filtration,
(ii) an open neighborhood U of x in Xi\Xi−1,
(iii) a filtered compact space L of dimension n− i− 1, whose cone c̊L is endowed with

the conic filtration, (̊cL)i = c̊Li−1,
(iv) a homeomorphism, ϕ : U × c̊L → V , such that

(a) ϕ(u, v) = u, for any u ∈ U , where v is the apex of c̊L,
(b) ϕ(U × c̊Lj) = V ∩Xi+j+1, for any j ∈ {0, . . . , n− i− 1}.

The filtered space L is called the link of x. The CS set is called normal if its links are
connected.

We take over the original definition of pseudomanifold given by Goresky and MacPher-
son ([17]) but without the restriction on the existence of strata of codimension 1.

Definition 1.3. A topological pseudomanifold of dimension n (or a pseudomanifold) is a
CS set of dimension n whose links of points x ∈ Xi\Xi−1 are topological pseudomanifolds
of dimension (n− i− 1) for all i ∈ {0, . . . , n− 1}. Any open subset of a pseudomanifold
is a pseudomanifold for the induced structure.

1.2. Perversities. We begin with the perversities of [17] and continue with a more
general notion of perversity, introduced in [22] and already present in [25], [26], [13],
[14], [16].

Definition 1.4. A GM-perversity is a map p : N → Z such that p(0) = p(1) = p(2) = 0
and p(i) ≤ p(i+ 1) ≤ p(i) + 1, for all i ≥ 2. Among them, mention the null perversity 0
constant with value 0 and the top perversity defined by t(i) = i− 2.

A perversity on a filtered space, (X, (Xi)0≤i≤n), is an application, pX : SX → Z, defined
on the set of strata of X and taking the value 0 on the regular strata. The pair (X, pX)
is called a perverse space and denoted (X, p) if there is no ambiguity. (In the case
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of a CS set or a pseudomanilfold we use the expressions perverse CS set and perverse
pseudomanifold.)

If p and q are two perversities on X, we set p ≤ q if we have p(S) ≤ q(S), for all
S ∈ SX . A GM-perversity induces a perversity on X by p(S) = p(codimS). For any
perversity, p, the perversity Dp := t− p is called the complementary perversity of p.

1.3. Intersection Homology. We specify the chain complex used for the determina-
tion of intersection homology, cf. [4].

Definition 1.5. Let X be a filtered space. A filtered simplex is a continuous map
σ : ∆ → X, from an euclidean simplex endowed with a decomposition ∆ = ∆0 ∗ ∆1 ∗
· · · ∗ ∆n, called σ-decomposition of ∆, such that

σ−1Xi = ∆0 ∗ ∆1 ∗ · · · ∗ ∆i,

for all i ∈ {0, . . . , n}. The sets ∆i may be empty, with the convention ∅ ∗ Y = Y , for
any space Y . The simplex σ is regular if ∆n 6= ∅. A chain is regular if it is a linear
combination of regular simplices. For putting in evidence that the filtration on ∆ is
induced from the filtration of X by σ, we sometimes denote ∆ = ∆σ.

Definition 1.6. Let (X, p) be a perverse space. The perverse degree of a filtered simplex
σ : ∆ = ∆0 ∗ · · · ∗ ∆n → X is the (n + 1)-uple, ‖σ‖ = (‖σ‖0, . . . , ‖σ‖n), where ‖σ‖i =
dim σ−1Xn−i = dim(∆0∗· · ·∗∆n−i), with the convention dim ∅ = −∞. For each stratum
S of X, the perverse degree of σ along S is defined by

‖σ‖S =

{
−∞, if S ∩ σ(∆) = ∅,

‖σ‖codim S , otherwise.

A filtered simplex is p-allowable if

‖σ‖S ≤ dim ∆ − codimS + p(S), (1)

for each stratum S of X. A chain ξ is said p-allowable if it is a linear combination
of p-allowable simplices, and of p-intersection if ξ together with its boundary are p-

allowable. We denote by Cp∗ (X;R) the complex of p-intersection chains and by Hp
∗ (X;R)

its homology, called p-intersection homology.

In [4, Théorème B], we prove that Hp
∗ (X;R) is naturally isomorphic to the intersection

homology of Goresky and MacPherson.

Lemma 1.7. [4, Lemme 7.5] If the perversity p satisfies p ≤ t, then any p-allowable
filtered simplex and its boundary are regular.

Notice that the hypothesis of Lemma 1.7 is satisfied for any GM-perversity. On
the contrary, if p 6≤ t, some p-allowable filtered simplices can be included in the singular
part. As such simplex cannot be considered in the definition of the blown-up intersection
cohomology (see the definition of the cap product in Section 2), we adapt the definition
of intersection homology to this situation as follows. First, we decompose the boundary
of a filtered simplex ∆ = ∆0 ∗ · · · ∗ ∆n as

∂∆ = ∂reg∆ + ∂sing∆,
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where ∂reg∆ contains all the regular simplices. In particular, we have

∂sing∆ =






∂∆ if ∆n = ∅,
(−1)|∆|+1∆0 ∗ · · · ∗ ∆n−1 if dim ∆n = 0,

0 if dim ∆n > 0.

If σ : ∆ → X is a regular simplex, its boundary is decomposed in ∂σ = ∂regσ + ∂singσ.

Definition 1.8. Let (X, p) be a perverse space. The chain complex C
p
∗(X;R) is the R-

module formed of the regular p-allowable chains whose boundary by ∂reg is p-allowable.

We call (Cp∗(X;R), d = ∂reg) the tame p-intersection complex and its homology, Hp∗(X;R),
the tame p-intersection homology.

Similar complexes have been already introduced by the second author in [26] and by

G. Friedman in [10] and [9, Chapter 6]. In [4], we show that H
p
∗(X;R) is isomorphic

to them. We recall now the main properties of Hp∗(X;R) established in [4], see also [9,
Chapter 6].

Theorem 1.9. [4, Propositions 7.10 and 7.15] Let (X, p) be a perverse space. The
following properties are satisfied.

(1) If p ≤ t, the intersection homology coincides with the tame intersection homology,

Hp
∗ (X;R) = H

p
∗(X;R).

(2) For any open cover U = {U, V } of X, there exists a Mayer-Vietoris exact sequence,

. . . → H
p
i (U ∩ V ;R) → H

p
i (U ;R) ⊕ H

p
i (V ;R) → H

p
i (X;R) → H

p
i−1(U ∩ V ;R) → . . .

Proposition 1.10. [4, Corollaire 7.8] Let (X, p) be a perverse CS set. Then the inclu-
sions ιz : X →֒ R ×X, x 7→ (z, x) with z ∈ R fixed, and the projection pX : R ×X → X,

(t, x) 7→ x, induce isomorphisms, H
p
k(R ×X;R) ∼= H

p
k(X;R).

Proposition 1.11. [4, Proposition 7.9] Let X be a compact filtered space of dimension n.
We endow the cone c̊X with a perversity p and with the the conic filtration, (̊cX)i =
c̊Xi−1. We denote also p the induced perversity on X. Then, the tame p-intersection
homology of the cone is determined by,

H
p
k (̊cX;R) ∼=

{
H
p
k(X;R) if k < n− p(w),

0 if k ≥ n− p(w),

where the isomorphism is induced by ι̊cX : X → c̊X, x 7→ [x, t] with t ∈]0,∞[.

2. Blown-up intersection cohomology with compact supports

In this section we recall the blown-up intersection cohomology of a perverse space
and introduce its version with compact supports. We consider a filtered space X of
dimension n and a commutative ring R.
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2.1. Definitions. Let N∗(∆) and N∗(∆) be the simplicial chain and cochain complexes
of an euclidean simplex ∆, with coefficients in R. For each simplex F ∈ N∗(∆), we write
1F the element of N∗(∆) taking the value 1 on F and 0 otherwise. Given a face F of
∆, we denote by (F, 0) the same face viewed as face of the cone c∆ = ∆ ∗ [v] and by
(F, 1) the face cF of c∆. The apex is denoted (∅, 1) = c∅ = [v]. Cochains on the cone
are denoted 1(F,ε) for ε = 0 or 1. For defining the blown-up intersection complex, we
first set

Ñ∗(∆) = N∗(c∆0) ⊗ · · · ⊗N∗(c∆n−1) ⊗N∗(∆n).

A basis of Ñ∗(∆) is composed of the elements 1(F,ε) = 1(F0,ε0) ⊗ · · · ⊗ 1(Fn−1,εn−1) ⊗ 1Fn,
where εi ∈ {0, 1} and Fi is a face of ∆i for i ∈ {0, . . . , n} or the empty set with εi = 1 if
i < n. We set |1(F,ε)|>s =

∑
i>s(dimFi + εi), with the convention dim ∅ = −1.

Definition 2.1. Let ℓ ∈ {1, . . . , n} and 1(F,ε) ∈ Ñ∗(∆). The ℓ-perverse degree of
1(F,ε) ∈ N∗(∆) is

‖1(F,ε)‖ℓ =

{
−∞ if εn−ℓ = 1,

|1(F,ε)|>n−ℓ if εn−ℓ = 0.

For a cochain ω =
∑
b λb 1(Fb,εb) ∈ Ñ∗(∆) with λb 6= 0 for all b, the ℓ-perverse degree is

‖ω‖ℓ = max
b

‖1(Fb,εb)‖ℓ.

By convention, we set ‖0‖ℓ = −∞.

Let σ : ∆ = ∆0 ∗ · · · ∗ ∆n → X be a filtered simplex. We set Ñ∗
σ = Ñ∗(∆). If

δℓ : ∆′ → ∆ is an inclusion of a face of codimension 1, we denote by ∂ℓσ the filtered
simplex defined by ∂ℓσ = σ ◦ δℓ : ∆′ → X. If ∆ = ∆0 ∗ · · · ∗ ∆n is filtered, the induced
filtration on ∆′ is denoted ∆′ = ∆′

0 ∗ · · · ∗ ∆′
n. The blown-up intersection complex of X

is the cochain complex Ñ∗(X) composed of the elements ω associating to each regular

filtered simplex σ : ∆0 ∗ · · · ∗ ∆n → X an element ωσ ∈ Ñ∗
σ such that δ∗

ℓ (ωσ) = ω∂ℓσ,
for any face operator δℓ : ∆′ → ∆ with ∆′

n 6= ∅. The differential δω is defined by
(δω)σ = δ(ωσ). The perverse degree of ω along a singular stratum S equals

‖ω‖S = sup {‖ωσ‖codimS | σ : ∆ → X regular such that σ(∆) ∩ S 6= ∅} .

We denote ‖ω‖ the map which associates ‖ω‖S to any singular stratum S and 0 to any

regular one. A cochain ω ∈ Ñ∗(X) is p-allowable if ‖ω‖ ≤ p and of p-intersection if

ω and δω are p-allowable. We denote Ñ∗
p (X;R) the complex of p-intersection cochains

and H ∗
p (X;R) its homology called blown-up intersection cohomology of X for the per-

versity p.

Definition 2.2. Let (X, p) be a perverse space. A non-empty subspace K is a support of

the cochain ω ∈ Ñ∗(X;R) if ωσ = 0, for any regular simplex σ such that σ(∆) ∩K = ∅.

A cochain ω ∈ Ñ∗(X;R) is with compact supports if it has a compact support. We

denote Ñ∗
p,c(X;R) the complex of p-intersection cochains with compact supports and

H ∗
p,c(X;R) its homology.

When the space X is compact, we clearly have H ∗
p,c(X;R) ∼= H ∗

p (X;R). As in the

classical case of a manifold (see [23, Appendix A]) the cohomology H ∗
p,c(X;R) can be
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obtained as a direct limit. To state it, we need to recall the notion of U-small cochains
in intersection cohomology.

Definition 2.3. Let U be an open cover of a space X. An U-small simplex is a regular
simplex σ : ∆ = ∆0 ∗ · · · ∗ ∆n → X such that there exists U ∈ U with Imσ ⊂ U . The
set of U-small simplices is denoted SimpU.

The complex of blown-up U-small cochains, with coefficients in R, Ñ∗,U(X;R), is
the cochain complex composed of the elements ω, associating to any U-small simplex,
σ : ∆ = ∆0 ∗ · · · ∗ ∆n → X, an element ωσ ∈ Ñ∗(∆), such that δ∗

ℓ (ωσ) = ω∂ℓσ, for any
face operator, δℓ : ∆′

0 ∗ · · · ∗ ∆′
n → ∆0 ∗ · · · ∗ ∆n, with ∆′

n 6= ∅. If p is a perversity on X,

we denote Ñ∗,U
p (X;R) the cochain subcomplex of elements ω ∈ Ñ∗,U(X;R) such that

‖ω‖ ≤ p and ‖δω‖ ≤ p.

The set of U-small cochains admitting a compact support is denoted Ñ∗,U
c (X). Its

subcomplex composed of the cochains of p-intersection is designed by Ñ∗,U
p,c (X;R) of

homology H
∗,U
p,c (X;R).

Proposition 2.4. [8, Theorem B] Let (X, p) be a perverse space and U an open cover

of X. Then the restriction map, ρU : Ñ∗
p (X;R) → Ñ∗,U

p (X;R), is a quasi-isomorphism.

We establish the version with compact supports of Proposition 2.4.

Proposition 2.5. Let (X, p) be a perverse space and U an open cover of X. Then the

restriction map, ρU,c : Ñ∗
p,c(X;R) → Ñ∗,U

p,c (X;R), is a quasi-isomorphism.

We postpone for a while the proof of this result. Recall that an open cover V of X is
finer than the open cover U of X if any element V ∈ V is included in an element U ∈ U.
We denote U � V this relation. If U � V, we have an inclusion SimpV ⊂ SimpU and

a natural map IU,VX : Ñ∗,U
p,c (X;R) → Ñ∗,V

p,c (X;R). We consider the direct limit of these
maps and set

Ñ∗
p,c(X;R) = lim−→

U

Ñ∗,U
p,c (X;R). (2)

Proposition 2.5 implies immediatly the next characterisation of H ∗
p,c(X;R).

Corollary 2.6. Let (X, p) be a perverse space. The canonical map from Ñ∗
p,c(X;R) to

the previous limit,

ιc : Ñ∗
p,c(X;R)

≃
−→ Ñ∗

p,c(X;R),

is a quasi-isomorphism.

Proof of Proposition 2.5. This is an adaptation of the proof of Proposition 2.4 made

in [8]. For proving that the map ρU : Ñ∗
p (X) → Ñ∗,U

p (X) induces an isomorphism in

homology, we have built a cochain map, ϕU : Ñ∗,U
p (X) → Ñ∗

p (X), and a homotopy

Θ: Ñ∗
p (X) → Ñ∗−1

p (X) such that ρU ◦ ϕU = id and δ ◦ Θ + Θ ◦ δ = id − ϕU ◦ ρU. The

maps ϕU and Θ are defined from an application T̃ : Ñ∗(X) → Ñ∗−1(X). Here, it is thus
sufficient to prove that the image by these maps of a cochain with compact supports is
a cochain with the same support. This is direct for ρU.
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Concerning T̃, we consider ω ∈ Ñ∗
p,c(X). By definition, there exists a compact L ⊂ X

such that ωσ = 0 for any regular simplex σ : ∆ → X such that σ(∆) ∩ L = ∅. By

definition of T̃ (see [8, Proposition 9.9]), we have (T̃(ω))σ = T̃∆(ωK(∆)), with

ωK(∆) =
∑

F∗G⊂K(∆)
|(F∗G,ε)|=k

ωσ
F ∗G

(F ∗G, ε) 1(F∗G,ε),

where the simplex σ
F ∗G

is a restriction of σ. Therefore, the image of σ
F ∗G

is included in
the image of σ and we have ωK(∆) = 0 as required. �

2.2. Cup and cap products. We have already defined a cup product in [3] and cupi
products in [6] on the blown-up intersection cochains in the case of filtered face sets with
GM-perversities. In [8], a definition of a cup product has been made in the general case
considered here; we recall this definition.

Definition 2.7. Two ordered simplices F = [a0, . . . , ak] and G = [b0, . . . , bℓ] of an
euclidean simplex ∆ are compatible if ak = b0. In this case, we set

F ∪G = [a0, . . . , ak, b1, . . . , bℓ] ∈ N∗(∆).

The cup product on N∗(∆) is defined on the dual basis by

1F ∪ 1G = (−1)|F | |G|1F∪G,

if F and G are compatible and 0 otherwise. If ∆ = ∆0 ∗ · · · ∗ ∆n is a regular euclidean
simplex, this product is extended to Ñ∗(∆) with the classical rule of commutation of
graded objects, as follows:
if ω0 ⊗ · · · ⊗ ωn and η0 ⊗ · · · ⊗ ηn are elements of N∗(c∆0) ⊗ · · · ⊗N∗(∆n), we set

(ω0 ⊗ · · · ⊗ ωn) ∪ (η0 ⊗ · · · ⊗ ηn) = (−1)
∑

i>j
|ωi| |ηj |

(ω0 ∪ η0) ⊗ · · · ⊗ (ωn ∪ ηn). (3)

Recall the main property of this cup product.

Proposition 2.8. [8, Proposition 4.2] Let X be a filtered space endowed with two per-
versities p and q. The previous cup product gives an associative product,

− ∪− : Ñk
p (X;R) ⊗ Ñ ℓ

q (X;R) → Ñk+ℓ
p+q (X;R), (4)

defined by (ω ∪ η)σ = ωσ ∪ ησ, for any (ω, η) ∈ Ñ∗
p (X;R) × Ñ∗

q (X;R) and any regular
filtered simplex σ : ∆ → X. Moreover, this morphism induces a graded commutative
product, called intersection cup product,

− ∪− : H
k
p (X;R) ⊗ H

ℓ
q (X;R) → H

k+ℓ
p+q (X;R). (5)

We recall the intersection cap product studied in [8] and [5]. Let ∆ = [e0, . . . , er, . . . , em]
be an euclidean simplex. The (classical) cap product − ∩ ∆: N∗(∆) → Nm−∗(∆) is de-
fined by

1F ∩ ∆ =

{
[er, . . . , em] if F = [e0, . . . , er], for any r ∈ {0, . . . ,m},

0 otherwise.
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If ∆ = ∆0 ∗ · · · ∗ ∆n is a regular filtered simplex, we set ∆̃ = c̊∆0 × · · · × c̊∆n−1 × ∆n.
The previous cap product is extended with the rule of permutation of graded objects as
follows. If 1(F,ε) = 1(F0,ε0) ⊗ · · · ⊗ 1(Fn−1,εn−1) ⊗ 1Fn ∈ Ñ∗(∆), we define

1(F,ε) ∩̃ ∆̃ = (−1)ν(F,ε,∆)(1(F0,ε0) ∩ c∆0) ⊗ · · · ⊗ (1(Fn−1,εn−1) ∩ c∆n−1) ⊗ (1Fn ∩ ∆n),

∈ N∗(c∆0) ⊗ · · · ⊗N∗(c∆n−1) ⊗N∗(∆n), (6)

where ν(F, ε,∆) =
∑n−1
j=0 (dim ∆j + 1) (

∑n
i=j+1 |(Fi, εi)|), with the convention εn = 0.

An intersection cap product on ∆̃ must take values in the chain complex N∗(∆). For
that, we construct a morphism µ∆ : N∗(c∆0) ⊗ · · · ⊗N∗(c∆n−1) ⊗N∗(∆n) → N∗(∆), by
its value on (F, ε) = (F0, ε0) ⊗ · · · ⊗ (Fn−1, εn−1) ⊗ Fn. Let ℓ be the smallest integer j
such that εj = 0. We set

µ∆(F, ε) =

{
F0 ∗ · · · ∗ Fℓ if dim(F, ε) = dim(F0 ∗ · · · ∗ Fℓ),

0 otherwise.
(7)

This application is a chain map (cf. [8, Lemma 6.4]) and we define the local intersection
cap product

− ∩ ∆: Ñ∗(∆) → Nm−∗(∆) as ω ∩ ∆ = µ∆(ω ∩̃ ∆̃).

This expression may be carried on to filtered simplices of a filtered space X.

Definition 2.9. Let ω ∈ Ñ∗(X;R) and σ : ∆σ → X be a filtered simplex. We set

ω ∩ σ =

{
σ∗(ωσ ∩ ∆σ) if σ is regular,

0 otherwise.

With a linear extension, the intersection cap product is defined as a map

− ∩ − : Ñk(X;R) ⊗ Cm(X;R) → Cm−k(X;R).

As proved in [8], the cap product respects the tame intersection chains.

Proposition 2.10. [8, Propositions 6.5 and 6.6] Let X be a filtered space endowed with
two perversities p and q. The cap product defines a homomorphism

− ∩ − : Ñk
p (X;R) ⊗ Cqm(X;R) → C

p+q
m−k(X;R)

satisfying the following properties.

(i) This is a chain map: d(ω ∩ ξ) = (δω) ∩ ξ + (−1)|ω|ω ∩ (dξ).

(ii) The cap and the cup products are compatible: (ω ∪ η) ∩ ξ = (−1)|ω| |η|η ∩ (ω ∩ ξ).

2.3. Properties of the blown-up cohomology with compact supports. In this
section, we establish the properties allowing the use of Proposition 2.19 for the proof of
Theorem A and Theorem B. In particular, we construct a Mayer-Vietoris exact sequence,
compute the intersection cohomology of a cone and of a product with R, in the case of
compact supports.
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Cochains with compact supports on an open subset. Let U be an open subset of
a filtered space X and V an open cover of U . To any ω ∈ Ñ∗,V

c (U ;R) of compact support
K ⊂ U , we associate the open cover U = V ∪ {X\K} of X. Let σ : ∆ → X, σ ∈ SimpU,
be a regular simplex. We define:

ησ =

{
ωσ if σ ∈ SimpV,
0 if Im σ ∩K = ∅.

(8)

There is no ambiguity in this construction since K is a support of ω.

Let δℓ : ∆′ → ∆ be a regular face of codimension 1. The conditions σ ∈ SimpV and
Im σ ∩ K = ∅ imply ∂ℓσ ∈ SimpV and Im ∂ℓσ ∩ K = ∅. Therefore, the compatibility of
ω with the face operators gives δ∗

ℓ ησ = η∂ℓσ. Moreover, as K ⊂ U ⊂ X is a compact

support of η, we get η ∈ Ñ∗,U
c (X;R). Let ηηη be the class of η in Ñ∗

p,c(X;R), see (2). The
association ω 7→ ηηη defines an application

IVU,X : Ñ∗,V
c (U ;R) → Ñ∗

c(X;R),

compatible with the differentials since (δω)σ = δ(ωσ).

Let p be a perversity on X. We endow the open subset U ⊂ X with the induced

perversity also denoted p. Let ω ∈ Ñ∗,V
p,c (U) of compact support K. For any regular

simplex σ ∈ SimpU and any ℓ ∈ {1, . . . , n}, we have the inequality ‖ησ‖ℓ ≤ ‖ωσ‖ℓ from
which we deduce a cochain map,

IVU,X : Ñ∗,V
p,c (U ;R) → Ñ∗

p,c(X;R).

Proposition 2.11. Let (X, p) be a perverse space and U an open subspace, endowed
with the induced perversity. The maps IVU,X defined above induce an injective application
of cochain complexes,

IIIU,X : Ñ∗
p,c(U ;R) → Ñ∗

p,c(X;R).

Proof. Let V � V′ be two open covers of U . The open covers U = V ∪ {X\K} and
U′ = V′ ∪ {X\K} of X satisfy U � U′. Thus we have a commutative diagram,

Ñ∗,V
p,c (U)

IV
U,X

//

I
V,V′

U
��

Ñ∗
p,c(X).

Ñ∗,V′

p,c (U)

IV
′

U,X

99
ttttttttt

The map IIIU,X is then obtained by a passage to the limit. For proving the injectivity,

we consider ωωω ∈ Ñ∗
p,c(U) such that IIIU,X(ωωω) = 0. The class ωωω is the limit of elements

ω ∈ Ñ∗,V
p,c (U), where V is an open cover of U . Let η ∈ Ñ∗,U

p,c (X) be the element associated

to ω in (8). From IIIU,X(ωωω) = 0, we get the existence of an open cover W of X finer
than U and such that ησ = 0 for any σ ∈ SimpW. Thus the open cover W ∩ V of U
formed of the intersections of elements of V and W verifies by definition ησ = 0 for any
σ ∈ SimpW∩V = SimpW ∩ SimpV. It follows ωωω = 0. �
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Mayer-Vietoris exact sequence with compact supports.

Proposition 2.12. Let (X, p) be a locally compact and paracompact perverse space. The
induced perversities on the open subsets of X are also denoted p. If X = U1 ∪ U2 is an
open cover of X, then the sequence,

0 //Ñ∗
p,c(U1 ∩ U2;R)

(III1,III2)
//Ñ∗
p,c(U1;R) ⊕ Ñ∗

p,c(U2;R)
III3−III4

//Ñ∗
p,c(X;R) //0,

whose applications III• are defined in Proposition 2.11, is exact.

Before giving the proof, we recall the following result from [8].

Lemma 2.13. [8, Lemma 10.2] Let (X, p) be a perverse space. Each application g : X →

R defines a 0-cochain g̃ ∈ Ñ0
0
(X). Moreover the association g 7→ g̃ is R-linear.

The cochain g̃ is defined as follows. Let σ : ∆0 ∗ · · · ∗ ∆n → X be a regular filtered
simplex and b = (b0, . . . , bn) ∈ c∆0 × · · · × c∆n−1 × ∆n. We set i0 = min {i | bi ∈ ∆i}
and g̃σ(b) = g(σ(bi0)).

Proof of Proposition 2.12. The injectivity of (III1, III2) is a consequence of Proposition 2.11.
The rest of the proof goes along the next steps.

• The map (III3 − III4) ◦ (III1, III2) is constant with value 0.

Let ωωω ∈ Ñ∗
p,c(U1 ∩U2). Consider an open cover V of U1 ∩U2 and a cochain ω ∈ Ñ∗,V

p,c (U1 ∩
U2) with compact support K ⊂ U1 ∩ U2 ⊂ X, representing ωωω. We set ηηη1 = III3(III1(ω)),
ηηη2 = III4(III2(ω)) and choose representing elements of ηηηi, for i = 1, 2,

ηi ∈ Ñ
∗,V∪{Ui\K}∪{X\K}
p,c (X) = Ñ

∗,V∪{X\K}
p,c (X).

From the definition of the applications III•, we have for i = 1, 2 and σ ∈ SimpV∪{X\K},

(ηi)σ =

{
ωσ if σ ∈ SimpV,
0 if Im σ ∩K = ∅.

This implies (η1)σ = (η2)σ and III3 ◦ III1 = III4 ◦ III2.

• The kernel of III3 − III4 is included in the image of (III1, III2).

Let ωωωi ∈ Ñ∗
p,c(Ui), for i = 1, 2, such that III3(ωωω1) = III4(ωωω2). Consider an open cover Vi

of Ui and a cochain ωi ∈ Ñ∗,Vi

p,c (Ui) with compact support Ki ⊂ Ui ⊂ X, representing
ωωωi for i = 1, 2. With the local compacity, there exist an open subset W and a compact
subset F such that K1 ∩ K2 ⊂ W ⊂ F ⊂ U1 ∩ U2. Set III3(ωωω1) = ηηη1 and III4(ωωω2) = ηηη2.

From the definition of the applications III•, we get ηi ∈ Ñ
∗,Vi∪{X\Ki}
p,c (X) and

(ηi)σ = (ωi)σ if σ ∈ SimpVi
, (9)

= 0 si Imσ ∩Ki = ∅. (10)

The equality ηηη1 = ηηη2 implies the existence of an open cover U of X such that Vi ∪
{X\Ki} � U for i = 1, 2 and

(η1)σ = (η2)σ if σ ∈ SimpU. (11)

Without loss of generality, we may suppoose {X\K1,X\K2,W} � U. In particular, for
any U ∈ U, we have

U ∩K1 = ∅ or U ∩K2 = ∅ or U ⊂ W. (12)
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Thus the open cover W = {U ∩ U1 ∩ U2 | U ∈ U} of U1 ∩ U2 can be decomposed in
W = W1 ∪ W2 ∪ W3 with Wi = {U ∈ W | U ∩Ki = ∅} for i = 1, 2 and W3 = {U ∈ W |
U ⊂ W}. For any regular simplex σ ∈ SimpW, we set

ωσ =

{
(η1)σ = (η2)σ if σ ∈ SimpW3

,
0 if σ ∈ SimpW1

∪ SimpW2
.

(13)

The following paragraphs establish the validity of that definition.

• (η1)σ = (η2)σ if σ ∈ SimpW3
⊂ SimpU, cf. (11).

• (ηi)σ = 0 if σ ∈ SimpWi
∩ SimpW3

, for i = 1, 2, cf. (10).
• δℓωσ = ω∂ℓσ for any face operator because η1 satisfies this property and σ ∈

SimpWi
implies ∂ℓσ ∈ SimpWi

for i = 1, 2, 3.
• ‖ωσ‖ℓ ≤ ‖(η1)σ‖ℓ and ‖δωσ‖ℓ ≤ ‖(δη1)σ‖ℓ for any σ ∈ SimpW3

and ℓ ∈ {1, . . . , n}.
• For any σ ∈ SimpW, the property Imσ ∩ F = ∅ implies ωσ = 0 because σ ∈

SimpW1
∪ SimpW2

. (Note that F is a compact support of ω.)

We have constructed a cochain ωωω ∈ Ñ∗
p,c(U1∩U2) and we are reduced to prove IIIi(ωωω) = ωωωi.

We do it for i = 1, the second case being similar. Set γγγ1 = III1(ωωω).
We set W′ = {U ∩U1\F | U ∈ U} and denote H = W∪W′ the open cover of U1. This

cover is a refinement of W ∪ {U1\F} and it is sufficient to prove (γ1)σ = (ω1)σ for any
σ ∈ H. The cover H being also a refinement of U and therefore of {X\K1,X\K2,W}
it is sufficient to consider the three following cases.

– If Imσ ∩K1 = ∅, by using the fact that F is a compact support of ω, we have,

(γ1)σ =(8)

{
ωσ if σ ∈ SimpW
0 if σ ∈ SimpW′

=

{
ωσ if σ ∈ SimpW1

0 if σ ∈ SimpW′

=(13) 0 = (ω1)σ,

– If Imσ ∩K2 = ∅ and Imσ ∩K1 6= ∅, we have

(γ1)σ =(8)

{
ωσ if σ ∈ SimpW
0 if σ ∈ SimpW′

=

{
ωσ if σ ∈ SimpW2

0 if σ ∈ SimpW′

=(13) 0.

As Imσ ∩K1 6= ∅, we get σ ∈ SimpV1
and

(ω1)σ =(9) (η1)σ =(11) (η2)σ =(10) 0.

– If Imσ ⊂ U ⊂ W and Im σ ∩K1 6= ∅, we have U ∈ W3 and U ∈ V1. This implies

(γ1)σ =(8) ωσ =(13) (η1)σ =(9) (ω1)σ.

• The map III3 − III4 is onto. Let ωωω ∈ Ñ∗
p,c(X). Consider an open cover U of X and a

cochain ω ∈ Ñ∗,U
p,c (X) with compact support K ⊂ X, representing ωωω.

From the paracompacity of X, we get two fonctions, gi : X → {0, 1}, i = 1, 2, satis-

fying Supp gi ⊂ Ui and g1 + g2 = 1. We denote g̃i ∈ Ñ0
0
(X) the associated 0-cochain,

defined in Lemma 2.13. There exist also two relatively compact open subsets Wi such

that Supp gi ∩ K ⊂ Wi ⊂ W i ⊂ Ui. We fix i = 1. We already know g̃1 ∪ ω ∈ Ñ∗,U
p (X).

We define

A = {V ∩ U1\K | V ∈ U}, B = {V ∩ U1\Supp g1 | V ∈ U}, C = {V ∩W1 | V ∈ U},

and consider the open cover V1 = A ∪ B ∪ C of U1. By restriction, we have g̃1 ∪ ω ∈

Ñ∗,V1

p (U1). If σ ∈ SimpV1
is such that Imσ ∩ W 1 = ∅, then we have Imσ ∩ Supp g1 = ∅
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or Imσ ∩K = ∅. In each case, we may write (g̃1 ∪ ω)σ = 0. Therefore W 1 is a compact

support of g̃1 ∪ ω and we get g̃1 ∪ ω ∈ Ñ∗,V1

p,c (U1).
We use the same process for i = 2 with an open cover V2 of U2 and the cochain

g̃2 ∪ ω ∈ Ñ∗,V2

p,c (U2). By choosing an open cover X of X finer than V1 ∪ {X\W 1} and

than V2 ∪ {X\W 2}, we see that III3 − III4 sends the class associated to (g̃1 ∪ ω,−g̃2 ∪ ω)
on ωωω. This proves the surjectivity of III3 − III4. �

Cohomology with compact supports of a cone.

Proposition 2.14. Let X be a compact filtered space. The cone c̊X is endowed with
the conic filtration and with a perversity p. We denote also p the induced perversity on
X. Then the following properties are satisfied for any commutative ring R.

(a) For any k ≥ p(w) + 2, there exists an isomorphism,

H
k−1
p (X;R)

∼=−→ H
k
p,c(̊cX;R).

(b) For any k ≤ p(w) + 1, we have H k
p,c(̊cX;R) = 0.

Proof. Recall c̊X = (X × [0,∞[)/(X × {0}) and denote c̊1X = (X × [0, 1[)/(X × {0}).
The pair U = {̊c1X,X×]0,∞[} is an open cover of c̊X. The proof follows three steps.
• Construction of an exact sequence. We consider the short exact sequence

0 //Ñ∗,U
p,c (̊cX) //Ñ∗,U

p (̊cX) //
Ñ

∗,U

p
(̊cX)

Ñ
∗,U

p,c
(̊cX)

//0. (14)

For the study of the homology of the right-hand term, we introduce

G∗ =
{
ω ∈ Ñ∗

p (X×]0,∞[) | ∃a > 0 such that ωσ = 0 if Imσ ∩ (X×]0, a[) = ∅
}
.

The reduction Ñ∗,U
p (̊cX) → Ñ∗

p (X×]0,∞[) induces a cochain map

ϕ :
Ñ∗,U
p (̊cX)

Ñ∗,U
p,c (̊cX)

−→
Ñ∗
p (X×]0,∞[)

G∗
.

First we show that ϕ is an isomorphism. It is one-to-one because any cochain ω ∈

Ñ∗,U
p (̊cX) such that ϕ(ω) = 0 owns as compact support the closed cone caX = X ×

[0, a]/(X × {0}). For proving the surjectivity, we define an application g : c̊X → {0, 1}

by g([x, t]) = 0 if t ≤ 1 and g([x, t]) = 1 otherwise. We denote g̃ ∈ Ñ0
0
(̊cX) the 0-cochain

associated to g by Lemma 2.13. Let ω ∈ Ñ∗
p (X×]0,∞[) be a cochain. For any regular

simplex σ : ∆ → c̊X, we set

ησ =

{
0 if Im σ ⊂ c̊1X,

g̃σ ∪ ωσ if Im σ ⊂ X×]0,∞[.
(15)

If Imσ ⊂ X×]0, 1[, we have g̃σ = 0 by construction of g and g̃. Therefore η ∈ Ñ∗,U(̊cX)

is well defined. From g̃ ∪ ω ∈ Ñ∗
p (X×]0,∞[), we deduce η ∈ Ñ∗,U

p (̊cX). We are reduced

to show ω − ϕ(η) ∈ G∗. For that, we choose a = 2 and consider σ : ∆ → c̊X such that
Im σ ∩ ]0, 2[= ∅. By construction of g and g̃, we have g̃σ = 1, thus ησ = g̃σ ∪ ωσ = ωσ.
The bijectivity of ϕ is now established.
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• Proof of (a). The homeomorphism R ∼=]0,∞[ and Lemma 2.16 imply the acyclicity
of G∗. Thus, the right-hand term in the short exact sequence (14) has for cohomology

H ∗
p (X). From [8, Theorem B], we know that the complex Ñ∗,U

p (̊cX) has for cohomology

H ∗
p (̊cX) which has been determined in [8, Theorem E]. Thus, if k ≥ p(w) + 2, the exact

sequence associated to (14) can be reduced to exact sequences of the form

0 → H
k−1
p (X)

δ1−→ H
k
p,c(̊cX) → 0,

where δ1 is the connecting map determined by (15).

• Proof of (b). We first observe the commutativity of the diagram

Ñ∗
p (X×]0,∞[) //

Ñ∗

p
(X×]0,∞[)

G∗

Ñ∗,U
p (̊cX) //

OO

Ñ
∗,U

p
(̊cX)

Ñ
∗,U

p,c
(̊cX)

.

ϕ∼=

OO

The top map is a quasi-isomorphism in all degrees, ϕ is an isomorphism and the left-hand
vertical map is a quasi-isomorphism if ∗ ≤ p(w). Therefore, by using the determination

H
p(w)+1,U
TW,p (̊cX) = 0 (see [8, Theorem E]), the map

H
k,U
p (̊cX) → Hk



Ñ∗,U
p (̊cX)

Ñ∗,U
p,c (̊cX)





is an isomorphism for any k ≤ p(w) + 1. The result follows. �

Cohomology with compact supports of the product with R.

Proposition 2.15. Let (X, p) be a locally compact and paracompact perverse space. We
denote also p the perversity induced on X × R. Then, for any k > 0, there exists an
isomorphism,

H
k
p,c(X;R) ∼= H

k+1
p,c (X × R;R).

Proof. With the notations of Lemma 2.16, we have a short exact sequence with an acyclic
middle term,

0 //L∗ ∩ R∗ ∩ K∗ //(L∗ ∩ K∗) ⊕ (R∗ ∩ K∗)
Φ

//K∗ //0. (16)

Let g : X × R → {0, 1} be the function defined by g(x, t) = 0 if t ≤ 1 and g(x, t) = 1
otherwise. Let g̃ be the associated cochain (see Lemma 2.13). To any ω ∈ K∗, we
associate (g̃ ∪ ω, (1 − g̃) ∪ ω) ∈ (L∗ ∩ K∗) ⊕ (R∗ ∩ K∗). This gives the surjectivity of Φ
and determines the connecting map of the associated long exact sequence,

[ω] 7→ δ(g̃ ∪ ω). (17)

• The complex K∗ is quasi-isomorphic to Ñ∗
p,c(X). Denote I0 : X → X ×R and pr: X ×

R → X the maps defined by I0(x) = (x, 0) and pr(x, t) = x. They induce cochain maps,
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I∗
0 : Ñ∗

p (X × R) → Ñ∗
p (X) and pr∗ : Ñ∗

p (X) → Ñ∗
p (X × R), (see [8, Proposition 3.6])

which verify I∗
0 (K∗) ⊂ Ñ∗

p,c(X) and pr∗(Ñ∗
p,c(X)) ⊂ K∗. Thus we get

K∗
I∗

0
//Ñ∗
p,c(X)

pr∗

//K∗.

The map I∗
0 ◦ pr∗ = (pr ◦ I0)∗ is the identity map. The application pr∗ ◦ I∗

0 = (I0 ◦ pr)∗

is homotopic to the identity map on Ñ∗
p (X ×R), see [8, Theorem D]. From (18) applied

to K∗, we deduce that pr∗ ◦ I∗
0 is homotopic to the identity map on K∗.

• The complex K∗ ∩ L∗ ∩ R∗ is quasi-isomorphic to Ñ∗
p,c(X × R). We observe first that

Ñ∗
p,c(X ×R) ⊂ K∗ ∩L∗ ∩R∗ and denote by ι the corresponding canonical injection. Let

ω ∈ K∗ ∩L∗ ∩R∗. There exist a > 0 and a compact K ⊂ X such that, if σ : ∆ → X ×R
satisfies one of the following conditions, then we have ωσ = 0,

(i) Imσ ⊂ X×] − ∞, a] or (ii) Im σ ⊂ X × [−a,∞[ or (iii) (Imσ) ∩ (K × R) = ∅.

Choose an open subset W of X×R such that K× [−a, a] ⊂ W ⊂ W and W compact.
Set Uω = {X×]a,∞[, X×] − ∞,−a[, (X\K) × R}. From the properties of ω, we deduce

ω ∈ Ñ∗,Uω

p,c (X × R) with support W . We have constructed a cochain map ψ which gives
a commutative diagram with the quasi-isomorphism ιc of Corollary 2.6,

K∗ ∩ L∗ ∩ R∗ ψ
// Ñ∗

p,c(X × R)

Ñ∗
p,c(X × R).

ιc≃

OO

ι

gg❖❖❖❖❖❖❖❖❖❖❖❖❖❖

So, we get the injectivity of the homomorphism ι∗ induced by ι. We establish now its
surjectivity. Let ω ∈ K∗ ∩ L∗ ∩ R∗ of associated open cover Uω and such that δω = 0.
Let σ : ∆ → X × R be a regular Uω-small simplex such that (Im σ) ∩W = ∅. It follows:
Imσ ⊂ (X×]a,∞[) ∪ (X×] − ∞,−a[) ∪ ((X\K) × R) and ωσ = 0 by hypothesis on

ω. Thus, from Proposition 2.5, we get ρUω
(ω) ∈ Ñ∗,Uω

p,c (X × R) and from the proof of

Proposition 2.5, we deduce also (ϕUω
◦ ρUω

)(ω) ∈ Ñ∗
p,c(X × R) ⊂ K∗ ∩ L∗ ∩ R∗ and

ω − (ϕUω
◦ ρUω

)(ω) = δΘ(ω) with Θ(ω) ∈ Ñ∗
p,c(X × R) ⊂ K∗ ∩ L∗ ∩ R∗. This proves the

surjectivity of ι∗. �

Lemma 2.16. Let (X, p) be a perverse space. We consider the following subcomplexes

of Ñ∗
p (X × R;R),

L∗ = {ω | ∃a > 0 such that ωσ = 0 if Imσ ∩ (X×]a,∞[) = ∅} ,

R∗ = {ω | ∃b > 0 such that ωσ = 0 if Imσ ∩ (X×] − ∞,−b[) = ∅} ,

K∗ = {ω | ∃Kcompact, such that K ⊂ X and ωσ = 0 if Im σ ∩ (K × R) = ∅} .

Then the complexes L∗, R∗, L∗ ∩ K∗ et R∗ ∩ K∗ are acyclic.

Proof. • The complex L∗ is acyclic. Let ω ∈ Lk, δω = 0. Denote a the positive number
associated to ω, I0 : X → X × R the map defined by I0(x) = (x, 0) and pr : X × R → X
the canonical projection. Let ∆⊗ [0, 1] be the simplicial complex whose simplices are the
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joins F ∗G with F ⊂ ∆ × {0} and G ⊂ ∆ × {1}. [8, Proposition 11.3] gives a homotopy

Θ: Ñ∗(∆ ⊗ [0, 1]) → Ñ∗−1(∆) such that

Θ ◦ δ + δ ◦ Θ = (I0 ◦ pr)∗ − id. (18)

We are going to prove δ(Θ(ω)) = −ω and Θ(ω) ∈ L∗.
For any regular simplex σ : ∆ → X×R, we have (I0 ◦pr)∗(ωσ) = ωI0◦pr◦σ = 0 because

Im (I0 ◦ pr ◦ σ) ∩ (X×]a,∞[) = 0. Thus (18) becomes δ(Θ(ω)) = −ω.
Let σ : ∆ → X × R, σ(x) = (σ1(x), σ2(x)), such that Imσ ⊂ X×] − ∞, a]. At σ, we

associate σ̂ : ∆ ⊗ [0, 1] → X × R defined by σ̂(x, t) = (σ1(x), tσ2(x)). The expression
of Θ(ω)σ given in the proof of [8, Proposition 11.3] depends on elements of the form
ωσ̂◦ιF ∗G

with Im (σ̂ ◦ ιF∗G) ⊂ X×] − ∞, a]. This implies (Θ(ω))σ = 0 and Θ(ω) ∈ L∗.

• The complex L∗ ∩ K∗ is acyclic. Let ω ∈ L∗ ∩ K∗ with δω = 0. Denote a the positive
number and K the compact subset of X associated to ω. With the previous notations,
we observe that the condition (Im σ) ∩ (K ×R) = ∅ is equivalent to (pr(Im σ)) ∩K = ∅.
The previous map σ̂ satisfies pr(Imσ) = pr(Im σ̂). Thus if σ is such that pr(Im σ) = ∅
implies ωσ = 0, we have also ωσ̂◦ιF ∗G

= 0. We deduce Θ(ω) ∈ L∗ ∩ K∗, with the same
number a and the same compact subset K.

• The proofs of acyclicity of R∗ and R∗ ∩ K∗ are similar. �

Corollary 2.17. Let X be a compact filtered space. The cone c̊X is endowed with
the conic filtration and with a perversity p. We denote also p the induced perversity
on X×]0,∞[. Then, for any k ≥ p(w) + 2, the canonical injection I : X×]0,∞[→֒ c̊X
induces an isomorphism

H
k
p,c(X×]0,∞[;R)

∼=−→ H
k
p,c(̊cX;R).

Proof. In (15), to any ω ∈ Ñp(X×]0,∞[), we associate a cochain η ∈ Ñ∗,U
p (̊cX). By

precomposing with pr∗ : H ∗
p (X) → H ∗

p (X×]0,∞[), we get the connecting map of (14),

δ1 : H
∗
p (X) → H

∗+1
p,c (̊cX), (19)

defined by

[γ] 7→

{
[δ(g̃ ∪ pr∗(γ))] if Im σ ⊂ X×]0,∞[,

0 if Im σ ⊂ c̊1X.

We observe that δ1 is an isomorphism if ∗ ≥ p(w) + 1. In the proof of Proposition 2.15,
with the same 0-cochain g̃, we have specified in (17) the connecting map of (16). By
precomposing with pr∗ : H ∗

p (X) → H∗(K∗), we get an isomorphism

δ2 : H
∗
p (X) → H∗+1(L∗ ∩ R∗ ∩ K∗), [γ] 7→ [δ(g̃ ∪ pr∗(γ))]. (20)

In the degrees of the statement, with X compact, these two connecting maps are iso-
morphisms and give the following commutative diagram.

H ∗
p (X)

δ1
//

δ2

��

H
∗+1
p,c (̊cX)

I∗

��

H∗+1(L∗ ∩ R∗ ∩ K∗) H
∗+1
p,c (X×]0,∞[).

ι
oo
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Thus the homomorphism I∗ is an isomorphism. �

2.4. Intersection cohomologies with compact supports. In this section, we com-
pare the blown-up intersection cohomology with an intersection cohomology defined by
the dual complex of intersection chains, in the case of compact supports. This second
cohomology has already been introduced in [16] for the study of a duality in intersection
homology via cap products. We call it intersection cohomology with compact supports.
We prove the existence of an isomorphism between these two intersection cohomologies
with compact supports under an hypothesis on the torsion, that we precise in the next
definition. Mention also the existence of examples for which the two cohomologies differ.

Definition 2.18. Let R be a commutative ring and p a perversity on a CS set X. The
CS set X is locally (p,R)-torsion free if, for each singular stratum S of link LS , one has

T
p
q(S)(LS ;R) = 0,

where q(S) = codimS−2−p(S) and T
p
j(LS ;R) is the torsion R-submodule of Hpj (LS ;R).

Note that the previous condition is always fulfilled if R is a field. Also, in the case

of a GM-perversity, that is the torsion subgroup of Hp
j (LS ;R) which is involved. The

existence of an isomorphism between the two cohomologies is based on the next result
(cf. [21], [26]). A proof of it can be found in [9, Section 5.1].

Proposition 2.19. Let FX be the category whose objects are homeomorphic in a filtered
way to open subsets of a fixed CS set X and whose arrows are the inclusions and home-
omorphisms respecting the filtration. Let Ab∗ be the category of graded abelian groups.
We consider two functors F ∗, G∗ : FX → Ab and a natural transformation Φ: F ∗ → G∗,
such that the following properties are satisfied.

(i) The functors F ∗ and G∗ have Mayer-Vietoris exact sequences and the natural trans-
formation Φ induces a commutative diagram between these sequences.

(ii) If {Uα} is an increasing sequence of open subsets of X and Φ: F∗(Uα) → G∗(Uα)
is an isomorphism for each α, then Φ: F∗(∪αUα) → G∗(∪αUα) is an isomorphism.

(iii) Let L be a compact filtered space such that Ri × c̊L is homeomorphic, in a filtered
way, to an open subset of X. If Φ: F ∗(Ri × (̊cL\{v})) → G∗(Ri × (̊cL\{v})) is an
isomorphism, then so is Φ: F ∗(Ri × c̊L) → G∗(Ri × c̊L).

(iv) If U is an open subset of X, included in only one stratum and homeomorphic to
an euclidean space, then Φ: F ∗(U) → G∗(U) is an isomorphism.

Then Φ: F ∗(X) → G∗(X) is an isomorphism.

If (X, p) is a perverse space, we set C∗
p(X;R) = hom(Cp∗(X;R), R) where C

p
∗(X;R)

is introduced in Definition 1.6. The homology of C∗
p(X;R) is denoted H∗

p(X;R) (or

H∗
p(X) if there is no ambiguity) and called p-intersection cohomology. A cochain map

χ : Ñ∗
p (X;R) → C∗

Dp(X;R) can be defined as follows, see [8, Proposition 13.4]. If ω ∈

Ñ∗(X;R) and if σ : ∆σ = ∆0 ∗ · · · ∗ ∆n → X is a filtered simplex, we set:

χ(ω)(σ) =

{
ωσ(∆̃σ) if σ is regular,

0 otherwise.
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For a field of coefficients and GM-perversities, we showed in [3] that the map χ induces
an isomorphism in homology. In [8, Theorem F], this result is extended to the cases of
perversities defined at the level of each stratum, with coefficients in a Dedekind ring and
for any paracompact, separable, locally (Dp,R)-free CS set. More precisely, under the
previous hypotheses, we prove

H
∗
p (X;R) ∼= H∗

Dp(X;R). (21)

The next result is the adaptation of (21) to cohomologies with compact supports, with
the definition ([16]) H∗

q,c(X;R) = limKcompact H
∗
q(X,X\K;R).

Proposition 2.20. Let (X, p) be a paracompact perverse CS set and R a Dedekind ring.
Denote q = Dp. We suppose that one of the following hypotheses is satisfied.

(1) The ring R is a field.
(2) The CS set X is a locally (q,R)-torsion free pseudomanifold.

Then there is an isomorphism

H
∗
p,c(X;R) ∼= H∗

q,c(X;R) (22)

In the case of a GM-perversity p, the conclusion of Proposition 2.20 can be stated as

H
∗
p,c(X;R) ∼= lim

Kcompact
H∗
q (X,X\K;R).

Proof of Proposition 2.20. This proof is an adaptation of that of [8, Theorem F]. Let

U be an open subset of X, ω ∈ Ñ∗
p,c(U) with compact support K and σ a regular

filtered simplex. From the construction of χ, we observe that χ(ω)(σ) ∈ C∗
q(U,U\K).

This gives a morphism χU : Ñ∗
p,c(U) → limKcompact C

∗
q(U,U\K) which induces a natural

transformation

χ∗
U : H

∗
p,c(U) → lim

Kcompact
C∗
q(U,U\K).

For proving that χ∗ = χ∗
X is an isomorphism, we use Proposition 2.19 whose hypotheses

are satisfied thanks to Proposition 2.15, Corollary 2.17 and [9, Chapter 7]. �

3. Topological invariance. Theorem A

In this section, we prove the topological invariance of H ∗
p,c(−) in the case of GM-

perversities and paracompact CS sets with no codimension one strata. We first establish
some additional properties of the blown-up cohomology with compact supports. Later,
for the proof of the topological invariance, we introduce a method developed by King in
[21] and taken over with details and examples in [9, Section 5.5].

From Proposition 2.11, we deduce the existence of a short exact sequence defining
the relative blown-up cohomology with compact supports, in the case of an open subset
U ⊂ X of a perverse space (X, p),

0 //Ñp,c(U ;R)
IIIU,X

//Ñp,c(X;R)
RRRU,X

//Ñp,c(X,U ;R) //0. (23)

The associated long exact sequence, Proposition 2.14 and Proposition 2.15 involve the
next determination.
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Corollary 3.1. Let X be an n-dimensional compact filtered space and p be a GM-
perversity. The cone c̊X is endowed with the induced filtration. Then we have:

H
j
p,c(̊cX, c̊X\{w};R) =

{
0 if j ≥ p(n+ 1) + 1,

H
j
p,c(X;R) if j < p(n+ 1) + 1.

(24)

The next result is an excision property.

Corollary 3.2. Let p be a GM-perversity. Let X be a paracompact, locally compact
filtered space, F a closed subset of X and U an open subset of X such that F ⊂ U . Then
the canonical inclusion (X\F,U\F ) →֒ (X,U) induces an isomorphism,

H
∗
p,c(X\F,U\F ;R) ∼= H

∗
p,c(X,U ;R).

Proof. From the open covers {U,X\F} of X and {U,U\F} of U , we obtain a commuta-
tive diagram between the associated Mayer-Vietoris exact sequences (Proposition 2.12).

0 // Ñ∗
p,c(U ∩ (U\F )) //

��

Ñ∗
p,c(U) ⊕ Ñ∗

p,c(U\F ) //

��

Ñ∗
p,c(U) //

��

0

0 // Ñ∗
p,c(U ∩ (X\F )) // Ñ∗

p,c(U) ⊕ Ñ∗
p,c(X\F ) // Ñ∗

p,c(X) // 0.

The Ker-Coker exact sequence gives an isomorphisme Ñ∗
p,c(X\F,U\F ) ∼= Ñ∗

p,c(X,U). �

We need also the blown-up cohomology with compact supports of a product with a
sphere.

Corollary 3.3. Let p be a GM-perversity and X a locally compact and paracompact
filtered space. We denote Sℓ the sphere of Rℓ+1 and endow the product Sℓ ×X with the
product filtration (Sℓ×X)i = Sℓ×Xi. Then, the projection pX : Sℓ×X → X, (z, x) 7→ x,
induces isomorphisms

H
j
p,c(S

ℓ ×X;R) ∼= H
j
p,c(X;R) ⊕ H

j−ℓ
p,c (X;R).

Proof. Let {N,S} be the two poles of the sphere Sℓ. We do an induction in the Mayer-
Vietoris exact sequence with U1 = X × (Sℓ\{N}), U2 = X × (Sℓ\{S}) and U1 ∩ U2 =
X × R × Sℓ−1. Propositions 2.12 and 2.15 conclude the proof. �

We briefly recall King’s construction. First, we say that two points x0, x1 of a topolog-
ical space are equivalent if there exists a homeomorphism h : (U0, x0) → (U1, x1) between
two neighbourhoods of x0 and x1. We denote this relation by ∼.

Let X be a CS set. We observe that the equivalence classes of ∼ are union of strata.
We denote X∗

i the union of the equivalence classes formed of strata of dimension less than
or equal to i. Let X∗ be the space X endowed with this new filtration. As X∗ is a CS
set whose filtration does not depend on the initial filtration on X (see [9, Section 2.8]),
we have an intrinsic CS set associated to X. The identity map as continuous application
ν : X → X∗ is called intrinsic aggregation of X. In the next result we compare the
blown-up intersection cohomology with compact supports of X and X∗.
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Proposition 3.4. Let p be a GM-perversity and X a paracompact CS set with no codi-
mension one strata. We consider a stratum S of X and a conic chart (U,ϕ) of x ∈ S.
If the intrinsic aggregation induces an isomorphism

ν∗ : H
∗
p,c(U\S;R)

∼=−→ H
∗
p,c((U\S)∗;R),

then it induces also an isomorphism

ν∗ : H
∗
p,c(U ;R)

∼=−→ H
∗
p,c(U

∗;R).

Proof. We may suppose U = Rk × c̊W , where W is a compact filtered space and S ∩
U = Rk × {w}. From [21, Lemma 2 and Proposition 1], we deduce the existence of a
homeomorphism of filtered spaces,

h : (Rk × c̊W )∗ ∼=−→ Rm × c̊L, (25)

where L is a (possibly empty) compact filtered space and m ≥ k. Moreover h satisfies,

h(Rk × {w}) ⊂ Rm × {v} and h−1(Rm × {v}) = Rk × c̊A, (26)

where A is an (m−k−1)-sphere, v and w are the respective apexes of c̊L and c̊W . With
these notations, the hypothesis and the conclusion of the statement become,

h : H
∗
p,c(R

k × c̊W\(Rk × {w}))
∼=−→ H

∗
p,c(R

m × c̊L\h(Rk × {w})) (27)

and

h : H
∗
p,c(R

k × c̊W )
∼=−→ H

∗
p,c(R

m × c̊L). (28)

Set s = dimW and t = dimL. The isomorphism h of (25) implies k + s = m + t, and
s ≥ t since m ≥ k.

• The result is direct if s = −1 and we may suppose s ≥ 0 and Rk × {w} a singular
stratum. In fact, since X has no strata of codimension 1, we have s ≥ 1.

• If t = −1, then L = ∅ and dimA = m−k−1 = s. We have a series of isomorphisms,

H
j
p,c(R

k × c̊W ) ∼= H
j
p,c(R

k × c̊A) ∼=(1) H
j−k
p,c (̊cA)

∼=(2)

{
H

j−k−1
p,c (A) = Hj−k−1(A) if j − k − 1 ≥ p(s+ 1) + 1,

0 if j − k − 1 ≤ p(s+ 1),

∼=

{
R if j = s+ k + 1,
0 otherwise.

(29)

The isomorphisms ∼=(1) and ∼=(2) arrive from Proposition 2.15 and Proposition 2.14 re-
spectively. The last isomorphism is a consequence of

0 < p(s+ 1) + 1 ≤ t(s+ 1) + 1 = s = dimA.

• We suppose now t ≥ 0 and s ≥ 1 and split the proof in two cases.
First case: suppose j ≤ p(s+ 1) + 1 + k. The same properties than above imply the two
following series of isomorphisms.

H
j
p,c(R

k × c̊W ) ∼= H
j−k
p,c (̊cW ) ∼=

{
H

j−k−1
p,c (W ) if j − k − 1 ≥ p(s+ 1) + 1,

0 if j − k − 1 ≤ p(s+ 1),
(30)
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and

H
j
p,c(R

m × c̊L) ∼= H
j−m
p,c (̊cL) ∼=

{
H

j−m−1
p,c (L) if j −m− 1 ≥ p(t+ 1) + 1,

0 if j −m− 1 ≤ p(t+ 1).
(31)

By using (30) and (31), the isomorphism H
j
p,c(R

k × c̊W ) ∼= H
j
p,c(R

m × c̊L) ∼= 0 is a
consequence of the next equalities whose the first one results from Definition 1.4,

p(s+ 1) + k + 1 ≤ p(t+ 1) + s− t+ k + 1 ≤ p(t + 1) +m+ 1.

Second case: suppose j > p(s+ 1) + 1 + k. We repeat the arguments used above in two
series of isomorphisms, together with additional properties detailed below. First, we get

H
j
p,c(R

m × c̊L\h(Rk × {w})) ∼= H
j
p,c(R

k × c̊W\Rk × {w}) ∼= H
j
p,c(R

k × (̊cW\{w}))

∼= H
j−k−1
p,c (W ), (32)

where the first isomorphism is the hypothesis (27). Denote B× {v} = h(Rm × {w}). We
have also isomorphisms between the next relative cohomologies.

H
j
p,c(R

m × c̊L\h(Rk × {w}),Rm × c̊L\(Rm × {v})) ∼=(1)

H
j
p,c(R

m × c̊L\(B × {v}),Rm × (̊cL\{v})) ∼= H
j
p,c(R

m\B × (̊cL, c̊L\{v})) ∼=

H
j
p,c(R

k+1 ×A× (̊cL, c̊L\{v})) ∼= H
j−k−1
p,c (A× (̊cL, c̊L\{v})) ∼=(2)

H
j−k−1
p,c (̊cL, c̊L\{v}) ⊕ H

j−k−1−dimA
p,c (̊cL, c̊L\{v}), (33)

where ∼=(1) comes from the excision of B × (̊cL\{v}) (see Corollary 3.2) and ∼=(2) from
Corollary 3.3. In (33), we observe from Corollary 3.1 that the hypothesis j > p(s+ 1) +

1 + k implies H
j−k−1
p,c (̊cL, c̊L\{v}) = 0. Moreover, we have j − k − 1 − dimA = j −m.

Thus, with the restriction on j imposed in this second case, the previous isomorphisms
imply

H
j
p,c(R

m × c̊L\h(Rk × {w}),Rm × c̊L\Rm × {v}) ∼= H
j−m
p,c (̊cL, c̊L\{v}). (34)

In the next diagram, left-hand arrows are a part of the long exact sequence of a pair and
the horizontal isomorphisms come successively from (34), (32) and Proposition 2.15.

H
j
p,c(R

m × c̊L\h(Rk × {w},Rm × c̊L\Rm × {v})

��

∼=
// H

j−m
p,c (̊cL, c̊L\{v})

H
j
p,c(R

m × c̊L\h(Rk × {w})

��

∼=
// H

j−k−1
p,c (W )

H
j
p,c(R

m × c̊L\Rm × {v})
∼=

// H
j−m
p,c (̊cL\{v})

From this diagram and the long exact sequence associated to (̊cL, c̊L\{v}), we deduce

H
j−k−1
p,c (W ) ∼= H

j−m
p,c (̊cL). (35)
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By using (35), the computation of the cohomology of a cone and the cohomology of a
product with R, we get

H
j
p,c(R

m × c̊L) ∼= H
j−m
p,c (̊cL) ∼= H

j−k−1
p,c (W ) ∼=(1) H

j−k
p,c (̊cW ) ∼= H

j
p,c(R

k × c̊W ), (36)

where ∼=(1) is a consequence of the condition j− k ≥ p(s+ 1) + 2 imposed in this second
case. �

Notice that the hypothesis “with no codimension one strata” is used in (29) where we
assume that the sphere A is of dimension s > 0.

The invariance property is deduced from Proposition 2.19 applied to the natural trans-
formation ΦU : H ∗

p,c(U) → H ∗
p,c(U

∗). All the ingredients being established, the proof
goes as in Proposition 2.20 and we may leave it to the reader.

Theorem A. Let p be a GM-perversity. For any n-dimensional paracompact CS set
X, with no codimension one strata, the intrinsic aggregation ν : X 7→ X∗ induces an
isomorphism

Hp,c(X;R) ∼= Hp,c(X
∗;R).

4. Poincaré duality. Theorem B

4.1. Intersection homology and Poincaré duality. In this paragraph, X is an ori-
ented (Definition 4.2) paracompact pseudomanifold and R is a commutative ring. We
recall some known examples with the purpose of highlighting the conditions of exis-
tence of a Poincaré duality in intersection homology. First, Goresky and MacPherson

display a bilinear form, Hp
i (X;Z) × Ht−p

n−i(X;Z) → Z, which becomes non degenerate

after tensorisation by the rationals, cf. [17]. By denoting T pi (−) the torsion subgroup

of Hp
i (−), M. Goresky et P. Siegel show in [20, Theorem 4.4] that the previous bilinear

form generates a non degenerate bilinear form,

T pi (X) × T t−pn−i−1(X) → Q/Z,

under the hypothesis of locally (p,Z)-torsion free. Without this additional hypothesis,
the property disappears. If we take as pseudomanifold X the suspension of RP 3 endowed
with the perversity p taking the value 1 on the two apexes of the suspension, we see that

Hp
2 (X;Z) = 0 and Hp

1 (X;Z) = Z2.

We are interested now in the existence of a Poincaré duality given by a cap product
between intersection homology and cohomology groups. We choose in this paragraph

the intersection cohomology H∗
p(X;R) given by C∗

p(X;R) = hom(Cp∗ (X;R), R). Even
if we avoid the previous phenomenon of torsion by choosing a field R, some restrictions
appear on the domain of values taken by the perversities.

Example 4.1. Consider a compact oriented manifold M of dimension n−1. We filter its
suspension X = ΣM by X0 = {N,S} = · · · = Xn−1 ⊂ Xn = X. We choose a perversity
p such that p({N}) = p({S}) = p. The p-intersection homology of X is determined for
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instance in [9, Section 4.4] as

Hp
i (X;R) =






Hi(M ;R) if i < n− p− 1,
0 if i = n− p− 1 et i 6= 0,

H̃i−1(M ;R) if i > n− p− 1 et i 6= 0,
R if 0 = i ≥ n− p− 1.

(37)

Even in the case of field coefficients R, we observe the lack of duality if the perversity p
does not lie between 0 and t. For instance, with the space X = ΣM , we have:

• Hp
0 (X) = R and Hn

Dp(X) = 0 if p > n− 2 = t(n),

• Hp
n(X) = 0 and H0

Dp(X) = R if p < 0.

In Theorem B, to overcome the restriction p ∈ [0, t], we use the tame intersection ho-
mology recalled in Definition 1.8.

4.2. Orientation of a pseudomanifold. We recall the definition and properties of the
orientation of pseudomanifolds, cf. [17] et [16].

Definition 4.2. An R-orientation of a pseudomanifold X of dimension n is an R-
orientation of the manifold Xn = X\Xn−1. For any x ∈ Xn, we denote the associated

local orientation class by ox ∈ Hn(Xn,Xn\{x};R) = H0
n(X,X\{x};R)

Theorem 4.3 ([16]). Let X be a pseudomanifold of dimension n, endowed with an
R-orientation.

(1) If X is normal, the sheaf generated by U → H0
n(X,X\U ;R) is constant and there

exists a unique global section s such that s(x) = ox for any x ∈ Xn. Moreover for

any x ∈ X, H0
i (X,X\{x};R) = 0 if i 6= n and H0

n(X,X\{x};R) is the free R-module
generated by s(x). Henceforth we denote ox = s(x) for any x ∈ X.

(2) If X is not normal, we denote Π: X̂ → X the normalisation constructed by G. Pa-

dilla in [24] and we endow X̂ with the R-orientation induced by the homeomor-

phism Π: X̂\X̂n−1
∼= X\Xn−1. Then, we have H0

i (X,X\{x};R) = 0 si i 6= n and

H0
n(X,X\{x};R) is the free R-module generated by {Π∗(oy) | y ∈ Π−1(x)}. We

denote ox =
∑
y∈Π−1(x) Π∗(oy).

(3) For any compact K ⊂ X, there exists a unique element ΓXK ∈ H0
n(X,X\K;R) whose

restriction equals ox for any x ∈ K. The class ΓXK is called the fundamental class
of X over K. If there is no ambiguity, we denote ΓK = ΓXK .

Remark 4.4. Let U ⊂ V ⊂ X be two open subsets of a pseudomanifold X. If K ⊂
U is a compact subset, the canonical inclusion U →֒ V induces a homomorphism,

I∗ : H0
n(U,U\K;R) → H0

n(V, V \K;R). By construction, the fundamental class satisfies

I∗(ΓUK) = ΓVK . (38)

4.3. The main theorem. In this section, we prove that the cap product with the
fundamental class of a pseudomanifold is the isomorphism of Poincaré duality.

Proposition 4.5. Let R be a commutative ring and X an oriented pseudomanifold of
dimension n, endowed with a perversity p. The cap product with the fundamental class
of X defines a homomorphism,

D : H
k
p,c(X;R) → H

p
n−k(X;R). (39)
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Proof. Let ω ∈ Ñk
p,c(X) be a cocycle with compact support K ⊂ X. We choose a

representing element γK ∈ C0
n(X,X\K) of the fundamental class ΓXK ∈ H0

n(X,X\K).
The differential of the chain ω ∩ γK equals

d(ω ∩ γK) = (δω) ∩ γK + (−1)kω ∩ (dγK) = (−1)kω ∩ (dγK).

The chain γK being a relative cycle, its differential satisfies dγK ∈ C0
n−1(X\K). The

subset K being a support of ω, we have ω ∩ dγK = 0 and thus ω ∩ γK is a cycle in

C
p
n−k(X). Denote [ω ∩ γK ] ∈ H

p
n−k(X) the associated tame intersection homology class.

We have to prove that this class does not depend on the choices done in its construction.

• The class [ω ∩ γK ] does not depend on the choice of the representing element γK
of ΓK . This is a consequence of the two following observations.

– If we replace γK by γK + µ with µ ∈ C0
n(X\K), we have, by definition of

the cap product, ω ∩ (γK + µ) = ω ∩ γK + ω ∩ µ = ω ∩ γK .

– If we replace γK by γK + dµ with µ ∈ C0
n+1(X,X\K), the same argument

implies [ω ∩ (γK + dµ)] = [ω ∩ γK ].
• The class [ω ∩ γK ] does not depend on the choice of the support K of ω. If K

and L are two supports of ω, we may suppose L ⊂ K. Therefore, the cycle γK ∈

C0
n(X,X\K) is also a cycle in C0

n(X,X\L). By uniqueness of the fundamental

class over a compact, the classes in H0
n(X,X\L) associated to γL and γK are

equal. Therefore, there exist α ∈ C0
n+1(X,X\L) and β ∈ C0

n(X\L) such that
γK − γL = dα+ β. Then we may deduce,

[ω ∩ γK ] − [ω ∩ γL] = [ω ∩ dα] + [ω ∩ β] = 0.

• The class [ω∩γK ] does not depend on the choice of the cocycle ω in its associated
cohomology class. This is a consequence of the Leibniz formula [(ω+ δη)∩γK ] =
[ω ∩ γK ± d(η ∩ γK) ± η ∩ dγK ] = [ω ∩ γK ].

From Proposition 2.10, we get the homomorphism D of the statement. �

Theorem B. Let R be a commutative ring and X an oriented paracompact pseudo-
manifold of dimension n, endowed with a perversity p. Then, the cap product with the
fundamental class of X induces an isomorphism between the blown-up intersection co-
homology with compact supports and the tame intersection homology,

D : H
k
p,c(X;R)

∼=−→ H
p
n−k(X;R).

By using Proposition 2.20, Theorem B gives also the duality theorem established by
Friedman and McClure in [16], see also [9].

Corollary 4.6. Let R be a Dedekind ring and X an oriented paracompact pseudoman-
ifold of dimension n, endowed with a perversity p. If X is locally (Dp,R)-torsion free,
the cap product with the fundamental class induces an isomorphism,

D : HkDp,c(X;R)
∼=−→ H

p
n−k(X;R).

In the case of a compact pseudomanifold, we retrieve the first result in this direction,
proved by Goresky and MacPherson in [17].
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Corollary 4.7. Let X be an oriented compact pseudomanifold of dimension n, with no
strata of codimension 1. For any GM-perversity p, there exists an isomorphism,

D : Hk
Dp(X;Q)

∼=−→ Hp
n−k(X;Q).

Proof of Theorem B. As any open subset U ⊂ X is a pseudomanifold, we may consider

the associated homomorphism defined in Proposition 4.5, DU : H k
p,c(U) → H

p
n−k(U). If

U ⊂ V ⊂ X are two open subsets of X, the equality (38) gives the commutativity of the
next diagram,

H k
p,c(V )

DV
// H
p
n−k(V )

H k
p,c(U)

DU
//

I∗

OO

H
p
n−k(U)

I∗

OO

(40)

where I∗ et I∗ are induced by the canonical inclusion U →֒ V (see Proposition 2.11).
The morphisms DU give a natural transformation between the functors H k

p,c(−) and

H
p
n−k(−) and we apply Proposition 2.19 after having checked its hypotheses.
• Condition (ii) is direct and condition (iv) is the classical Poincaré duality theorem

of manifolds.
• By applying (40) to V = Ri × c̊L et U = Ri × c̊L\{v} ∼= Ri × L×]0,∞[, the

condition (iii) comes from the properties of the blown-up cohomology with compact
supports established in Proposition 2.14 and Corollary 2.17 together with the properties
of tame intersection homology recalled in the Propositions 1.10 and 1.11.

• We consider now condition (i). The two theories, H ∗
p,c(−) and H

p
n−∗(−), have Mayer-

Vietoris exact sequences, cf. Proposition 2.12 and Theorem 1.9. It is thus sufficient to
prove that the map D induces a commutative diagram between these two sequences.
This problem is reduced to two cases:

• a square with an open subset U of a pseudomanifold X and that is exactly the
situation of (40),

• a square containing the connecting maps of the two sequences and that we detail
now. We consider the following diagram where X = U1 ∪ U2 and the maps δc,
δh are the connecting maps.

H k
p,c(X)

DX
//

δc

��

H
p
n−k(X)

δh

��

H
k+1
p,c (U1 ∩ U2)

DU1∩U2
// H
p
n−k−1(U1 ∩ U2).

(41)

Let ω ∈ Ñk,U
p,c (X) be a cocycle of compact support K. For i = 1, 2, let gi : X → {0, 1} be

a partition of unity with Suppgi ⊂ Ui and g̃i ∈ Ñ0
0
(X) the associated 0-cochain defined

in Lemma 2.13. The connecting map δc is constructed as follows in Proposition 2.12:
we choose relatively compact open subsets, W1, W ′

1, W2, W ′
2 such that Supp gi ∩ K ⊂

W ′
i ⊂ W

′
i ⊂ Wi ⊂ W i ⊂ Ui, and we define a cochain g̃i ∪ ω ∈ Ñk,U

p,c (X) with compact

support W
′
i, pour i = 1, 2. The open subset W = W1∩W2 and the compact F = W 1∩W 2



POINCARÉ DUALITY AND INTERSECTION HOMOLOGY 27

satisfy

Supp g1 ∩ Supp g2 ∩K ⊂ W ⊂ F ⊂ U1 ∩ U2.

We define also an open cover W of U1 ∩U2 and we set δc([ω]) = [δg̃1 ∪ω] where δg̃1 ∪ω ∈

Ñ∗,W
p,c (U1 ∩ U2) is a cochain of compact support F . By composing with the duality map,

we get,

(DU1∩U2
◦ δc)([ω]) = [(δg̃1 ∪ ω) ∩ γF ], (42)

with γF ∈ C0
n(X,X\F ) a representing element of the fundamental class of X over the

compact F . The compact L = K ∪ W 1 ∪ W 2 is also a compact support of ω. From
the open cover {U1\W 1, U2\W 2, U1 ∩ U2} of X, by using properties of the subdivision
process in intersection homology (cf. [4, Proposition 7.10]), we decompose a representing

element γL ∈ C0
n(X,X\L) of the fundamental class of X over the compact L as

γL = α1 + α2 + α12 + (dTs + Tsd)(γL), (43)

where s is an integer, αi ∈ C0
n(Ui\W i), i = 1, 2 and α12 ∈ C0

n(U1 ∩ U2). The chain γL
is a relative cycle and by construction we have Tsd(γL) ∈ Cn(X\L). The chains α1, α2

having a support in X\F , we get [γL] = [α12] ∈ H0
n(X,X\F ). With Remark 4.4 and

F ⊂ U1 ∩ U2, we can choose [α12] ∈ H0
n(U1 ∩ U2, U1 ∩ U2\F ) as fundamental class of

U1 ∩ U2 over F . Then, the equality (42) becomes,

DU1∩U2
(δc([ω])) = [(δg̃1 ∪ ω) ∩ α12] = [(δ(g̃1 ∪ ω)) ∩ α12]

= −(−1)|ω|[(g̃1 ∪ ω) ∩ dα12]

=(1) −(−1)|ω|[(g̃1 ∪ ω) ∩ d(α1 + α12)]

=(2) (−1)|ω|[(g̃1 ∪ ω) ∩ dα2] (44)

=(3) (−1)|ω|[ω ∩ dα2], (45)

where

• the equality (1) is a consequence of the fact that g̃1 ∪ ω has for support W 1 and

α1 ∈ C0
n(U1\W 1),

• the equality (2) comes from dα1+dα12 = dγL−dα2−dTsd(γL) and (g̃1∪ω)∩dγL =

(g̃1∪ω)∩dTsd(γL) = 0, because g̃1∪ω has for supportW 1 and dγL ∈ C0
n−1(X\L),

• the equality (3) happens from g̃1 + g̃2 = 1, from the fact that g̃2 ∪ ω admits W 2

as support and from α2 ∈ C0
n(U2\W 2).

We proceed now to the determination of (δh ◦DX)([ω]). As the duality map does not
depend on the choice of the support of ω, we have, with the notations of (43),

DX([ω]) = [ω ∩ γL] = [ω ∩ α2 + ω ∩ (α1 + α12)],

with ω ∩ α2 ∈ C
p
∗(U2) and ω ∩ (α1 + α12) ∈ C

p
∗(U1). It follows

δh(DX([ω]) = [d(ω ∩ α2)] = (−1)|ω|[ω ∩ dα2]. (46)

The result is now a consequence of the equalities (45) and (46). �
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POINCARÉ DUALITY AND INTERSECTION HOMOLOGY 29

[27] L. C. Siebenmann, Deformation of homeomorphisms on stratified sets. I, II, Comment. Math. Helv.
47 (1972), 123–136; ibid. 47 (1972), 137–163. MR 0319207 (47 #7752)
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d’Ascq Cedex, France

E-mail address: Daniel.Tanre@univ-lille1.fr


	Introduction
	1. Background on intersection homology
	1.1. Pseudomanifolds
	1.2. Perversities
	1.3. Intersection Homology

	2. Blown-up intersection cohomology with compact supports
	2.1. Definitions
	2.2. Cup and cap products
	2.3. Properties of the blown-up cohomology with compact supports
	2.4. Intersection cohomologies with compact supports

	3. Topological invariance. Theorem A
	4. Poincaré duality. Theorem B
	4.1. Intersection homology and Poincaré duality
	4.2. Orientation of a pseudomanifold
	4.3. The main theorem

	References

