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We give general estimates for the approximation numbers of composition operators on the Hardy space on the ball B d and the polydisk D d .

Introduction

This work is an attempt to investigate approximation numbers of composition operators on the Hardy space H 2 (Ω) where Ω is an open subset of C d , i.e. when we work with d complex variables instead of one. In fact, we will essentially consider the two cases when Ω = B d is the unit ball of C d endowed with its usual hermitian norm z = d j=1 |z j | 2 1/2 and Ω = D d is the unit ball of C d endowed with the sup-norm z ∞ = sup d j=1 |z j |, that is when Ω is the unit polydisk of C d . In order to treat these two cases jointly, we will work in the setting of bounded symmetric domains.

An interesting feature is that the rate of decay of approximation numbers highly depends on d, becoming slower and slower as d increases, which might lead to think that no compact composition operators exist for truly infinitedimensional symbols. We will see in the forthcoming paper [START_REF] Li | Composition operators on the Hardy space of the infinite polydisk[END_REF] that this is not the case.

Notations and background

A bounded symmetric domain of C d is an open convex and circled subset Ω of C d such that for every point a ∈ Ω, there is an involutive bi-holomorphic map u : Ω → Ω such that a is an isolated fixed point of σ (equivalently, u(a) = a and u ′ (a) = -id (see [START_REF] Vigué | Le groupe des automorphismes analytiques d'un domaine borné d'un espace de Banach complexe. Application aux domaines bornés symétriques[END_REF], Proposition 3.1.1). É. Cartan showed that every bounded symmetric domain of C d is homogeneous, i.e. the group of automorphisms of Ω acts transitively on Ω: for every a, b ∈ Ω, there is an automorphism u of Ω such that u(a) = b (see [START_REF] Vigué | Le groupe des automorphismes analytiques d'un domaine borné d'un espace de Banach complexe. Application aux domaines bornés symétriques[END_REF], p. 250). The unit ball B d and the polydisk D d are examples of bounded symmetric domains.

The Shilov boundary S Ω of such a domain Ω is the smallest closed set F ⊆ ∂Ω such that sup z∈Ω |f (z)| = sup z∈F |f (z)| for every function f holomorphic in some neighborhood of Ω. For example, the Shilov boundary of the bidisk is

S D 2 = {(z 1 , z 2 ) ∈ C 2 ; |z 1 | = |z 2 | = 1}, whereas, its usual boundary ∂D 2 is {(z 1 , z 2 ) ∈ C 2 ; |z 1 |, |z 2 | ≤ 1 and |z 1 | = 1 or |z 2 | = 1};
for the unit ball B d , the Shilov boundary is equal to the usual boundary S d-1 ([7], § 4.1). Equivalently (see [START_REF] Clerc | Geometry of the Shilov boundary of a bounded symmetric domain[END_REF], Theorem 4.2), S Ω is the set of the extreme points of the convex set Ω.

If σ is the unique probability measure on S Ω invariant by the automorphisms u of Ω such that u(0) = 0, the Hardy space H 2 (Ω) is the space of all complexvalued holomorphic functions f on Ω such that:

f H 2 (Ω) := sup 0<r<1 SΩ |f (rξ)| 2 dσ(ξ) 1/2
(see [START_REF] Hahn | H p spaces on bounded symmetric domains[END_REF]). It is a Hilbert space (see [START_REF] Hahn | H p spaces on bounded symmetric domains[END_REF]).

A Schur map, associated with Ω, will be a non-constant analytic self-map of Ω into itself. It will be called truly d-dimensional if the differential ϕ ′ (a) : C d → C d is an invertible linear map for at least one point a ∈ Ω. Then, by the implicit function Theorem, ϕ(Ω) has non-void interior. We say that the Schur map ϕ is a symbol if it defines a bounded composition operator

C ϕ : H 2 (Ω) → H 2 (Ω) by C ϕ (f ) = f • ϕ.
Let us recall that if any Schur function generates a bounded composition operator on H 2 (D d ) when d = 1, this is no longer the case as soon as d ≥ 2, as shown for example by the Schur map ϕ(z 1 , z 2 ) = (z 1 , z 1 ). Indeed, if say d = 2, taking f (z) = (z 1 + z 2 ) n , we see that

f 2 2 = n k=0 n k 2 = 2n n ∼ 4 n √ πn , while: C ϕ f 2 = (2z 1 ) n 2 = 2 n .
The same phenomenon occurs on H 2 (B d ) ( [START_REF] Maccluer | Spectra of compact composition operators on H p (B N )[END_REF]; see also [START_REF] Cima | On boundedness of composition operators on H 2 (B 2 )[END_REF] and [START_REF] Cima | Unbounded composition operators on H 2 (B 2 )[END_REF]).

If H is a Hilbert space and T : H → H is a bounded linear operator, the approximation numbers of T are defined, for n ≥ 1 by: 

(2.1) a n (T ) = inf rank R<n T -R . One has T = a 1 (T ) ≥ a 2 (T ) ≥ • • • ≥ a n (T ) ≥ a n+1 (T ) ≥ • • • ,
a n (ST U ) ≤ S U a n (T ) , n = 1, 2 . . . .
For an operator T : H 2 (Ω) → H 2 (Ω) with approximation numbers a n (T ) = a n , we will introduce the non-negative numbers

0 ≤ γ - d (T ) ≤ γ + d (T ) ≤ ∞ defined by: (2.2) γ - d (T ) = lim inf n→∞ log 1/a n n 1/d and γ + d (T ) = lim sup n→∞ log 1/a n n 1/d •
The relevance of those parameters to the decay of approximation numbers is indicated by the following obvious facts, in which 0 < c ≤ C < ∞ denote constants independent of n:

γ - d (T ) > 0 ⇐⇒ a n ≤ C e -c n 1/d , n = 1, 2, . . . (2.3) γ + d (T ) < ∞ ⇐⇒ a n ≥ c e -Cn 1/d , n = 1, 2, . . . . (2.4)
So, the positivity of γ - d (T ) indicates that a n is "small" and the finiteness of γ + d (T ) indicates that a n is "big". As usual, the notation A B means that there is a constant c such that A ≤ c B and A ≈ B means that A B and B A.

Lower bound

The next theorem shows that the approximation numbers of composition operators cannot be very small. We have already seen that in the one-dimensional case in [START_REF] Li | On approximation numbers of composition operators[END_REF]. The important fact here is that this lower bound depend highly of the dimension. Theorem 3.1 Let Ω be a bounded symmetric domain of C d and ϕ : Ω → Ω be a truly d-dimensional Schur map inducing a compact composition operator C ϕ : H 2 (Ω) → H 2 (Ω). Then, for some constants 0 < c ≤ C < ∞, independent of n, we have:

a n (C ϕ ) ≥ c e -Cn 1/d , ∀n ≥ 1, that is γ + d (C ϕ ) < ∞ .
For proving that, we shall use the following results, the first of which is due to D. Clahane [START_REF] Clahane | Spectra of compact composition operators over bounded symmetric domains[END_REF], Theorem 2.1 (and to B. MacCluer [START_REF] Maccluer | Spectra of compact composition operators on H p (B N )[END_REF] in the particular case of the unit ball B d ).

Theorem 3.2 (D. Clahane)

Let Ω be a bounded symmetric domain of C d and ϕ : Ω → Ω be a holomorphic map inducing a compact composition operator

C ϕ : H 2 (Ω) → H 2 (Ω).
Then ϕ has a unique fixed point z 0 ∈ Ω and the spectrum of C ϕ consists of 0, and all possible products of eigenvalues of the derivative ϕ ′ (z 0 ).

When ϕ is truly d-dimensional, 0 cannot be an eigenvalue of C ϕ since if f • ϕ = 0, then f vanishes on ϕ(Ω) which have a non-void interior, and hence f ≡ 0. Note that 1 is an eigenvalue, by taking the product of zero eigenvalue of ϕ ′ (z 0 ).

In fact, in our case, we will not need the existence of z 0 , for we will force 0 to be a fixed point by a harmless change of the symbol ϕ. Lemma 3.3 Let H be a complex Hilbert space and T : H → H be a compact operator with eigenvalues λ 1 , . . . , λ n , . . ., written in non-increasing order and with singular values a n , n = 1, 2, . . . . Then:

(3.1) |λ 2n | 2 ≤ a 1 a n .
Indeed, it suffices to apply an immediate consequence of Weyl's inequalities, namely

|λ n | ≤ (a 1 • • • a n ) 1/n ,
with n changed into 2n, and square to get

|λ 2n | 2 ≤ (a 1 • • • a 2n ) 1/n ≤ (a n 1 a n n ) 1/n = a 1 a n . Lemma 3.4 Let N p be the number of multi-indices α = (α 1 , . . . , α d ) such that |α| = α 1 + • • • + α d ≤ p.
Then, as p goes to infinity:

(3.2) N p ∼ p d d! • Proof. Let n k be the number of multi-indices (α 1 , . . . , α d , α d+1 ) such that α 1 + • • • + α d + α d+1 = k.
We have (see [START_REF] Li | Introduction à l'étude des espaces de Banach[END_REF], page 498), classically, for |t| < 1:

∞ p=0 n p t p = ∞ α1=0 t α1 • • • ∞ α d+1 t α d+1 = ∞ k=0 t k d+1 = 1 (1 -t) d+1 ; hence n p = d + p p .
But N p = n p , and hence:

N p = (d + 1) • • • (d + p) p! = (d + p)! p! d! ∼ p d d! ,
by Stirling's formula for example.

Claim 3.5 We may assume that ϕ(0) = 0 and ϕ ′ (0) is invertible.

Proof. Since ϕ is truly d-dimensional, there exists a ∈ Ω such that ϕ ′ (a) is invertible. Since Ω is homogeneous, there exist two automorphisms Φ a and

Φ ϕ(a) of Ω such that Φ a (0) = a and Φ ϕ(a) [ϕ(a)] = 0. Set ψ = Φ ϕ(a) • ϕ • Φ a .
Then ψ(0) = 0. Now, every analytic automorphism Φ of Ω induces a bounded composition operator on H 2 (Ω) and

C -1 Φ = C Φ -1 ([6], Theorem 3.1); hence we can write C ψ = C Φa • C ϕ • C Φ ϕ(a)
and it follows that C ψ , as C ϕ , is compact. The ideal property of approximation numbers implies that, for n = 1, 2, . . . , one has:

C Φa C Φ ϕ(a) -1 a n (C ϕ ) ≤ a n (C ψ ) ≤ C Φa C Φ ϕ(a) a n (C ϕ ) , so γ - d (C ψ ) = γ - d (C ϕ ).
Moreover, using the chain rule, we see that Lemma 3.4, inverting this relation and using the monotonicity of the a n 's clearly gives the claimed result.

ψ ′ (0) is invertible, since ϕ ′ (a) is.
e -2Ap ≤ |λ Np | 2 ≤ |λ 2Mp | 2 ≤ a 1 a Mp . Since M p ∼ C d p d in view of

An alternative approach for the polydisk and the unit ball

The previous proof of Theorem 3.1 is essentially a "functional analysis" one. It is interesting to give a proof using complex analysis tools instead of functional analysis ones. Moreover, this approach will be useful for the example in Section 6.

In the general case, we are not be able to do that, and we only do it for the polydisk. The same approach works for the unit ball, by using results of B. Berndtsson in [START_REF] Berndtsson | Interpolating sequences for H ∞ in the ball[END_REF]. To save notation, we will give the proof in the case d = 2 but it clearly works in any dimension d. We will make use of the following theorem of P. Beurling ([9] p. 285), in which the word interpolation sequence refers to the space H ∞ of bounded analytic functions on Ω (Ω = D or D 2 ), the interpolation constant M S of the sequence S = (s j ) being the smallest number M such that, for any sequence (w j ) of data satisfying sup |w j | ≤ 1, there exists f ∈ H ∞ (Ω) such that f (s j ) = w j and f ∞ ≤ M . Theorem 4.1 (P. Beurling) Let (z j ) be an interpolating sequence in the unit disk D, with interpolation constant M . Then, there exist analytic functions f j , j ≥ 1, on D such that:

f j (z k ) = δ j,k and ∞ j=1 |f j (z)| ≤ M , ∀z ∈ D .
As a consequence, if A = (a j ) and B = (b k ) are interpolation sequences of D with respective interpolation constants M A and M B , their "cartesian product"

(p j,k ) j,k = (a j , b k ) j,k is an interpolation sequence, with respect to H ∞ (D 2 ), with interpolation constant ≤ M A M B .
The consequence was observed in the paper [START_REF] Berndtsson | Interpolating sequences in the polydisc[END_REF]. Indeed, if (f j ) and (g k ) are P. Beurling's functions associated to A and B respectively, any sequence (w j,k ) with sup j,k |w j,k | ≤ 1 can be interpolated by the bounded analytic function

f (z, w) = j,k≥1 w j,k f j (z) g k (w) which satisfies f ∞ ≤ M A M B .
Alternatively, in the sequel, we might use the result of [START_REF] Berndtsson | Interpolating sequences in the polydisc[END_REF] on the sufficiency of Carleson's condition on products of Gleason distances in the case of several variables. But we will stick to the previous approach. We now make use of the following lemma of [START_REF] Li | Estimates for approximation numbers of some classes of composition operators on the Hardy space[END_REF] which was enunciated in the one-dimensional case, but whose proof works word for word in our new setting; indeed, the space of multipliers of H 2 (D 2 ) is (isometrically) H ∞ (D 2 ) and then one shows that the unconditionality constant of the sequence (K sj ) 1≤j≤n of reproducing kernels associated to a finite sequence S = (s j ) 1≤j≤n is less than M u (see also [START_REF] Li | On approximation numbers of composition operators[END_REF]). Also note that he reproducing kernel of H 2 (D 2 ) is now, for a = (a 1 , a 2 ) ∈ D 2 :

K a (z 1 , z 2 ) = 1 (1 -a 1 z 1 )(1 -a 2 z 2 ) , with K a 2 = [(1 -|a 1 | 2 )(1 -|a 2 | 2 )] -1 . Lemma 4.2 Let ϕ : D 2 → D 2 be a symbol inducing a compact composition operator C ϕ : H 2 (D 2 ) → H 2 (D 2 ). Let u = (u 1 , . . . , u N ) be a finite sequence of distinct points of D 2 with interpolation constant M u and let v j = ϕ(u j ), 1 ≤ j ≤ N . Let M v be the interpolation constant of v = (v 1 , . . . , v N ).
Then, setting:

µ 2 N = inf 1≤j≤N |K vj | 2 |K uj | 2 = inf 1≤j≤N (1 -|u j,1 | 2 )(1 -|u j,2 | 2 ) (1 -|v j,1 | 2 )(1 -|v j,2 | 2 ) ,
with u j = (u j,1 , u j,2 ) and v j = (v j,1 , v j,2 ), one has:

(4.1) a N (C ϕ ) ≥ c ′ µ N M -1 u M -1 v ≥ c ′ µ N M -2 v .
The last inequality M u ≤ M v is proved as follows: let sup

|w j | ≤ 1 and choose f ∈ H ∞ such that f (v j ) = w j and f ∞ ≤ M v ; then g = f • ϕ ∈ H ∞ and satisfies g ∞ ≤ M v and g(u j ) = f (v j ) = w j .
It remains to choose u and v and to estimate the parameters of the lemma. As in the first proof, we may assume that ϕ(0) = 0 and that the differential ϕ ′ (0) is invertible.

Since ϕ ′ (0) is invertible, the set ϕ(D 2 ) contains a closed polydisk of radius 0 < r < 1 with center 0. We then take for v the sequence v j,k = (rω j , rω k ) where ω is a primitive nth-root of unity, e.g. ω = e 2iπ/n . We have v = A × A where A = (rω, rω 2 , . . . , rω n ) so that the sequence v has length N = n 2 . We know ( [START_REF] Garnett | Bounded Analytic Functions[END_REF], p. 284) that M A = r 1-n , so that Theorem 4.1 gives us M v ≤ r 2-2n . We now write v j = ϕ(u j ) with |u j | ≤ r, which is always possible by decreasing r if necessary (this r can be ridiculously small, but remains positive). Finally,

K vj 2 K uj 2 ≥ (1 -|u j,1 | 2 )(1 -|u j,2 | 2 ) ≥ (1 -r 2 ) 2 .
Collecting all those estimates and using (4.1), we obtain:

a n 2 (C ϕ ) ≥ (1 -r 2 ) 2 r 4n-4 ≥ c r 4n .
Interpolating an arbitrary integer m between two consecutive squares, we clearly obtain Theorem 3.1 for D 2 (note that in dimension d a factor (1 -r 2 ) d instead of (1 -r 2 ) 2 shows up).

An upper bound

Though the result of this section is undoubtedly true in the general setting of bounded symmetric domains, we are not familiar enough with complex analysis in several variables to work it out. Therefore, we will assume in this section that:

(5.1)

Ω = B l1 × • • • × B lN , with l 1 + • • • + l N = d
is the product of N unit balls. That covers the case of the unit ball of C d (N = 1) and the case of the polydisk of C d (N = d and l 1 = • • • = l N = 1). To save notations, we will assume in the sequel with N = 2.

A point z = (z j ) 1≤j≤d ∈ Ω is of the form z = (u, v) with u = (u j ) 1≤j≤l1 , v = (v j ) l1<j≤d and l1 j=1 |u j | 2 < 1, d j=l1+1 |v j | 2 < 1.
We see that Ω is the unit ball of C d equipped with the following norm:

(5.2) | z | = max l1 j=1 |u j | 2 1/2 , d j=l1+1 |v j | 2 1/2
,

where z = (u, v) with u ∈ C l1 and v ∈ C l2 .
The Shilov boundary of Ω is S Ω = S l1 × S l2 and the normalized invariant measure on S Ω is σ = σ l1 ⊗ σ l2 where σ l1 and σ l2 denote respectively the area measure on the hermitian spheres S l1 and S l2 .

The following is in Rudin ([19] p. 16).

Lemma 5.1

The monomials e α , with e α (z) = z α , form an orthogonal basis of H 2 (Ω). Moreover if α = (β, γ) with β = (α 1 , . . . , α l1 ) and γ = (α l1+1 , . . . , α d ), then writing z = (u, v) we have:

e α 2 = S l 1 ×S l 2 |u β | 2 |v γ | 2 dσ l1 (u) dσ l2 (v) = (l 1 -1)! β! (l 1 -1 + |β|)! (l 2 -1)! γ! (l 2 -1 + |γ|)! • Therefore, if f = α c α e α ∈ H 2 (Ω)
, one has:

f 2 = α |c α | 2 (l 1 -1)! β! (l 1 -1 + |β|)! (l 2 -1)! γ! (l 2 -1 + |γ|)! •
We can now state the main result of that section, in which we set

ϕ ∞ := sup z∈Ω | ϕ(z) |. Theorem 5.2 Let Ω = B l1 × B l2 , d = l 1 + l 2 , and ϕ : Ω → Ω be a truly d- dimensional Schur map, inducing a compact composition operator C ϕ : H 2 (Ω) → H 2 (Ω). Then, if ϕ ∞ < 1, one has γ - d (C ϕ ) > 0,
that is there exist some constants 0 < c ≤ C < ∞, independent of n, such that:

(5.3) a n (C ϕ ) ≤ C e -cn 1/d , n = 1, 2, . . . . Proof. Let us set r = ϕ ∞ < 1. Let f = c α e α ∈ H 2 (Ω) with (5.4) c α = f (α) and f 2 = α |c α | 2 e α 2 ≤ 1 . Then C ϕ f = c α ϕ α .
We approximate C ϕ by the N n -rank operator R defined by

Rf = |α|≤n c α ϕ α
and we set g = C ϕ (f ) -R(f ) as well as α = (β, γ) and z = (u, v). We begin with observing that (l1-1+p)! (l1-1)!p! ≤ (p + 1) l1-1 and (l2-1+q)! (l2-1)!q! ≤ (q + 1) l2-1 . Since |c α | ≤ e α -1 , we get by Lemma 5.1 and the multinomial formula:

(5.5)

|β|=p p! β! |ϕ β (u)| 2 = l1 j=1 |ϕ j (u)| 2 p
and a similar formula with |γ| = q that, setting p + q = N :

|β|=p |γ|=q e α -2 |ϕ α (z)| 2 = |β|=p |γ|=q (l 1 -1 + p)! β!(l 1 -1)! (l 2 -1 + q)! γ!(l 2 -1)! |ϕ β (u)| 2 |ϕ γ (v)| 2 ≤ (p + 1) l1-1 (q + 1) l2-1 l1 j=1 |ϕ j (u)| 2 p d j=l1+1 |ϕ j (v)| 2 q ≤ (p + 1) l1-1 (q + 1) l2-1 r 2p r 2q ≤ (N + 1) l1+l2-2 r 2N .
We thus have for z ∈ Ω the pointwise estimate (where we used (5.4) and the Cauchy-Schwarz inequality):

|g(z)| 2 ≤ |α|>n e α -2 |ϕ α (z)| 2 ≤ N >n p+q=N (N + 1) d-2 r 2N ≤ C d n d r 2n
for all z ∈ Ω. This now implies

(C ϕ -R)f H 2 = g H 2 ≤ C ′ d n d/2 r n . Hence: C ϕ -R ≤ C ′ d n d/2 r n .
Therefore:

a Nn+1 ≤ C ′ d n d/2 r n . Since N n ∼ n d ,
we get, with r < ρ < 1:

a n d ρ n .
We end the proof by interpolation between two indices of the form n d .

An example

For 0 < θ < 1, the lens map λ θ of parameter θ is defined by: (6.1)

λ θ (z) = (1 + z) θ -(1 -z) θ (1 + z) θ + (1 -z) θ
(see [START_REF] Shapiro | Composition operators and classical function theory[END_REF] or [START_REF] Lefèvre | Some new properties of composition operators associated to lens maps[END_REF]).

Let λ 1 = λ θ1 , . . . , λ d = λ θ d be lens maps of parameters 0 < θ 1 , . . . , θ d < 1. We define a multi-lens map ϕ on the polydisk D d as:

(6.2) ϕ(z 1 , . . . , z d ) = λ 1 (z 1 ), . . . , λ d (z d ) , for (z 1 , . . . , z d ) ∈ D d . We write it ϕ = λ 1 ⊗ • • • ⊗ λ d .
Since we may replace θ 1 , . . . , θ d by max k θ k or by inf k θ k without changing the results, we will assume in the sequel that θ 1 = • • • = θ d = θ, and we will say that the multi-lens map ϕ = ϕ θ has parameter θ. Theorem 6.1 Let ϕ be a multi-lens map with parameter θ. Then, for positive constants a, b, a ′ , b ′ depending only on θ and d, one has:

(6.3) a ′ e -b ′ n 1/(2d) ≤ a n (C ϕ ) ≤ a e -b n 1/(2d+1)
In particular, γ - d (C ϕ ) = 0 even though C ϕ is all Schatten classes. The exponent 1/(2d + 1) in the upper estimate should certainly be 1/(2d), but our method does not give it.

Proof. 1) Let us first show that C ϕ is Hilbert-Schmidt (and hence compact). We know by [START_REF] Shapiro | Composition operators and classical function theory[END_REF], § 2.3, that each composition operator C λ k is Hilbert-Schmidt. Since (e α ) α is an orthonormal basis of H 2 (D d ), one has:

C ϕ 2 HS = α C ϕ (e α ) 2 H 2 (D d ) = α ϕ α 2 H 2 (D d ) = α λ α1 1 ⊗ • • • ⊗ λ α d d 2 H 2 (D d ) = α λ α1 1 H 2 (D) • • • λ α d d 2 H 2 (D) , by Fubini's Theorem = d k=1 ∞ α k =0 λ α k k 2 H 2 (D) = d k=1 ∞ α k =0 C λ k (e α k ) 2 H 2 (D) = d k=1 C λ k 2 HS < +∞ ;
hence C ϕ is Hilbert-Schmidt. Since C λ k HS ≤ K 1-θ for some constant K (see [START_REF] Lefèvre | Some new properties of composition operators associated to lens maps[END_REF], Lemma 2.2), one gets:

C ϕ HS ≤ K 1 -θ d .
Since the approximation numbers are non-increasing, one has:

n [a n (C ϕ )] 2 ≤ n l=1 [a l (C ϕ ] 2 ≤ ∞ l=1 [a l (C ϕ ] 2 = C ϕ 2 HS ; hence: (6.4) a n (C ϕ ) 1 √ n (1 -θ) d •
As in [START_REF] Lefèvre | Some new properties of composition operators associated to lens maps[END_REF], § 2, this inequality improves itself, by the semi-group property of the lens maps: λ θ • λ θ ′ = λ θθ ′ . Indeed, multi-lens maps have the same property:

ϕ θ • ϕ θ ′ = ϕ θθ ′ ,
and hence, for 0 < τ < 1 and k = 1, 2, . . .:

C ϕ k τ = [C ϕτ ] k .
Now, the approximation numbers satisfy the sub-multiplicative property: a m+n-1 (ST ) ≤ a m (S) a n (T ). Since a m+n (ST ) ≤ a m+n-1 (ST ), this implies that a kn (T ) ≤ [a n (T )] k for n, k ≥ 1.

For k ≥ 1 to be choosen later, let τ = θ 1/k . We get, using (6.4) with τ instead of θ:

a kn (C ϕ θ ) = a kn (C k ϕτ ) ≤ [a n (C ϕτ )] k 1 √ n (1 -τ ) d k ≤ k d √ n (1 -θ) d k . since 1 -θ = 1 -τ k ≤ k(1 -τ ).
Choosing now for k the integer part of δn 1/(2d) , where δ > 0 is small enough (namely δ < 1 -θ), we get that: a kn (C ϕ θ ) e -b1k e -b2n 1/(2d) .

Changing notation, we fall on, for every N ≥ 1:

a N (C ϕ θ ) e -b N 1/(2d+1) .
This implies that, for all p > 0, 

a N (C ϕ ) ≥ c ′ 1≤k≤d µ k,N M -2 k,v .
But we proved in [START_REF] Li | Approximation numbers of composition operators on H p[END_REF] (see the proof of Proposition 2.6 there) that:

µ k,N M -2 k,v e -β √ n
for some constant β > 0 depending only on θ. We get hence:

a N (C ϕ ) e -βd √ n .

Since N = n d , we get, by interpolation, that, for every N ≥ 1:

a N (C ϕ ) e -βd N 1/(2d) , and that ends the proof of Theorem 6.1.

  Proof of Theorem 3.1. Let µ 1 , . . . , µ d be the eigenvalues of ϕ ′ (0) and set min 1≤j≤d |µ j | = e -A > 0. By Theorem 3.2, the eigenvalues λ 1 , . . . , λ n , . . . of C ϕ are the numbers µ α1 1 • • • µ α d d rearranged in non-increasing order. By definition, we have λ Np = d j=1 µ αj j for some d-tuple α = (α 1 , . . . , α d ) such that |α| ≤ p. Therefore, |λ Np | ≥ e -A|α| ≥ e -Ap . If M p = [N p ]/2 where [ . ] stands for the integer part, equation (3.1) gives:

∞N

  =1 [a N (C ϕ θ )] p < ∞ i.e. C ϕ θ is in all Schatten classes S p .2) To prove the lower bound, we will use Theorem 4.1 and Lemma 4.2. Let σ > 0 and, for 1≤ j k ≤ N , 1 ≤ k ≤ d: u j1,...,j d = (1 -e -j1σ , . . . , 1 -e -j d σ ) . Let: v j1,...,j d = ϕ(u j1,...,j d ) = λ 1 (1 -e -j1σ ), . . . , λ d (1 -e -j d σ ).By (4.1), one has, with N = n d :(6.5) a N (C ϕ ) ≥ c ′ µ N M -2 v .Actually, ifµ k,N = inf 1≤j k ≤N 1 -|1 -e -j k σ | 2 1 -|λ k (1 -e -j k σ )| 2 , one has: a N (C ϕ ) ≥ c ′ 1≤k≤d µ k,N M -2 v .On the other hand, if M k,v is the interpolation constant of the sequenceλ k (1 -e -σ ), . . . , λ k (1 -e -N σ ) , of points of D, one has M v ≤ M 1,v • • • M d,v, by Theorem 4.1; hence:

  and T is compact if and only if a n (T ) -→

	0. The approximation numbers have (obviously) the following ideal property: n→∞
	for every bounded linear operators S, U : H → H, one has:
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