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Abstract. Many industrial applications require the use of table con-
straints (e.g., in configuration problems), sometimes of significant size.
During the recent years, researchers have focused on reducing space and
time complexities of this type of constraint. Static and dynamic reduc-
tion based approaches have been proposed giving new compact repre-
sentations of table constraints and effective filtering algorithms. In this
paper, we study the possibility of combining both static and dynamic
reduction techniques by proposing a new compressed form of table con-
straints based on frequent pattern detection, and exploiting it in STR
(Simple Tabular Reduction).

Introduction

Table constraints, i.e., constraints given in extension by listing the tuples of
values allowed or forbidden for a set of variables, are widely studied in constraint
programming (CP). This is because such constraints are present in many real-
world applications from areas such as design and configuration, databases, and
preferences modeling. Sometimes, table constraints provide the unique natural
or practical way for a non-expert user to express her constraints. So far, research
on table constraints has mainly focused on the development of fast algorithms to
enforce generalized arc consistency (GAC), which is a property that corresponds
to the maximum level of filtering when constraints are treated independently.
GAC algorithms for table constraints have attracted considerable interest, dating
back to GAC4 [21] and GAC-Schema [2]. Classical algorithms iterate over lists
of tuples in different ways ; e.g., see [2, 19, 18]. A recent AC5-based algorithm
has been proposed in [20], and has been shown efficient on table constraints of
small arity. For tables constraint of large arity, it is recognized that maintaining
dynamically the list of supports in constraint tables does pay off: these are the
variants of simple tabular reduction (STR) [23, 15, 16].

Table constraints are important for modeling parts of many problems, but
they admit practical boundaries because the memory space required to repre-
sent them may grow exponentially with their arity. To reduce space complexity,
researchers have focused on various forms of compression. Tries [6], Multi-valued
Decision Diagrams (MDDs) [3] and Deterministic Finite Automata (DFA) [22]



are general structures used to represent table constraints in a compact way, so as
to facilitate the filtering process. Cartesian product is another classical mecha-
nism to represent compactly large sets of tuples. For instance, it has been applied
successfully for handling sets of solutions [10], symmetry breaking [5, 4], and
learning [13, 17]. So far, this form of compression has been used in two distinct
GAC algorithms for table constraints: by revisiting the general GAC-schema [14]
and by combining compressed tuples with STR [24]. The latter work shows how
variants STR2 and STR3 can advantageously benefit from compressed tuples
when the compression ratio is high.

Recently, we have proposed an original compression approach based on data-
mining algorithms [7], where all occurrences of the most frequent patterns in
a table are replaced by their indices in a so-called patterns table. Using data-
mining techniques for compressing table constraints has also been studied in [11],
but in a very different manner since additional variables and values are needed,
and constraints are reformulated. The same authors also studied compression of
SAT clauses in [12]. In [7], a pattern was defined as a sequence of consecutive
values, which prevented us from benefiting of optimized STR variants. In this
paper, we propose to relax this condition (of consecutive values), considering any
sub-tuple as a possible frequent pattern, and identifying the most frequent ones
by means of data-mining techniques. Consequently, every table can be “sliced”,
where each slice associates a pattern µ with a sub-table containing all extensions
of µ that can be found in the original table. We propose an algorithm to deal
with sliced table constraints: we build it on the basis of the optimized algorithm
STR2.

The paper is organized as follows. After recalling some technical background
in Section 1, we present, in Section 2, a compression process for table constraints,
detailing the algorithm used to obtain the new form of sliced table constraints.
Next, we describe, in Section 3, an optimized algorithm to enforce GAC on sliced
table constraints. Finally, after giving some experimental results in Section 4,
we conclude.

1 Technical Background

A (discrete) constraint network (CN) N is a finite set of n variables ”intercon-
nected” by a finite set of e constraints. Each variable x has a domain which is the
finite set of values that can be assigned to x. The initial domain of a variable x
is denoted by dominit(x) whereas the current domain of x is denoted by dom(x);
we always have dom(x) ⊆ dominit(x). Each constraint c involves an ordered set
of variables, called the scope of c and denoted by scp(c), and is semantically
defined by a relation, denoted by rel(c), which contains the set of tuples allowed
for the variables involved in c. A (positive) table constraint c is a constraint such
that rel(c) is defined explicitly by listing the tuples that are allowed by c ; an
example is given below. The arity of a constraint c is the size of scp(c), and will
usually be denoted by r.



Example 1. Let c be a positive table constraint on variables x1, x2, x3, x4, x5
with dom(x1) = dom(x2) = dom(x3) = dom(x4) = dom(x5) = {a, b, c}. Table 1
represents the constraint c with 7 allowed tuples.

x1 x2 x3 x4 x5
τ1 (c, b, c, a, c)
τ2 (a, a, b, c, a)
τ3 (a, c, b, c, a)
τ4 (b, a, c, b, c)
τ5 (b, a, a, b, b)
τ6 (c, c, b, c, a)
τ7 (a, c, a, c, a)

Table 1. Table constraint c on x1, x2, x3, x4, x5

Let X = {x1, . . . , xr} be an ordered set of variables. An instantiation I of
X is a set {(x1, a1), . . . , (xr, ar)} also denoted by {x1 = a1, . . . , xr = ar} such
that ∀i ∈ 1..r, ai ∈ dominit(xi); X is denoted by vars(I) and each ai is denoted
by I[xi]. An instantiation I is valid iff ∀(x, a) ∈ I, a ∈ dom(x). An r-tuple τ on
X is a sequence of values (a1, . . . , ar) such that ∀i ∈ 1..r, ai ∈ dominit(xi) ; the
individual value ai will be denoted by τ [xi]. For simplicity, we shall use both
concepts of instantiation and tuple interchangeably. For example, an r-tuple τ
on scp(c) is valid iff the underlying instantiation is valid. An r-tuple τ on scp(c)
is a support on the r-ary constraint c iff τ is a valid tuple which is allowed by c.
If τ is a support on a constraint c involving a variable x and such that τ [x] = a,
we say that τ is a support for (x, a) on c. Generalized Arc Consistency (GAC)
is a well-known domain-filtering consistency defined as follows:

Definition 1. A constraint c is generalized arc consistent (GAC) iff ∀x ∈
scp(c),∀a ∈ dom(x), there exists at least one support for (x, a) on c. A CN
N is GAC iff every constraint of N is GAC.

Enforcing GAC is the task of removing from domains all values that have
no support on a constraint. Many algorithms have been devised for establishing
GAC according to the nature of the constraints. For table constraints, STR [23]
is such an algorithm: it removes invalid tuples during search of supports using
a sparse set data structure which separates valid tuples from invalid ones. This
method of seeking supports improves search time by avoiding redundant tests on
invalid tuples that have already been detected as invalid during previous GAC
enforcements. STR2 [15], an optimization of STR, limits some basic operations
concerning the validity of tuples and the identification of supports, through the
introduction of two important sets called Ssup and Sval (described later). In the
extreme best case, STR2 can be r times faster than STR.



We now introduce the concepts of pattern and sub-table that will be useful
for compression.

Definition 2. A pattern µ of a constraint c is an instantiation I of some
variables of c. We note scp(µ) its scope, which is equal to vars(I), |µ| its length,
which is equal to |scp(µ)|, and nbOcc(µ) its number of occurrences in rel(c),
which is |{τ ∈ rel(c) | µ ⊆ τ}|.
Example 2. In Table 1, µ1={x1 = a, x4 = c, x5 = a} and µ2={x3 = c, x5 =
c} are patterns of respective lengths 3 and 2, with scp(µ1)={x1, x4, x5} and
scp(µ2)={x3, x5}.
Definition 3. The sub-table T associated with a pattern µ of a constraint c is
obtained by removing µ from tuples of c that contain µ and ignoring other tuples.

T = {τ \ µ | τ ∈ rel(c) ∧ µ ⊆ τ}
The scope of T is scp(T ) = scp(c)− scp(µ)

Example 3. Table 2 represents the sub-table associated with the pattern µ1=(x1 =
a, x4 = c, x5 = a) of c, described in Table 1.

x2 x3
a b
c b
c a

Table 2. The sub-table T1 associated with the pattern µ1 of c

Definition 4. An entry for a constraint c is a pair (µ, T ) such that µ is a
pattern of c and T is the sub-table associated with µ.

Since the set of tuples represented by an entry (µ, T ) represents in fact the
Cartesian product of µ by T , we shall also use the notation µ ⊗ T to denote a
constraint entry. Notice that after the slicing process of a constraint into a set
of entries, the set of tuples which are not associated with any pattern can be
stored in a so called default entry denoted by (∅, T ).

Example 4. The pattern µ=(x1 = a, x4 = c, x5 = a) of the constraint c, depicted
in Figure 1(a), appears in tuples τ2, τ3 and τ7. Thus, µ and the resulting sub-table
form an entry for c, as shown in Figure 1(b).

Testing the validity of classical or compressed tuples is an important oper-
ation in filtering algorithms of (compressed) table constraints. For sliced table
constraints, we extend the notion of validity to constraint entries.

Definition 5. An entry (µ, T ) is valid iff at least one tuple of the Cartesian
product µ⊗ T is valid. Equivalently, an entry is valid iff its pattern is valid and
its sub-table contains at least one valid sub-tuple.



x1 x2 x3 x4 x5
τ1 (c, b, c, a, c)
τ2 (a, a, b, c, a)
τ3 (a, c, b, c, a)
τ4 (b, a, c, b, c)
τ5 (b, a, a, b, b)
τ6 (c, c, b, c, a)
τ7 (a, c, a, c, a)
(a) A constraint c

x1 x4 x5
a c a

⊗ x2 x3
a b τ2
c b τ3
c a τ7

(b) An entry (µ, T ) of c

Fig. 1. Example of a constraint entry

2 Compression Method

Several data mining algorithms, such as Apriori [1] and FP-Growth [8] among
others, can be used to identify frequent patterns. Since our objective is com-
pression, we do not have to identify each possible frequent pattern but only the
ones that are useful for compression, and specifically at most one pattern per
tuple. The construction of an FP-Tree (Frequent-Pattern Tree) which is the first
step in the FP-Growth algorithm is especially well suited to this goal since it
identifies each long and frequent pattern. This construction requires only three
scans of the table.

We briefly explain the construction of the FP-Tree in the context of table
compression, using the constraint given in Table 1 as an example. Details of
the general method can be found in [8, 9]. The algorithm takes one parameter
minSupport (minimum support) which is the minimal number of occurrences of
a pattern that we require to consider it as frequent. In our example, we shall use
minSupport=2 to identify patterns which occur at least twice.

In a first step, we collect the number of occurrences of each value. By abuse
of terminology, we shall call frequency the number of occurrences of a value.
This step requires one scan of the table. The result on our example is given in
Figure 2(a). Then, in a second scan, we sort each tuple in decreasing order of
frequency of values. The result is given in Figure 2(b) where the frequency of a
value is given in parentheses. Values which have a frequency below the threshold
minSupport are removed from the tuple (they are identified in bold face) because
they cannot appear in a frequent pattern. Once a tuple is sorted and possibly
reduced, it is inserted in the FP-Tree which is essentially a trie where each branch
represents the frequent part of a tuple and each node contains the number of
branches which share that node. Each edge from a parent to its child is labeled
with a value. The root node does not have any label.

Figure 3(a) represents the FP-tree obtained on our running example. The first
tuple inserted in the tree is the beginning of τ1, that is (x1 = c, x3 = c, x5 = c).
This creates the leftmost branch of the tree. Each node of this branch is given
a frequency of 1. The second tuple inserted is (x4 = c, x5 = a, x1 = a, x2 =
a, x3 = b) which creates the third leftmost branch in the tree (each node having



x1 x2 x3 x4 x5
a 3 3 2 1 4
b 2 1 3 2 1
c 2 3 2 4 2

(a) frequencies

τ1 (2)x1 = c (2)x3 = c (2)x5 = c (1)x2 = b (1)x4 = a
τ2 (4)x4 = c (4)x5 = a (3)x1 = a (3)x2 = a (3)x3 = b
τ3 (4)x4 = c (4)x5 = a (3)x1 = a (3)x2 = c (3)x3 = b
τ4 (3)x2 = a (2)x1 = b (2)x3 = c (2)x4 = b (2)x5 = c
τ5 (3)x2 = a (2)x1 = b (2)x3 = a (2)x4 = b (1)x5 = b
τ6 (4)x4 = c (4)x5 = a (3)x2 = c (3)x3 = b (2)x1 = c
τ7 (4)x4 = c (4)x5 = a (3)x1 = a (3)x2 = c (2)x3 = a

(b) tuples sorted according to decreasing frequencies

Fig. 2. First two steps of the compression

(a) FP-tree

x1 x4 x5
a c a

⊗ x2 x3
a b τ2
c b τ3
c a τ7

x1 x2
b a

⊗ x3 x4 x5
c b c τ4
a b b τ5

∅
⊗ x1 x2 x3 x4 x5

c b c a c τ1
c c b c a τ6

(b) Compressed table

Fig. 3. FP-tree and compressed table

a frequency of 1 at this step). When τ3 is inserted, the new branch (x4 = c, x5 =
a, x1 = a, x2 = c, x3 = b) shares its first three edges with the last branch, hence
the frequency of the corresponding nodes is incremented and becomes 2. The
other tuples are inserted in the same way. In the end, nodes with a frequency
below the threshold minSupport are pruned. The remaining tree is depicted with
thick lines and circled by a dashed line in Figure 3(a).

We now have to identify patterns in the FP-tree which are relevant for com-
pression. Each node of the tree corresponds to a frequent pattern µ which can
be read on the path from the root to the node. The frequency f of this pattern
is given by the node itself. The savings that can be obtained by factoring this
frequent pattern is |µ| × (f − 1) values (we can save each occurrence of the pat-
tern but one). In our example, we can see that the pattern (x4 = c, x5 = a) can
save 6 values, the pattern (x4 = c, x5 = a, x1 = a) can also save 6 values but
the pattern (x4 = c, x5 = a, x1 = a, x2 = c) can save only 4 values. Therefore,
we further prune the tree by removing nodes that save less values than their



parent. The leaves of the tree we obtain represent the frequent pattern used in
the compression: (x4 = c, x5 = a, x1 = a) and (x2 = a, x1 = b).

To complete the compression, we create an entry for each frequent pattern
we have identified and fill them in a last scan of the table. For each tuple, we
use the FP-tree to identify if the (sorted) tuple starts with a frequent pattern, in
which case we add the rest of the tuple to the corresponding sub-table. Tuples
which do not start with a frequent pattern are added to the default entry.

Algorithm 1 summarizes the different steps of the compression process.

Algorithm 1: compress(T: table, minSupport: integer)

1 compute the frequency of each value of T
2 for i ∈ 1..|T | do
3 τ ← T [i]
4 sort τ by decreasing order of value frequency and remove values less

frequent than minSupport
5 add τ to the FP-Tree (will update the nodes frequency)
6 tmp[i]← τ

7 prune the tree by removing nodes which are less frequent than minSupport or
such that |µ| × (f − 1) is smaller than for their parent

8 for i ∈ 1..|T | do
9 τ ← tmp[i]

10 lookup in the tree if τ starts with a frequent pattern µ. If it does not, µ← ∅
11 add T [i] \ µ to the sub-table corresponding to µ

3 Filtering Sliced Table Constraints

In order to enforce GAC on sliced table constraints, our idea is to adapt Simple
Tabular Reduction (STR), and more specifically the optimized variant STR2,
on the compressed form of this kind of constraint. As a sliced table constraint
is composed of several entries, each one composed of both a pattern and a sub-
table, the filtering process we propose acts at two distinct levels. At a high
level, the validity of each entry is checked, and at a low-level, the validity of
each pattern and each sub-tuple is checked. Remember that an entry is valid iff
both its pattern is valid and at least one tuple from its sub-table is valid (See
Definition 5). In this section, we first describe the employed data structures,
then we introduce our GAC algorithm, and finally we give an illustration.

3.1 Data structures

A sliced table constraint c is represented by an array entries[c] of p entries.
Managing the set of valid entries, called current1 entries, is performed as follows:

1 Current entries correspond to valid entries at the end of the previous evocation of
the algorithm.



– entriesLimit[c] is the index of the last current entry in entries[c]. The
elements in entries[c] at indices ranging from 1 to entriesLimit[c] are the
current entries of c.

– removing an entry (that has become invalid) at index i is performed by a
call of the form removeEntry(c, i). Such a call swaps the entries at indices i
and entriesLimit[c], and then decrements entriesLimit[c]. Note that the
initial order of entries is not preserved.

– restoring a set of entries can be performed by simply changing the value of
entriesLimit[c].

Each entry in entries can be represented as a record composed of a field
pattern and a field subtable. More precisely:

– the field pattern stores a partial instantiation µ, and can be represented
in practice as a record of two arrays: one for the variables, the scope of the
pattern, and the other for the values.

– the field subtable stores a sub-table T , and can be represented in practice
as a record of two arrays: one for the variables, i.e., the scope of the sub-table
T , and the other, a two-dimensional array, for the sub-tuples.

In our presentation, we shall directly handle µ and T without considering all
implementation details ; for example, T will be viewed as a two-dimensional
array. Managing the set of valid sub-tuples, called current sub-tuples, of T , is
performed as follows:

– limit[T ] is the index of the last current sub-tuple in T . The elements in T
at indices ranging from 1 to limit[T ] are the current sub-tuples of T .

– removing a sub-tuple (that has become invalid) at index i is performed by
a call of the form removeSubtuple(T, i). Such a call swaps the sub-tuples at
indices i and limit[T ], and then decrements limit[T ]. Note that the initial
order of sub-tuples is not preserved.

– restoring a set of sub-tuples can be performed by simply changing the value
of limit[T ].

Note that the management of both current entries and current sub-tuples is
in the spirit of STR. Also, as in [15], we introduce two sets of variables, called
Sval and Ssup. The set Sval contains uninstantiated variables (and possibly,
the last assigned variable) whose domains have been reduced since the previous
invocation of the filtering algorithm on c. To set up Sval, we need to record the
domain size of each modified variable x right after the execution of STR-slice on
c: this value is recorded in lastSize[x]. The set Ssup contains uninstantiated
variables (from the scope of the constraint c) whose domains contain each at least
one value for which a support must be found. These two sets allow us to restrict
loops on variables to relevant ones. We also use an array gacValues[x] for each
variable x. At any time, gacValues[x] contains all values in dom(x) for which
a support has already been found: hence, values for a variable x without any
proved support are exactly those in dom(x) \ gacValues[x]. Note that the sets



Sval and Ssup are initially defined with respect to the full scope of c. However,
for each sub-table we also shall use local sets Slval and Slsup of Sval and Ssup

as explained later.

3.2 Algorithm

Algorithm 2 is a filtering procedure, called STR-slice, that establishes GAC on
a specified sliced table constraint c belonging to a CN N . Lines 1–10, which
are exactly the same as those in Algorithm 5 of [15], allow us to initialize the
sets Sval, Ssup and gacValues. Recall that Sval must contain the last assigned
variable, denoted by lastPast(P ), if it belongs to the scope of c. Lines 11–22
iterate over all current entries of c. To test the validity of an entry, we check first
the validity of the pattern µ (Algorithm 3), and then, only when the pattern is
valid, we check the validity of the sub-table T by scanning it (Algorithm 4). If
an entry is no more valid, it is removed at line 22. Otherwise, considering the
values that are present in the pattern, we have to update gacValues as well as
Ssup when a first support for a variable is found. Lines 23–30, which are exactly
the same as those in Algorithm 5 of [15], manage the reduction of domains:
unsupported values are removed at line 25 and if the domain of a variable x
becomes empty, an exception is thrown at line 27. Also, the set of variables Xevt

reduced by STR-slice is computed and returned so that these “events” can be
propagated to other constraints.

Algorithm 4 is an important function, called scanSubtable, of STR-slice. Its
role is to iterate over all current (sub)tuples of a given sub-table, in order to col-
lect supported values and to remove invalid tuples. Note that when this function
is called, we have the guarantee that the pattern associated with the sub-table
is valid (note the “and then” short-circuit operator at line 14 of Algorithm 2).
The first part of the function, lines 1–10, allow us to build the local sets Slval

and Slsup from Sval and Ssup. Such sets are obtained by intersecting Sval with
scp(T ) and Ssup with scp(T ), respectively. Once the sets Slval and Slsup are
initialized, we benefit from optimized operations concerning validity checking
and support seeking, as in STR2. The second part of the function, lines 9–21,
consists in iterating over all current sub-tuples of T . This is a classical STR2-like
traversal of a set of tuples. Finally, line 22 returns true when there still exists at
least one valid sub-tuple.

It is interesting to note the lazy synchronization performed between the global
unique set Ssup and the specific local sets Slsup (one such set per sub-table).
When a variable x is identified as “fully supported”, it is immediately removed
from Ssup (see line 19 of Algorithm 2 and line 18 of Algorithm 4). Consequently,
that means that the next sub-tables (entries) will benefit from such a reduction,
but the information is only transmitted at initialization (lines 6–8 of Algorithm
4). On the other hand, once initialized, the global set Sval is never modified
during the execution of STR-slice.

Backtracking issues: In our implementation, entries and tuples can be restored
by modifying the value of the limit pointers (entriesLimit[c] and limit[T ]



Algorithm 2: STR-slice(c: constraint)

Input : c is a sliced table constraint of the CN N to be solved
Output : the set of variables in scp(c) with reduced domain

// Initialization of sets Sval and Ssup, as in STR2

1 Sval ← ∅
2 Ssup ← ∅
3 if lastPast(P ) ∈ scp(c) then

4 Sval ← Sval ∪ {lastPast(P )}
5 foreach variable x ∈ scp(c) | x /∈ past(P ) do
6 gacValues[x]← ∅
7 Ssup ← Ssup ∪ {x}
8 if |dom(x)| 6= lastSize[c][x] then

9 Sval ← Sval ∪ {x}
10 lastSize[c][x]← |dom(x)|

// Iteration over all entries of c
11 i← 1
12 while i ≤ entriesLimit[c] do
13 (µ, T )← entries[c][i] // ith current entry of c
14 if isValidPattern(µ) and then scanSubtable(T ) then
15 foreach variable x ∈ scp(µ) | x ∈ Ssup do
16 if µ[x] 6∈ gacValues[x] then
17 gacValues[x]← gacValues[x] ∪ {µ[x]}
18 if |dom(x)| = |gacValues[x]| then
19 Ssup ← Ssup \ {x}

20 i← i+ 1

21 else
22 removeEntry(c, i) // entriesLimit[c] decremented

// domains are now updated and Xevt computed, as in STR2

23 Xevt ← ∅
24 foreach variable x ∈ Ssup do
25 dom(x)← gacV alues[x]
26 if dom(x) = ∅ then
27 throw INCONSISTENCY

28 Xevt ← Xevt ∪ {x}
29 lastSize[c][x]← |dom(x)|
30 return Xevt

Algorithm 3: isValidPattern(µ: pattern): Boolean

1 foreach variable x ∈ scp(µ) do
2 if µ[x] /∈ dom(x) then
3 return false

4 return true



Algorithm 4: scanSubtable(T : sub-table): Boolean

Input : T is a sub-table coming from an entry of the constraint c
Output : true iff there is at least one valid tuple in the sub-table T

// Initialization of local sets Slval and Slsup from Sval and Ssup

1 Slval ← ∅
2 foreach variable x ∈ Sval do
3 if x ∈ scp(T ) then

4 Slval ← Slval ∪ {x}

5 Slsup ← ∅
6 foreach variable x ∈ Ssup do
7 if x ∈ scp(T ) then

8 Slsup ← Slsup ∪ {x}

// Iteration over all (sub)tuples of T
9 i← 1

10 while i ≤ limit[T ] do
11 τ ← T [i] // ith current sub-tuple of T

12 if isValidSubtuple(Slval, τ) then

13 foreach variable x ∈ Slsup do
14 if τ [x] 6∈ gacValues[x] then
15 gacValues[x]← gacValues[x] ∪ {τ [x]}
16 if |dom(x)| = |gacValues[x]| then
17 Slsup ← Slsup \ {x}
18 Ssup ← Ssup \ {x}

19 i← i+ 1

20 else
21 removeSubtuple(T, i)) // limit[T ] decremented

22 return limit[T ] > 0

Algorithm 5: isValidSubtuple(Slval: variables, τ : tuple): Boolean

1 foreach variable x ∈ Slval do
2 if τ [x] /∈ dom(x) then
3 return false

4 return true

for each sub-table T of c), recorded at each search depth. Restoration is then
achieved in O(1 + p) (for each constraint) where p is the number of entries.
However, by introducing a simple data structure, it is possible to only call the
restoration procedure when necessary, limiting restoration complexity to O(1)
in certain cases: it suffices to register the limit pointers that need to be updated
when backtracking, and this for each level. When the search algorithm back-



tracks, we also have to deal with the array lastSize. As mentioned in [15], we
can record the content of such an array at each depth of search, so that the
original state of the array can be restored upon backtracking.

As GAC-slice is a direct extension of STR2, it enforces GAC.

3.3 Illustration
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Fig. 4. STR-slice called on a slice table constraint after the event x3 6= a

Figures 4 and 5 illustrate the different steps for filtering a sliced table con-
straint, when STR-slice is called after an event. In Figure 4, considering that the
new event is simply x3 6= a (i.e., the removal of the value a from dom(x3)), STR-
slice starts checking the validity of the current entries (from 1 to entriesLimit).
So, for the first entry, the validity of the pattern µ={x1 = a, x4 = c, x5 = a} is
first checked. Since µ remains valid (our hypothesis is that the event was only
x3 6= a), the sub-table of the first entry is scanned. Here, only the sub-tuple
{x2 = c, x3 = a} is found invalid, which modifies the value of limit for the
sub-table of this first entry. After the call to STR-slice, the constraint is as in
Figure 4(b).

In Figure 5, considering now that the new event is x3 6= b, we start again
with the first current entry. Figuring out that the pattern is still valid, we check
the validity of the associated sub-tuples. Since the sub-tuple {x2 = a, x3 = b}
is no more valid, it is swapped with {x2 = c, x3 = b}. This latter sub-tuple is
then also found invalid, which sets the value of limit to 0. This is illustrated in
Figure 5(a). As the sub-table of the first entry is empty, the entry is removed by
swapping its position with that of last current entry. After the call to STR-slice,



the constraint is as in Figure 5(b) (note that a second swap of constraint entries
has been performed).
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Fig. 5. From Figure 4(b), STR-slice called after the event x3 6= b

4 Experimental results

In order to show the practical interest of our approach to represent and filter
sliced table constraints, we have conducted an experimentation (with our solver
AbsCon) using a cluster of bi-quad cores Xeon processors at 2.66 GHz node with
16GiB of RAM under Linux. Because STR2 and STR3 belong to the state-of-the-
art GAC algorithms for table constraints, we compare the respective behaviors
of STR2, STR3 and STR-slice on different series of instances2 involving positive
table constraints with arity greater than 2. STR1 is also included as a baseline.

For STR-slice, we select exclusively frequent patterns with a number of oc-
currences at least equal to 10% of the number of tuples in the table. This value
was obtained after several experiments, similarly we chose 10 for the minimum
size of sub-tables. Automatically tuning, on a specific instance, the frequency
threshold for patterns and the minimum sub-table size is part of our future
work.

We use MAC with the dom/ddeg variable ordering and lexico as value or-
dering heuristic, to solve all these instances. A time-out of 1, 200 seconds was
set per instance. The two chosen heuristics guarantee that we explore the very
same search tree regardless of the filtering algorithm used.

2 Available at http://www.cril.univ-artois.fr/CSC09.



Instance #ins STR1 STR2 STR3 STR-slice

a7-v24-d5-ps05 11 298.05 147.73 189.14 115.30 (66% – 5.74)

bdd 70 44.53 13.44 99.21 20.35 (86% – 0.59)

crossword-ogd 43 90.05 39.35 25.69 29.59 (75.51% – 0.36)

crossword-uk 43 95.20 45.88 44.33 47.21 (88.69% – 0.18)

renault 46 19.66 14.39 13.37 17.20 (47.15% – 0.67)

Table 3. Mean CPU time (in seconds) to solve instances from different series (a time-
out of 1,200 seconds was set per instance) with MAC. Mean compression ratio and
CPU time are given for STR-slice between parentheses.

Instance STR1 STR2 STR3 MDD STR-slice

a7-v24-d5-ps0.5-psh0.7-9 879 334 367 25.5 200 (69% – 5.41)

a7-v24-d5-ps0.5-psh0.9-6 353 195 324 16.6 174 (62% – 5.82)

bdd-21-2713-15-79-11 78.5 23.5 48.5 82.6 31.7 (88.05% – 0.28)

crossword-ogd-vg12-13 799 342 208 > 1, 200 242 (73.46% – 0.74)

crossword-uk-vg10-13 1,173 576 589 > 1, 200 598 (89.63% – 0.48)

Table 4. CPU time (in seconds) on some selected instances solved by MAC.

Table 3 shows mean results (CPU time in seconds) per series. For each series,
the number of tested instances is given by #ins ; it corresponds to the number
of instances solved by all three variants within 1, 200 seconds. Note that the
mean compression ratios and CPU times (in seconds) are also given for STR-
slice between parentheses. We define the compression ratio as the size of the
sliced tables over the size of the initial tables, where the size of a (sliced) table
is the number of values over all patterns and (sub-)tables. The results in Table
3 show that STR-slice is competitive with both STR2 and STR3. Surprisingly,
although the compression ratio obtained for the instances of the series renault
is rather encouraging, the CPU time obtained for STR-slice is disappointing.
We suspect that the presence of many constraints with small tables in the re-
nault instances is penalizing for STR-slice because, in that case, the overhead of
managing constraint entries is not counterbalanced by the small absolute spatial
reduction. Table 4 presents the results obtained on some instances.

In term of space, STR3 is the variant that uses the most amount of mem-
ory (sometimes by a very large factor). STR-slice, although requiring a few
additional data structures is the cheapest STR variant in term of memory (ap-
proximately as indicated by the compression ratio in Tables 3 and 4). Note that
other compression approaches of the literature such as those based on MDDs [3]
may outperform STR variants when the compression ratio is (very) high. This



is the case, for example, on the instances of series a7-v24-d5-ps05. However, on
other series such as crossword, the MDD approach can be outperformed by a
large factor by the STR variants (on hard crossword instances, STR2, STR3 and
STR-slice are usually about 5 times faster than MDD).

A general observation from this rather preliminary experimentation is that
STR-slice is a competitor to STR2 and STR3, but a not a competitor that takes
a real advantage. Several perspectives to improve this situation are developed in
the conclusion.

Conclusion

In this paper, we have presented an original approach for filtering table con-
straints: it combines a new compression technique using the concept of sliced
table constraints and an optimized adaptation of the tabular reduction (as in
STR2). Our preliminary experimentation shows that STR-slice is a competitor
to the state-of-the-art STR2 and STR3 algorithms. To make STR-slice indis-
pensable, many further developments are necessary. First, we think that the
tuning of the parameters used for guiding compression should be automatized
(possibly, employing some machine learning techniques). STR-slice could then
benefit from a better compression. Second, we believe that, in the rising context
of big data, new constraint problems should emerge rapidly where constraints
could be of (very) large arity and involve very large tables. STR-slice could
advantageously handle such “huge” constraints, especially if we consider that
slicing could be conducted recursively on the sub-tables (another perspective
of this work). Finally, we think that the concept of sliced table constraints is
interesting on its own for modeling, as certain forms of conditionality can be
represented in a simple and natural way, directly with sliced table constraints.
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