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1 Introduction

Recently, the study of approximation numbers of composition operators on
H2 has been initiated (see [10], [11], [8], [18], [12]), and (upper and lower) esti-
mates have been given. However, most of the techniques used there are specif-
ically Hilbertian (in particular Weyl’s inequality; see [10]). Here, we consider
the case of composition operators on Hp for 1 ≤ p <∞. We focus essentially on
lower estimates, because the upper ones are similar, with similar proofs, as in the
Hilbertian case. We give in Theorem 2.4 a minoration involving the uniform
separation constant of finite sequences in the unit disk and the interpolation
constant of their images by the symbol. We finish with some upper estimates.

1.1 Preliminary

Recall that if X and Y are two Banach spaces of analytic functions on the
unit disk D, and ϕ : D → D is an analytic self-map of D, one says that ϕ induces
a composition operator Cϕ : X → Y if f ◦ ϕ ∈ Y for every f ∈ X ; ϕ is then
called the symbol of the composition operator. One also says that ϕ is a symbol
for X and Y if it induces a composition operator Cϕ : X → Y .

For every a ∈ D, we denote by ea ∈ (Hp)∗ the evaluation map at a, namely:

(1.1) ea(f) = f(a) , f ∈ Hp.

∗Supported by a Spanish research project MTM 2012-05622.
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We know that ([22], p. 253):

(1.2) ‖ea‖ =

(

1

1− |a|2
)1/p

and the mapping equation

(1.3) C∗
ϕ(ea) = eϕ(a)

still holds.

Throughout this section we denote by ‖ . ‖, without any subscript, the norm
in the dual space (Hp)∗.

Let us stress that this dual norm of (Hp)∗ is, for 1 < p < ∞, equivalent,
but not equal, to the norm ‖ . ‖q of Hq, and the equivalence constant tends to
infinity when p goes to 1 or to ∞.

As usual, the notation A . B means that there is a constant c such that
A ≤ cB and A ≈ B means that A . B and B . A.

1.2 Singular numbers

For an operator T : X → Y between Banach spaces X and Y , its approxi-
mation numbers are defined, for n ≥ 1, as:

(1.4) an(T ) = inf
rankR<n

‖T −R‖ .

One has ‖T ‖ = a1(T ) ≥ a2(T ) ≥ · · · ≥ an(T ) ≥ an+1(T ) ≥ · · · , and (as-
suming that Y has the Approximation Property), T is compact if and only if
an(T ) −→

n→∞
0.

We will also need other singular numbers (see [2], p. 49).
The n-th Bernstein number bn(T ) of T , defined as:

(1.5) bn(T ) = sup
E⊆X

dimE=n

inf
x∈SE

‖Tx‖ ,

where SE = {x ∈ E ; ‖x‖ = 1} is the unit sphere of E. When these numbers
tend to 0, T is said to be superstrictly singular, or finitely strictly singular (see
[17]).

The n-th Gelfand number of T , defined as:

(1.6) cn(T ) = inf
L⊆Y

codimL<n

‖T|L‖ ,

One always has:

(1.7) an(T ) ≥ cn(T ) and an(T ) ≥ bn(T ) ,

and, when X and Y are Hilbert spaces, one has an(T ) = bn(T ) = cn(T ) ([16],
Theorem 2.1).
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2 Lower bounds

2.1 Sub-geometrical decay

We first show that, as in the Hilbertian case H2 ([10], Theorem 3.1), the
approximation numbers of the composition operators on Hp cannot decrease
faster than geometrically.

Though we cannot longer appeal to the Hilbertian techniques of [10], Weyl’s
inequality has the following generalization ([3], Proposition 2).

Proposition 2.1 (Carl-Triebel) Let T be a compact operator on a complex
Banach space E and

(

λn(T )
)

n≥1
be the sequence of its eigenvalues, indexed such

that |λ1(T )| ≥ |λ2(T )| ≥ · · · . Then, for n = 1, 2, . . . and m = 0, 1, . . . , n − 1,
one has:

(2.1)

n
∏

j=1

|λj(T )| ≤ 16n‖T ‖mam+1(T )
n−m .

(see [1] for an optimal result). Then, we can state:

Theorem 2.2 For every non-constant analytic self-map ϕ : D → D, there exist
0 < r ≤ 1 and c > 0, depending only on ϕ, such that the approximation numbers
of the composition operator Cϕ : H

p → Hp satisfy:

an(Cϕ) ≥ c rn , n = 1, 2, . . .

In particular lim infn→∞[an(Cϕ)]
1/n ≥ r > 0.

Proof. If Cϕ is not compact, the result is trivial, with r = 1; so we assume
that Cϕ is compact.

Before carrying on, we first recall some notation used in [10]. For every
z ∈ D, let

ϕ♯(z) =
|ϕ′(z)| (1− |z|2)

1− |ϕ(z)|2

be the pseudo-hyperbolic derivative of ϕ at z, and

[ϕ] = sup
z∈D

ϕ♯(z) .

By the Schwarz-Pick inequality, one has [ϕ] ≤ 1. Moreover, since ϕ is not
constant, one has [ϕ] > 0.

We also set, for every operator T : Hp → Hp:

β−(T ) = lim inf
n→∞

[an(T )]
1/n .

For every a ∈ D, we are going to show that β−(Cϕ) ≥
(

ϕ♯(a)
)2

, which will
give β−(Cϕ) ≥ [ϕ]2, by taking the supremum for a ∈ D, and the stated result,
with 0 < r < [ϕ]2.
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If ϕ♯(a) = 0, the result is obvious, so we assume that ϕ♯(a) > 0.
We consider the automorphism Φa, defined by Φa(z) =

a−z
1−az , and set

ψa = Φϕ(a) ◦ ϕ ◦ Φa .

One has ψa(0) = 0 and |ψ′
a(0)| = ϕ♯(a).

Since Cϕ is compact on Hp, Cψa = CΦa ◦ Cϕ ◦ CΦϕ(a)
is also compact on

Hp. But we know that this is equivalent to say that it is compact on H2. Since
ψa(0) = 0 and ψ′

a(0) = ϕ♯(a) 6= 0, we know, by the Eigenfunction Theorem

([19], p. 94), that the eigenvalues of Cψa : H
2 → H2 are the numbers

(

ψ′
a(0)

)j
,

j = 0, 1, . . ., and have multiplicity one. Moreover, the proof given in [19], § 6.2
shows that the eigenfunctions σj are not only in H2, but in all Hq, 1 ≤ q <∞.

Hence λj(Cψa) =
(

ψ′
a(0)

)j−1
. We now use Proposition 2.1, with 2n instead of

n and m = n− 1; we get:

|ψ′
a(0)|n(2n−1) =

2n
∏

j=1

|λj(Cψa)| ≤ 162n‖Cψa‖n−1an(Cψa)
n+1

≤ 162n‖Cψa‖nan(Cψa)
n ,

since an(Cψa) ≤ ‖Cψa‖.
That implies that β−(Cψa) ≥ |ψ′

a(0)|2 =
(

ϕ♯(a)
)2

.
Since CΦa and CΦϕ(a)

are automorphisms, we have β−(Cϕ) = β−(Cψa),
hence the result. �

2.2 Main result

In this section, we use the fortunate fact that, though the evaluation maps
at well-chosen points of D can no longer be said to constitute a Riesz sequence,
they will still constitute an unconditional sequence in Hp with good constants,
as we are going to see, which will be sufficient for our purposes.

Recall (see [5], p. 276) that the interpolation constant κσ of a finite sequence
σ = (z1, . . . , zn) of points z1, . . . , zn ∈ D is defined by:

(2.2) κσ = sup
|a1|, ...,|an|≤1

inf{‖f‖∞ ; f ∈ H∞ and f(zj) = aj , 1 ≤ j ≤ n} .

Then:

Lemma 2.3 For every finite sequence σ = (z1, . . . , zn) of distinct points
z1, . . . , zn ∈ D, one has:

(2.3) κ−1
σ

∥

∥

∥

n
∑

j=1

λjezj

∥

∥

∥
≤
∥

∥

∥

n
∑

j=1

ωjλjezj

∥

∥

∥
≤ κσ

∥

∥

∥

n
∑

j=1

λjezj

∥

∥

∥

for all λ1, . . . , λn ∈ C and all complex numbers numbers ω1, . . . , ωn such that
|ω1| = · · · = |ωn| = 1.
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Proof. Set L =
∑n
j=1 λjezj and Lω =

∑n
j=1 ωjλjezj . There exists h ∈ H∞

such that ‖h‖∞ ≤ κσ and h(zj) = ωj for every j = 1, . . . , n. For every g ∈ Hp,
one has Lω(g) =

∑n
j=1 ωjλjg(zj) =

∑n
j=1 h(zj)λjg(zj) = L(hg); hence:

|Lω(g)| ≤ ‖L‖ ‖hg‖p ≤ ‖L‖ ‖h‖∞‖g‖p ≤ κσ‖L‖ ‖g‖p

and we get ‖Lω‖ ≤ κσ‖L‖, which is the right-hand side of (2.3). The left-hand
side follows, by replacing λ1, . . . , λn by ω1λ1, . . . , ωnλn. �

We now prove the following lower estimate.

Theorem 2.4 Let ϕ : D → D and Cϕ : H
p → Hp, with 1 ≤ p < ∞. Let

u1, . . . , un ∈ D such that v1 = ϕ(u1), . . . , vn = ϕ(un) are distinct. Then, for
some constant cp depending only on p, we have:

(2.4) an(Cϕ) ≥ cp κ
−1
v

(

1 + log
1

δu

)−1/min(p,2)

inf
1≤j≤n

(

1− |uj |2
1− |vj |2

)1/p

,

where δu is the uniform separation constant of the sequence u = (u1, . . . , un)
and κv the interpolation constant of v = (v1, . . . , vn).

For the proof, we need to know some precisions on the constant in Carleson’s
embedding theorem. Recall that the uniform separation constant δσ of a finite
sequence σ = (z1, . . . , zn) in the unit disk D, is defined by:

(2.5) δσ = inf
1≤j≤n

∏

k 6=j

∣

∣

∣

zj − zk
1− zjzk

∣

∣

∣
·

Lemma 2.5 Let σ = (z1, . . . , zn) be a finite sequence of distinct points in D

with uniform separation constant δσ. Then:

(2.6)

n
∑

j=1

(1− |zj |2) |f(zj)|p ≤ 12

[

1 + log
1

δσ

]

‖f‖pp

for all f ∈ Hp.

Proof. For a ∈ D, let ka(z) =

√
1−|a|2
1−az be the normalized reproducing kernel.

For every positive Borel measure µ on D, let:

γµ = sup
a∈suppµ

∫

D

|ka(z)|2 dµ(z) .

The so-called Reproducing Kernel Thesis (see [14], Lecture VII, pp. 151–158)
says that there is an absolute positive constant A1 such that:

∫

D

|f(z)|p dµ(z) ≤ A1 γµ ‖f‖pp

for every f ∈ Hp (that follows from the case p = 2 in writing f = Bh2/p where
B is a Blaschke product and h ∈ H2). Actually, one can take A1 = 2 e (see [15],
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Theorem 0.2). But when µ is the discrete measure
∑n

j=1(1− |zj|2) δzj , it is not
difficult to check (see [4], Lemma 1, p. 150, or [6], p. 201) that:

γµ ≤ 1 + 2 log
1

δσ
·

That gives the result since 4 e ≤ 12. �

Proof of Theorem 2.4. We will actually work with the Bernstein num-
bers of C∗

ϕ. Recall that they are defined in (1.5). That will suffice since
an(Cϕ) ≥ an(C

∗
ϕ) (one has equality if Cϕ is compact: see [7] or [2], pp. 89–

91) and an(C
∗
ϕ) ≥ bn(C

∗
ϕ).

Take u1, . . . , un ∈ D such that v1 = ϕ(u1), . . . , vn = ϕ(un) are distinct. The
points u1, . . . , un are then also distinct and the subspace E = span {eu1 , . . . , eun}
of (Hp)∗ is n-dimensional. Let

L =

n
∑

j=1

λjeuj

be in the unit sphere of E. We set, for f ∈ Hp and for j = 1, . . . , n:

Λj = λj ‖euj‖ , and Fj = ‖euj‖−1f(uj) ,

and finally:
Λ = (Λ1, . . . ,Λn) and F = (F1, . . . , Fn) .

We will separate three cases.

Case 1: 1 < p ≤ 2.
One has ‖C∗

ϕ(L)‖ =
∥

∥

∑n
j=1 λj evj

∥

∥. Using Lemma 2.3, we obtain for any
choice of complex signs ω1, . . . , ωn:

(2.7) ‖C∗
ϕ(L)‖ ≥ κ−1

v

∥

∥

∥

n
∑

j=1

ωjλjevj

∥

∥

∥
.

Let now q be the conjugate exponent of p. We know that the space Hp is of
type p as a subspace of Lp ([9], p. 169) and therefore its dual (Hp)∗ is of cotype
q ([9], p. 165), with cotype constant ≤ τp, the type p constant of Lp (let us note
that we might use that (Hp)∗ is isomorphic to the subspace Hq of Lq, but we
have then to introduce the constant of this isomorphism). Hence, by averaging
(2.7) over all independent choices of signs and using the cotype q property of
(Hp)∗, we get:

‖C∗
ϕ(L)‖ ≥ τ−1

p κ−1
v

(

n
∑

j=1

|λj |q‖evj‖q
)1/q

≥ τ−1
p κ−1

v µn

(

n
∑

j=1

|λj |q‖euj‖q
)1/q

,

so that

(2.8) ‖C∗
ϕ(L)‖ ≥ τ−1

p κ−1
v µn ‖Λ‖q ,
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where:

µn = inf
1≤j≤n

‖evj‖
‖euj‖

= inf
1≤j≤n

(1− |uj |2
1− |vj |2

)1/p

.

It remains to give a lower bound for ‖Λ‖q.
But, by Hölder’s inequality:

|L(f)| =
∣

∣

∣

n
∑

j=1

λjf(uj)
∣

∣

∣
=
∣

∣

∣

n
∑

j=1

ΛjFj

∣

∣

∣
≤ ‖Λ‖q‖F‖p .

Since

‖F‖pp =
n
∑

j=1

‖euj‖−p|f(uj)|p =
n
∑

j=1

(1− |uj|2) |f(uj)|p,

Lemma 2.5 gives:

|L(f)| ≤ ‖Λ‖q
[

12
(

1 + log
1

δu

)

]1/p

‖f‖p.

Taking the supremum over all f with ‖f‖p ≤ 1, we get, taking into account that
‖L‖ = 1:

(2.9) ‖Λ‖q ≥
[

12
(

1 + log
1

δu

)

]−1/p

.

By combining (2.8) and (2.9), we get:

‖C∗
ϕ(L)‖ ≥ (12)−1/p τ−1

p µn κ
−1
v

(

1 + log
1

δu

)−1/p

.

Therefore:

bn(C
∗
ϕ) ≥ (12)−1/p τ−1

p µn κ
−1
v

(

1 + log
1

δu

)−1/p

.

Case 2: 2 < p <∞.
We follow the same route, but in this case, Hp is of type 2 and hence (Hp)∗

is of cotype 2. Therefore, we get:

(2.10) ‖C∗
ϕ(L)‖ ≥ τ−1

2 κ−1
v µn ‖Λ‖2

and, using Cauchy-Schwarz inequality:

(2.11) ‖Λ‖2 ≥
[

12
(

1 + log
1

δu

)

]−1/2

;

so:

(2.12) ‖C∗
ϕ(L)‖ ≥ (12)−1/2 τ−1

2 µn κ
−1
v

(

1 + log
1

δu

)−1/2

.
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Case 3: p = 1.
In this case (H1)∗ (which is isomorphic to the space BMOA) has no finite

cotype. But, for each k = 1, . . . , n, one has, using Lemma 2.3:

|λk| ‖evk‖ =
1

2

∥

∥

∥

∥

(

∑

j 6=k
λjevj + λkevk

)

−
(

∑

j 6=k
λjevj − λkevk

)
∥

∥

∥

∥

≤ 1

2

(
∥

∥

∥

∥

∑

j 6=k
λjevj + λkevk

∥

∥

∥

∥

+

∥

∥

∥

∥

∑

j 6=k
λjevj − λkevk

∥

∥

∥

∥

)

≤ κv

∥

∥

∥

∥

n
∑

j=1

λjevj

∥

∥

∥

∥

;

hence:

(2.13) ‖C∗
ϕ(L)‖ ≥ κ−1

v µn ‖Λ‖∞ .

Since |L(F )| ≤ ‖Λ‖∞‖F‖1, we get, as above, using Lemma 2.5:

(2.14) ‖Λ‖∞ ≥
[

12
(

1 + log
1

δu

)

]−1

,

and therefore:

(2.15) ‖C∗
ϕ(L)‖ ≥ (12)−1 µn κ

−1
v

(

1 + log
1

δu

)−1

and that finishes the proof of Theorem 2.4. �

Example. We will now apply this result to lens maps. We refer to [19] or [8]
for their definition. For θ ∈ (0, 1), we denote:

(2.16) λθ(z) =
(1 + z)θ − (1− z)θ

(1 + z)θ + (1− z)θ
·

Proposition 2.6 Let λθ be the lens map of parameter θ acting on Hp, with
1 ≤ p <∞. Then, for positive constants a and b, depending only on θ and p:

an(Cλθ
) ≥ a e−b

√
n.

Actually, this estimate is valid for polygonal maps as well.

Proof. Let 0 < σ < 1 and consider uj = 1−σj and vj = λθ(uj), 1 ≤ j ≤ n. We

know from [10], Lemma 6.4 and Lemma 6.5, that, for α = π2

2 and β = βθ =
π2

2θθ
:

δu ≥ e−α/(1−σ) and δv ≥ e−β/(1−σ).

But we know that the interpolation constant κσ is related to the uniform
separation constant δσ by the following inequality ([5] page 278), in which Λ is
a positive numerical constant:

(2.17)
1

δσ
≤ κσ ≤ Λ

δσ

(

1 + log
1

δσ

)

·
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Actually, S. A. Vinogradov, E. A. Gorin and S. V. Hrušcëv [21] (see [13], p. 505)
proved that

κσ ≤ 2 e

δσ

(

1 + 2 log
1

δσ

)

,

so we can take Λ ≤ 4 e ≤ 12.
It follows that

(2.18) κ−1
v ≥ 1− σ

Λ(β + 1)
e−β/(1−σ).

Setting p̃ = min(p, 2), we have:

(2.19)
(

1 + log
1

δu

)−1/p̃

≥
(1− σ

α+ 1

)1/p̃

.

We now estimate µn.

Since λθ(0) = 0, Schwarz’s lemma says that |λθ(z)| ≤ |z|; hence 1−|z|2
1−|λθ(z)|2 ≥

1−|z|
1−|λθ(z)| . But 1 − vj = 1 − λθ(uj) = 2σjθ

(2−σj)θ+σjθ ; hence (since uj and vj are

real):
1− |uj |2
1− |vj |2

≥ 1− uj
1− vj

=
σj

2σjθ
[(2− σj)θ + σjθ ] .

Since the function f(x) = (2− x)θ + xθ increases on [0, 1], one gets:

1− |uj |2
1− |vj |2

≥
(1

2
σj
)1−θ

,

and therefore:

(2.20) µn ≥
(1

2
σn
)(1−θ)/p

.

Applying now Theorem 2.4 and using (2.18), (2.19) and (2.20), we get:

an(Cλθ
) ≥ αp,θ e

−β/(1−σ) (1 − σ)1/p̃ σn(1−θ)/p

with αp,θ =
cp

Λ(β+1)(α+1)1/p̃2(1−θ)/p ·
Taking σ = e−ε where 0 < ε < 1, we get, since 1− e−ε ≥ ε/2:

an(Cλθ
) ≥ αp,θ e

−2β/ε
(ε

2

)1/p̃

e−εn(1−θ)/p.

Optimizing by taking ε =
√

3βp
1−θ

1√
n

gives, for n large enough (in order to have

ε < 1):

(2.21) an(Cλθ
) ≥ α′

p,θ n
−1/(2p̃) e−βp,θ

√
n

with α′
p,θ = αp,θ

(

βp
2(1−θ)

)1/(2p̃)
and βp,θ =

√

2β(1−θ)
p ·

We get Theorem 2.6, with b > βp,θ. �

Let us note that βp,θ =
2

1−θ
2 π√
p

√

1−θ
θ tends to 0 when θ goes to 1 and tends

to infinity when θ goes to 0.
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2.3 A minoration depending on the radial behaviour of ϕ

We are using Theorem 2.4 to give, as in [11], Theorem 3.2, a lower bound
for an(Cϕ) which depends on the behaviour of ϕ near ∂D.

We recall first (see [11], Section 3) that an analytic self-map ϕ : D → D is
said to be real if it takes real values on ]− 1, 1[. If ω : [0, 1] → [0, 2] is a modulus
of continuity (meaning that ω is continuous, increasing, sub-additive, vanishing
at 0, and concave), ϕ is said to be an ω-radial symbol if it is real and:

(2.22) 1− ϕ(r) ≤ ω(1− r) , 0 ≤ r < 1 .

We have the following result.

Theorem 2.7 Let ϕ be an ω-radial symbol. Then, for 1 ≤ p <∞, the approx-
imation numbers of the composition operator Cϕ : H

p → Hp satisfy:

(2.23) an(Cϕ) ≥ c′p sup
0<σ<1

[

(ω−1(a σn)

a σn

)1/p

(1− σ)1/max(p∗,2) exp
(

− 5

1− σ

)

]

,

where c′p is a constant depending only on p, p∗ is the conjugate exponent of p,
and a = 1− ϕ(0) > 0.

Proof. As in [11], p. 556, we fix 0 < σ < 1 and define inductively uj ∈ [0, 1) by
u0 = 0 and, using the intermediate value theorem:

1− ϕ(uj+1) = σ [1− ϕ(uj)] , with 1 > uj+1 > uj .

We set vj = ϕ(uj). We have −1 < vj < 1 and 1− vn = a σn. We proved in [11],
p. 556, that:

(2.24)
1− |uj |2
1− |vj |2

≥ 1

2

ω−1(a σn)

a σn
·

Moreover, we proved in [11], p. 557, that the uniform separation constant of
v = (v1, . . . , vn) is such that:

(2.25) δv ≥ exp
(

− 5

1− σ

)

·

Since δu ≥ δv, we get, from (2.17), that:

(2.26) κu ≤ 12
(6− σ

1− σ

)

exp
( 5

1− σ

)

≤ 60
( 1

1− σ

)

exp
( 5

1− σ

)

·

Using now (2.4) of Theorem 2.4 and combining (2.24), (2.25) and (2.26), we get
Theorem 2.7. �
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Example 1: lens maps. Let us come back to the lens maps λθ for testing
Theorem 2.7. We have ω−1(h) ≈ h1/θ (see [8], Lemma 2.5) and a = 1−λθ(0) =
1. Setting K = 1

10
√
p

√

1−θ
θ and taking, for n large enough, σ = 1 − 1

K
√
n
, we

have, using that e−s ≤ 1− 4
5s for s > 0 small enough, σn ≥ exp(− 5

4K

√
n) and

hence:

an(Cλθ
) ≥ cθ,p n

− 1
2 max(p∗,2) exp

[

− 5√
p

√

1− θ

θ

√
n

]

.

Note that the coefficient of
√
n in the exponential is slightly different of that

in (2.21), but of the same order.

Example 2: cusp map. We refer to [11], Section 4, for its definition and
properties. It is the conformal mapping χ from D onto the domain represented
on Fig. 1 such that χ(1) = 1, χ(−1) = 0, χ(i) = (1+ i)/2 and χ(−i) = (1− i)/2.
We proved in [11], Lemma 4.2, that, for 0 ≤ r < 1, one has:

10

Figure 1: Cusp map domain

1− χ(r) =
1

1 + 2
π log

[

1/2 arctan
(

1−r
1+r

)] ·

Since 1− 2
π log 2 > 0 and arctanx ≤ x for x ≥ 0, we get that:

1− χ(r) ≤ π

2

1

log
(

1+r
1−r
) ≤ π

2

1

log
(

1
1−r
) ≤ 2

1

log
(

1
1−r
) ·

Hence χ is an ω-radial symbol with ω(x) = 2/ log(1/x). Then ω−1(h) = e−2/h.
By choosing σ = 1 − logn

4n in (2.23), we get, using that log(1 − x) ≥ −2x for
x > 0 small enough, that, for n large enough, σn ≥ 1/

√
n; hence:

an(Cχ) ≥ c′′p

(√
n exp

[

− (2 a)
√
n
]

)1/p ( logn

n

)1/max(p∗,2)

exp
(

− 20n

logn

)

·

It follows that, for some constant Cp > 0 depending only on p, we have:

(2.27) an(Cχ) ≥ Cp exp
(

− 25n

logn

)

·

It has to be stressed that the term in the exponential does not depend on p.

11



Example 3: Shapiro-Taylor’s maps. These maps ςθ, for θ > 0, were defined
in [20]. Let us recall their definition. For ε > 0, we set Vε = {z ∈ C ; ℜz >
0 and |z| < ε}. For ε = εθ > 0 small enough, one can define

(2.28) fθ(z) = z(− log z)θ,

for z ∈ Vε, where log z will be the principal determination of the logarithm. Let
now gθ be the conformal mapping from D onto Vε, which maps T = ∂D onto
∂Vε, defined by gθ(z) = ε ϕ0(z), where ϕ0 is the conformal map from D onto
V1, given by:

(2.29) ϕ0(z) =

( z − i

iz − 1

)1/2

− i

−i
( z − i

iz − 1

)1/2

+ 1

·

Then, we define:

(2.30) ςθ = exp(−fθ ◦ gθ).

We saw in [11], p. 560, that ω−1(h) = Kθ h
(

log(1/h)
)−θ

. Hence, choosing

σ = 1/(eα
1/n
θ ), where αθ = 1− ςθ(0), we get that:

(2.31) an(Cςθ ) ≥ cp,θ.
1

nθ/2p
·

However, we already remarked in [11], Section 4.2, that, even for p = 2, this
result is not optimal.

3 Upper bound

For upper bounds, there is essentially no change with regard to the case
p = 2. Hence we essentially only state some results.

We have the following upper bound, which can be obtained with the same
proof as in [8].

Theorem 3.1 Let Cϕ : H
p → Hp, 1 ≤ p < ∞, a composition operator, and

n ≥ 1. Then, for every Blaschke product B with (strictly) less than n zeros,
each counted with its multiplicity, one has:

an(Cϕ) ≤ C
√
n

(

sup
0<h<1
ξ∈T

1

h

∫

S(ξ,h)

|B|p dmϕ

)1/p

,

where mϕ is the pullback measure of m, the normalized Lebesgue measure on T,
under ϕ and S(ξ, h) = D ∩D(ξ, h) is the Carleson window of size h centered at
ξ ∈ T.

12



Proof. We first estimate the Gelfand number cn(Cϕ) by restricting to the
subspace BHp which is of codimension < n. As in [8], Lemma 2.4:

cn(Cϕ) .

(

sup
0<h<1
ξ∈T

1

h

∫

S(ξ,h)

|B|p dmϕ

)1/p

.

Now (see [2], Proposition 2.4.3), one has an(Cϕ) ≤
√
2n cn(Cϕ), hence the

result. �

We can then deduce, with the same proof, the following version of [11],
Theorem 2.3.

Recall ([11], Definition 2.2) that a symbol ϕ ∈ A(D) (i.e. ϕ : D → D is contin-
uous and analytic in D) is said to be globally regular if ϕ(D)∩∂D = {ξ1, . . . , ξl}
and there exists a modulus of continuity ω (i.e. a continuous, increasing and
sub-additive function ω : [0, A] → R+, which vanishes at zero, and that we
may assume to be concave), such that, writing Eξj = {t ; γ(t) = ξj}, one

has T =
⋃l
j=1

(

Eξj + [−rj , rj ]
)

for some r1, . . . , rl > 0, and for some positive
constants C, c > 0:

|γ(t)− γ(tj)| ≤ C
(

1− |γ(t)|
)

(3.1)

c ω(|t− tj |) ≤ |γ(t)− γ(tj)|(3.2)

for j = 1, . . . , l, all tj ∈ Eξj with |t− tj | ≤ rj .

Theorem 3.2 Let ϕ be a symbol in A(D) whose image touches ∂D exactly at
the points ξ1, . . . , ξl and which is globally-regular. Then there are constants κ,
K, L > 0, depending only on ϕ, such that, for every k ≥ 1:

(3.3) ak(Cϕ) ≤ K

[

ω−1(κ 2−Nk)

κ 2−Nk

]1/p

,

where Nk is the largest integer such that lNdN < k and dN is the integer part

of
[

log κ 2−N

ω−1(κ 2−N )

/

log(χ−p)
]

+ 1, with 0 < χ < 1 an absolute constant.

As a corollary, we get for lens maps λθ (as well as for polygonal maps), in
the same way as Theorem 2.4 in [11], p. 550 (recall that then ω(h) ≈ hθ), the
following upper bound.

Theorem 3.3 Let ϕ = λθ be the lens map of parameter θ acting on Hp, 1 <
p <∞. Then, for positive constants b and c depending only on θ and p:

an(Cλθ
) ≤ c e−b

√
n.

For the cusp map, we also have as in [11], Theorem 4.3 (here, ω(h) ≈
1/ log(1/h)).

Theorem 3.4 Let ϕ = χ be the cusp map. For some positive constants b and
c depending only on p, one has:

an(Cχ) ≤ c e−b n/ logn.

13
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