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Introduction

Recently, the study of approximation numbers of composition operators on H 2 has been initiated (see [START_REF] Li | On approximation numbers of composition operators[END_REF], [START_REF] Li | Estimates for approximation numbers of some classes of composition operators on the Hardy space[END_REF], [START_REF] Lefèvre | Some new properties of composition operators associated to lens maps[END_REF], [START_REF] Queffélec | Decay rates for approximation numbers of composition operators[END_REF], [START_REF] Li | A spectral radius type formula for approximation numbers of composition operators[END_REF]), and (upper and lower) estimates have been given. However, most of the techniques used there are specifically Hilbertian (in particular Weyl's inequality; see [START_REF] Li | On approximation numbers of composition operators[END_REF]). Here, we consider the case of composition operators on H p for 1 ≤ p < ∞. We focus essentially on lower estimates, because the upper ones are similar, with similar proofs, as in the Hilbertian case. We give in Theorem 2.4 a minoration involving the uniform separation constant of finite sequences in the unit disk and the interpolation constant of their images by the symbol. We finish with some upper estimates.

Preliminary

Recall that if X and Y are two Banach spaces of analytic functions on the unit disk D, and ϕ : D → D is an analytic self-map of D, one says that ϕ induces a composition operator C ϕ : X → Y if f • ϕ ∈ Y for every f ∈ X; ϕ is then called the symbol of the composition operator. One also says that ϕ is a symbol for X and Y if it induces a composition operator C ϕ : X → Y .

For every a ∈ D, we denote by e a ∈ (H p ) * the evaluation map at a, namely:

(1.1) e a (f ) = f (a) , f ∈ H p .

We know that ( [START_REF] Zhu | Operator Theory in Function Spaces, Second Edition[END_REF], p. 253):

(1.

2) e a = 1 1 -|a| 2 1/p and the mapping equation Throughout this section we denote by . , without any subscript, the norm in the dual space (H p ) * .

Let us stress that this dual norm of (H p ) * is, for 1 < p < ∞, equivalent, but not equal, to the norm . q of H q , and the equivalence constant tends to infinity when p goes to 1 or to ∞.

As usual, the notation A B means that there is a constant c such that A ≤ c B and A ≈ B means that A B and B A.

Singular numbers

For an operator T : X → Y between Banach spaces X and Y , its approximation numbers are defined, for n ≥ 1, as: We will also need other singular numbers (see [START_REF] Carl | Entropy, Compactness and the Approximation of Operators[END_REF], p. 49).

(1.4) a n (T ) = inf rank R<n T -R . One has T = a 1 (T ) ≥ a 2 (T ) ≥ • • • ≥ a n (T ) ≥ a n+1 (T ) ≥ •
The n-th Bernstein number b n (T ) of T , defined as:

(1.5) b n (T ) = sup E⊆X dim E=n inf x∈SE T x ,
where S E = {x ∈ E ; x = 1} is the unit sphere of E. When these numbers tend to 0, T is said to be superstrictly singular, or finitely strictly singular (see [START_REF] Plichko | Rate of decay of the Bernstein numbers[END_REF]).

The n-th Gelfand number of T , defined as:

(1.6) c n (T ) = inf L⊆Y codim L<n T |L ,
One always has: 2 Lower bounds

Sub-geometrical decay

We first show that, as in the Hilbertian case H 2 ([10], Theorem 3.1), the approximation numbers of the composition operators on H p cannot decrease faster than geometrically.

Though we cannot longer appeal to the Hilbertian techniques of [START_REF] Li | On approximation numbers of composition operators[END_REF], Weyl's inequality has the following generalization ([3], Proposition 2). Proposition 2.1 (Carl-Triebel) Let T be a compact operator on a complex Banach space E and λ n (T ) n≥1 be the sequence of its eigenvalues, indexed such that

|λ 1 (T )| ≥ |λ 2 (T )| ≥ • • • . Then, for n = 1, 2, . . . and m = 0, 1, . . . , n -1, one has: (2.1) n j=1 |λ j (T )| ≤ 16 n T m a m+1 (T ) n-m .
(see [START_REF] Carl | Optimal Weyl-type inequalities for operators in Banach spaces[END_REF] for an optimal result). Then, we can state: Theorem 2.2 For every non-constant analytic self-map ϕ : D → D, there exist 0 < r ≤ 1 and c > 0, depending only on ϕ, such that the approximation numbers of the composition operator C ϕ : H p → H p satisfy:

a n (C ϕ ) ≥ c r n , n = 1, 2, . . . In particular lim inf n→∞ [a n (C ϕ )] 1/n ≥ r > 0.
Proof. If C ϕ is not compact, the result is trivial, with r = 1; so we assume that C ϕ is compact.

Before carrying on, we first recall some notation used in [START_REF] Li | On approximation numbers of composition operators[END_REF]. For every z ∈ D, let

ϕ ♯ (z) = |ϕ ′ (z)| (1 -|z| 2 ) 1 -|ϕ(z)| 2
be the pseudo-hyperbolic derivative of ϕ at z, and

[ϕ] = sup z∈D ϕ ♯ (z) .
By the Schwarz-Pick inequality, one has [ϕ] ≤ 1. Moreover, since ϕ is not constant, one has [ϕ] > 0.

We also set, for every operator T :

H p → H p : β -(T ) = lim inf n→∞ [a n (T )] 1/n .
For every a ∈ D, we are going to show that

β -(C ϕ ) ≥ ϕ ♯ (a) 2 , which will give β -(C ϕ ) ≥ [ϕ] 2
, by taking the supremum for a ∈ D, and the stated result, with 0 < r < [ϕ] 2 .

If ϕ ♯ (a) = 0, the result is obvious, so we assume that ϕ ♯ (a) > 0.

We consider the automorphism Φ a , defined by Φ a (z) = a-z 1-az , and set

ψ a = Φ ϕ(a) • ϕ • Φ a .
One has ψ a (0) = 0 and |ψ ′ a (0

)| = ϕ ♯ (a). Since C ϕ is compact on H p , C ψa = C Φa • C ϕ • C Φ ϕ(a)
is also compact on H p . But we know that this is equivalent to say that it is compact on H 2 . Since ψ a (0) = 0 and ψ ′ a (0) = ϕ ♯ (a) = 0, we know, by the Eigenfunction Theorem ( [START_REF] Shapiro | Composition operators and classical function theory[END_REF], p. 94), that the eigenvalues of C ψa : H 2 → H 2 are the numbers ψ ′ a (0) j , j = 0, 1, . . ., and have multiplicity one. Moreover, the proof given in [START_REF] Shapiro | Composition operators and classical function theory[END_REF], § 6.2 shows that the eigenfunctions σ j are not only in H 2 , but in all H q , 1 ≤ q < ∞. Hence λ j (C ψa ) = ψ ′ a (0) j-1 . We now use Proposition 2.1, with 2n instead of n and m = n -1; we get:

|ψ ′ a (0)| n(2n-1) = 2n j=1 |λ j (C ψa )| ≤ 16 2n C ψa n-1 a n (C ψa ) n+1 ≤ 16 2n C ψa n a n (C ψa ) n , since a n (C ψa ) ≤ C ψa . That implies that β -(C ψa ) ≥ |ψ ′ a (0)| 2 = ϕ ♯ (a) 2 .
Since C Φa and C Φ ϕ(a) are automorphisms, we have

β -(C ϕ ) = β -(C ψa ), hence the result.

Main result

In this section, we use the fortunate fact that, though the evaluation maps at well-chosen points of D can no longer be said to constitute a Riesz sequence, they will still constitute an unconditional sequence in H p with good constants, as we are going to see, which will be sufficient for our purposes.

Recall (see [START_REF] Garnett | Bounded Analytic Functions[END_REF], p. 276) that the interpolation constant κ σ of a finite sequence σ = (z 1 , . . . , z n ) of points z 1 , . . . , z n ∈ D is defined by:

(2.2) κ σ = sup |a1|, ...,|an|≤1 inf{ f ∞ ; f ∈ H ∞ and f (z j ) = a j , 1 ≤ j ≤ n} .
Then:

Lemma 2.3 For every finite sequence σ = (z 1 , . . . , z n ) of distinct points z 1 , . . . , z n ∈ D, one has: (2.3) κ -1 σ n j=1 λ j e zj ≤ n j=1 ω j λ j e zj ≤ κ σ n j=1
λ j e zj for all λ 1 , . . . , λ n ∈ C and all complex numbers numbers ω 1 , . . . , ω n such that

|ω 1 | = • • • = |ω n | = 1.
Proof. Set L = n j=1 λ j e zj and L ω = n j=1 ω j λ j e zj . There exists h ∈ H ∞ such that h ∞ ≤ κ σ and h(z j ) = ω j for every j = 1, . . . , n. For every g ∈ H p , one has L ω (g) = n j=1 ω j λ j g(z j ) = n j=1 h(z j )λ j g(z j ) = L(hg); hence:

|L ω (g)| ≤ L hg p ≤ L h ∞ g p ≤ κ σ L g p
and we get L ω ≤ κ σ L , which is the right-hand side of (2.3). The left-hand side follows, by replacing λ 1 , . . . , λ n by ω 1 λ 1 , . . . , ω n λ n .

We now prove the following lower estimate.

Theorem 2.4 Let ϕ : D → D and C ϕ : H p → H p , with 1 ≤ p < ∞. Let u 1 , . . . , u n ∈ D such that v 1 = ϕ(u 1 ), . . . , v n = ϕ(u n ) are distinct.
Then, for some constant c p depending only on p, we have:

(2.4) a n (C ϕ ) ≥ c p κ -1 v 1 + log 1 δ u -1/ min(p,2) inf 1≤j≤n 1 -|u j | 2 1 -|v j | 2 1/p
, where δ u is the uniform separation constant of the sequence u = (u 1 , . . . , u n ) and

κ v the interpolation constant of v = (v 1 , . . . , v n ).
For the proof, we need to know some precisions on the constant in Carleson's embedding theorem. Recall that the uniform separation constant δ σ of a finite sequence σ = (z 1 , . . . , z n ) in the unit disk D, is defined by: (2.5)

δ σ = inf 1≤j≤n k =j z j -z k 1 -z j z k • Lemma 2.
5 Let σ = (z 1 , . . . , z n ) be a finite sequence of distinct points in D with uniform separation constant δ σ . Then:

(2.6) n j=1 (1 -|z j | 2 ) |f (z j )| p ≤ 12 1 + log 1 δ σ f p p for all f ∈ H p . Proof. For a ∈ D, let k a (z) = √ 1-|a| 2 1-az
be the normalized reproducing kernel. For every positive Borel measure µ on D, let:

γ µ = sup a∈supp µ D |k a (z)| 2 dµ(z) .
The so-called Reproducing Kernel Thesis (see [START_REF] Nikol'skiǐ | A treatise on the Shift Operator[END_REF], Lecture VII, pp. 151-158) says that there is an absolute positive constant A 1 such that:

D |f (z)| p dµ(z) ≤ A 1 γ µ f p p
for every f ∈ H p (that follows from the case p = 2 in writing f = Bh 2/p where B is a Blaschke product and h ∈ H 2 ). Actually, one can take A 1 = 2 e (see [START_REF] Petermichl | Carleson potentials and the reproducing kernel thesis for embedding theorems[END_REF], Theorem 0.2). But when µ is the discrete measure n j=1 (1 -|z j | 2 ) δ zj , it is not difficult to check (see [START_REF] Duren | Theory of H p Spaces[END_REF], Lemma 1, p. 150, or [START_REF] Hoffman | Banach Spaces of Analytic Functions[END_REF], p. 201) that:

γ µ ≤ 1 + 2 log 1 δ σ •
That gives the result since 4 e ≤ 12.

Proof of Theorem 2.4. We will actually work with the Bernstein numbers of C * ϕ . Recall that they are defined in (1.5). That will suffice since

a n (C ϕ ) ≥ a n (C * ϕ ) (one has equality if C ϕ is compact: see [7] or [2], pp. 89- 91) and a n (C * ϕ ) ≥ b n (C * ϕ ). Take u 1 , . . . , u n ∈ D such that v 1 = ϕ(u 1 ), . . . , v n = ϕ(u n ) are distinct.
The points u 1 , . . . , u n are then also distinct and the subspace E = span {e u1 , . . . , e un } of (H p ) * is n-dimensional. Let

L = n j=1
λ j e uj be in the unit sphere of E. We set, for f ∈ H p and for j = 1, . . . , n:

Λ j = λ j e uj , and 
F j = e uj -1 f (u j ) ,
and finally:

Λ = (Λ 1 , . . . , Λ n ) and F = (F 1 , . . . , F n ) .
We will separate three cases.

Case 1:

1 < p ≤ 2.
One has C * ϕ (L) = n j=1 λ j e vj . Using Lemma 2.3, we obtain for any choice of complex signs ω 1 , . . . , ω n :

(2.7)

C * ϕ (L) ≥ κ -1 v n j=1
ω j λ j e vj .

Let now q be the conjugate exponent of p. We know that the space H p is of type p as a subspace of L p ([9], p. 169) and therefore its dual (H p ) * is of cotype q ([9], p. 165), with cotype constant ≤ τ p , the type p constant of L p (let us note that we might use that (H p ) * is isomorphic to the subspace H q of L q , but we have then to introduce the constant of this isomorphism). Hence, by averaging (2.7) over all independent choices of signs and using the cotype q property of (H p ) * , we get:

C * ϕ (L) ≥ τ -1 p κ -1 v n j=1 |λ j | q e vj q 1/q ≥ τ -1 p κ -1 v µ n n j=1 |λ j | q e uj q 1/q , so that (2.8) C * ϕ (L) ≥ τ -1 p κ -1 v µ n Λ q ,
where:

µ n = inf 1≤j≤n e vj e uj = inf 1≤j≤n 1 -|u j | 2 1 -|v j | 2 1/p .
It remains to give a lower bound for Λ q . But, by Hölder's inequality:

|L(f )| = n j=1 λ j f (u j ) = n j=1 Λ j F j ≤ Λ q F p .
Since

F p p = n j=1 e uj -p |f (u j )| p = n j=1 (1 -|u j | 2 ) |f (u j )| p ,
Lemma 2.5 gives:

|L(f )| ≤ Λ q 12 1 + log 1 δ u 1/p f p .
Taking the supremum over all f with f p ≤ 1, we get, taking into account that L = 1:

(2.9)

Λ q ≥ 12 1 + log 1 δ u -1/p
. By combining (2.8) and (2.9), we get:

C * ϕ (L) ≥ (12) -1/p τ -1 p µ n κ -1 v 1 + log 1 δ u -1/p . Therefore: b n (C * ϕ ) ≥ (12) -1/p τ -1 p µ n κ -1 v 1 + log 1 δ u -1/p . Case 2: 2 < p < ∞.
We follow the same route, but in this case, H p is of type 2 and hence (H p ) * is of cotype 2. Therefore, we get:

(2.10)

C * ϕ (L) ≥ τ -1 2 κ -1 v µ n Λ 2
and, using Cauchy-Schwarz inequality:

(2.11)

Λ 2 ≥ 12 1 + log 1 δ u -1/2
; so:

(2.12)

C * ϕ (L) ≥ (12) -1/2 τ -1 2 µ n κ -1 v 1 + log 1 δ u -1/2 . Case 3: p = 1.
In this case (H 1 ) * (which is isomorphic to the space BM OA) has no finite cotype. But, for each k = 1, . . . , n, one has, using Lemma 2.3:

|λ k | e v k = 1 2 j =k λ j e vj + λ k e v k - j =k λ j e vj -λ k e v k ≤ 1 2 j =k λ j e vj + λ k e v k + j =k λ j e vj -λ k e v k ≤ κ v n j=1
λ j e vj ;

hence:

(2.13)

C * ϕ (L) ≥ κ -1 v µ n Λ ∞ . Since |L(F )| ≤ Λ ∞ F 1 ,
we get, as above, using Lemma 2.5:

(2.14) Λ ∞ ≥ 12 1 + log 1 δ u -1
, and therefore:

(2.15)

C * ϕ (L) ≥ (12) -1 µ n κ -1 v 1 + log 1 δ u -1
and that finishes the proof of Theorem 2.4.

Example. We will now apply this result to lens maps. We refer to [START_REF] Shapiro | Composition operators and classical function theory[END_REF] or [START_REF] Lefèvre | Some new properties of composition operators associated to lens maps[END_REF] for their definition. For θ ∈ (0, 1), we denote:

(2.16)

λ θ (z) = (1 + z) θ -(1 -z) θ (1 + z) θ + (1 -z) θ • Proposition 2.
6 Let λ θ be the lens map of parameter θ acting on H p , with 1 ≤ p < ∞. Then, for positive constants a and b, depending only on θ and p:

a n (C λ θ ) ≥ a e -b √ n .
Actually, this estimate is valid for polygonal maps as well.

Proof. Let 0 < σ < 1 and consider u j = 1 -σ j and v j = λ θ (u j ), 1 ≤ j ≤ n. We know from [START_REF] Li | On approximation numbers of composition operators[END_REF], Lemma 6.4 and Lemma 6.5, that, for α = π 2 2 and β = β θ = π 2 2 θ θ :

δ u ≥ e -α/(1-σ) and δ v ≥ e -β/(1-σ) .
But we know that the interpolation constant κ σ is related to the uniform separation constant δ σ by the following inequality ([5] page 278), in which Λ is a positive numerical constant:

(2.17)

1 δ σ ≤ κ σ ≤ Λ δ σ 1 + log 1 δ σ •
Actually, S. A. Vinogradov, E. A. Gorin and S. V. Hrušcëv [START_REF] Vinogradov | Free interpolation in H ∞ in the sense of P. Jones[END_REF] (see [START_REF] Mortini | Thin interpolating sequences in the disk[END_REF], p. 505) proved that

κ σ ≤ 2 e δ σ 1 + 2 log 1 δ σ , so we can take Λ ≤ 4 e ≤ 12.
It follows that

(2.18) κ -1 v ≥ 1 -σ Λ(β + 1)
e -β/ (1-σ) .

Setting p = min(p, 2), we have:

(2.19) 1 + log 1 δ u -1/ p ≥ 1 -σ α + 1 1/ p .
We now estimate µ n . Since λ θ (0) = 0, Schwarz's lemma says that

|λ θ (z)| ≤ |z|; hence 1-|z| 2 1-|λ θ (z)| 2 ≥ 1-|z| 1-|λ θ (z)| . But 1 -v j = 1 -λ θ (u j ) = 2σ jθ
(2-σ j ) θ +σ jθ ; hence (since u j and v j are real):

1

-|u j | 2 1 -|v j | 2 ≥ 1 -u j 1 -v j = σ j 2σ jθ [(2 -σ j ) θ + σ jθ ] .
Since the function f (x) = (2 -x) θ + x θ increases on [0, 1], one gets:

1 -|u j | 2 1 -|v j | 2 ≥ 1 2 σ j 1-θ ,
and therefore:

(2.20)

µ n ≥ 1 2 σ n (1-θ)/p .
Applying now Theorem 2.4 and using (2.18), (2.19) and (2.20), we get:

a n (C λ θ ) ≥ α p,θ e -β/(1-σ) (1 -σ) 1/ p σ n(1-θ)/p with α p,θ = cp Λ(β+1)(α+1) 1/ p 2 (1-θ)/p • Taking σ = e -ε where 0 < ε < 1, we get, since 1 -e -ε ≥ ε/2: a n (C λ θ ) ≥ α p,θ e -2β/ε ε 2 1/ p e -εn(1-θ)/p .
Optimizing by taking ε = 3βp 1-θ 1

√ n gives, for n large enough (in order to have ε < 1):

(2.21) a n (C λ θ ) ≥ α ′ p,θ n -1/(2 p) e -β p,θ √ n with α ′ p,θ = α p,θ βp 2(1-θ) 1/(2 p) and β p,θ = 2β(1-θ) p • We get Theorem 2.6, with b > β p,θ . Let us note that β p,θ = 2 1-θ 2 π √ p 1-θ
θ tends to 0 when θ goes to 1 and tends to infinity when θ goes to 0.

A minoration depending on the radial behaviour of ϕ

We are using Theorem 2.4 to give, as in [START_REF] Li | Estimates for approximation numbers of some classes of composition operators on the Hardy space[END_REF], Theorem 3.2, a lower bound for a n (C ϕ ) which depends on the behaviour of ϕ near ∂D.

We recall first (see [START_REF] Li | Estimates for approximation numbers of some classes of composition operators on the Hardy space[END_REF], Section 3) that an analytic self-map ϕ :

D → D is said to be real if it takes real values on ] -1, 1[. If ω : [0, 1] → [0, 2]
is a modulus of continuity (meaning that ω is continuous, increasing, sub-additive, vanishing at 0, and concave), ϕ is said to be an ω-radial symbol if it is real and:

(2.22) 1 -ϕ(r) ≤ ω(1 -r) , 0 ≤ r < 1 .
We have the following result.

Theorem 2.7 Let ϕ be an ω-radial symbol. Then, for 1 ≤ p < ∞, the approximation numbers of the composition operator C ϕ : H p → H p satisfy:

(2.23) a n (C ϕ ) ≥ c ′ p sup 0<σ<1 ω -1 (a σ n ) a σ n 1/p (1 -σ) 1/ max(p * ,2) exp - 5 1 -σ ,
where c ′ p is a constant depending only on p, p * is the conjugate exponent of p, and a = 1 -ϕ(0) > 0.

Proof. As in [START_REF] Li | Estimates for approximation numbers of some classes of composition operators on the Hardy space[END_REF], p. 556, we fix 0 < σ < 1 and define inductively u j ∈ [0, 1) by u 0 = 0 and, using the intermediate value theorem:

1 -ϕ(u j+1 ) = σ [1 -ϕ(u j )] , with 1 > u j+1 > u j .
We set v j = ϕ(u j ). We have -1 < v j < 1 and 1 -v n = a σ n . We proved in [START_REF] Li | Estimates for approximation numbers of some classes of composition operators on the Hardy space[END_REF], p. 556, that:

(2.24) 1 -|u j | 2 1 -|v j | 2 ≥ 1 2 ω -1 (a σ n ) a σ n •
Moreover, we proved in [START_REF] Li | Estimates for approximation numbers of some classes of composition operators on the Hardy space[END_REF], p. 557, that the uniform separation constant of v = (v 1 , . . . , v n ) is such that:

(2.25)

δ v ≥ exp - 5 1 -σ • Since δ u ≥ δ v ,
we get, from (2.17), that:

(2.26)

κ u ≤ 12 6 -σ 1 -σ exp 5 1 -σ ≤ 60 1 1 -σ exp 5 1 -σ •
Using now (2.4) of Theorem 2.4 and combining (2.24), (2.25) and (2.26), we get Theorem 2.7.

Example 1: lens maps. Let us come back to the lens maps λ θ for testing Theorem 2.7. We have ω -1 (h) ≈ h 1/θ (see [START_REF] Lefèvre | Some new properties of composition operators associated to lens maps[END_REF], Lemma 2.5) and a = 1 -λ θ (0) = 1. Setting K = 1 10 √ p 1-θ θ and taking, for n large enough, σ = 1 -1

K

√ n , we have, using that e -s ≤ 1 -4 5 s for s > 0 small enough, σ n ≥ exp(-5

4K

√ n) and hence:

a n (C λ θ ) ≥ c θ,p n - 1 2 max(p * ,2) exp - 5 √ p 1 -θ θ √ n .
Note that the coefficient of √ n in the exponential is slightly different of that in (2.21), but of the same order.

Example 2: cusp map. We refer to [START_REF] Li | Estimates for approximation numbers of some classes of composition operators on the Hardy space[END_REF], Section 4, for its definition and properties. It is the conformal mapping χ from D onto the domain represented on Fig. 1 such that χ(1) = 1, χ(-1) = 0, χ(i) = (1 + i)/2 and χ(-i) = (1 -i)/2. We proved in [START_REF] Li | Estimates for approximation numbers of some classes of composition operators on the Hardy space[END_REF], Lemma 4.2, that, for 0 ≤ r < 1, one has: • Since 1 -2 π log 2 > 0 and arctan x ≤ x for x ≥ 0, we get that:

1 -χ(r) ≤ π 2 1 log 1+r 1-r ≤ π 2 1 log 1 1-r ≤ 2 1 log 1 1-r

•

Hence χ is an ω-radial symbol with ω(x) = 2/ log(1/x). Then ω -1 (h) = e -2/h . By choosing σ = 1 -log n 4n in (2.23), we get, using that log(1 -x) ≥ -2x for x > 0 small enough, that, for n large enough, σ n ≥ 1/ √ n; hence:

a n (C χ ) ≥ c ′′ p √ n exp -(2 a) √ n 1/p log n n 1/ max(p * ,2) exp - 20n log n •
It follows that, for some constant C p > 0 depending only on p, we have:

(2.27) a n (C χ ) ≥ C p exp - 25n log n •
It has to be stressed that the term in the exponential does not depend on p.

Example 3: Shapiro-Taylor's maps. These maps ς θ , for θ > 0, were defined in [START_REF] Shapiro | Compact, nuclear, and Hilbert-Schmidt composition operators on H 2[END_REF]. Let us recall their definition. For ε > 0, we set V ε = {z ∈ C ; ℜz > 0 and |z| < ε}. For ε = ε θ > 0 small enough, one can define (2.28)

f θ (z) = z(-log z) θ ,
for z ∈ V ε , where log z will be the principal determination of the logarithm. Let now g θ be the conformal mapping from D onto V ε , which maps T = ∂D onto ∂V ε , defined by g θ (z) = ε ϕ 0 (z), where ϕ 0 is the conformal map from D onto V 1 , given by:

(2.29) ϕ 0 (z) = z -i iz -1 1/2 -i -i z -i iz -1 1/2 + 1 •
Then, we define:

(2.30)

ς θ = exp(-f θ • g θ ).
We saw in [START_REF] Li | Estimates for approximation numbers of some classes of composition operators on the Hardy space[END_REF], p. 560, that ω

-1 (h) = K θ h log(1/h) -θ . Hence, choosing σ = 1/(e α 1/n θ )
, where α θ = 1 -ς θ (0), we get that:

(2.31)

a n (C ς θ ) ≥ c p,θ . 1 n θ/2p
• However, we already remarked in [START_REF] Li | Estimates for approximation numbers of some classes of composition operators on the Hardy space[END_REF], Section 4.2, that, even for p = 2, this result is not optimal.

Upper bound

For upper bounds, there is essentially no change with regard to the case p = 2. Hence we essentially only state some results.

We have the following upper bound, which can be obtained with the same proof as in [START_REF] Lefèvre | Some new properties of composition operators associated to lens maps[END_REF].

Theorem 3.1 Let C ϕ : H p → H p , 1 ≤ p < ∞,
a composition operator, and n ≥ 1. Then, for every Blaschke product B with (strictly) less than n zeros, each counted with its multiplicity, one has:

a n (C ϕ ) ≤ C √ n sup 0<h<1 ξ∈T 1 h S(ξ,h) |B| p dm ϕ 1/p
, where m ϕ is the pullback measure of m, the normalized Lebesgue measure on T, under ϕ and S(ξ, h) = D ∩ D(ξ, h) is the Carleson window of size h centered at ξ ∈ T.

Proof. We first estimate the Gelfand number c n (C ϕ ) by restricting to the subspace BH p which is of codimension < n. As in [START_REF] Lefèvre | Some new properties of composition operators associated to lens maps[END_REF], Lemma 2.4:

c n (C ϕ ) sup 0<h<1 ξ∈T 1 h S(ξ,h) |B| p dm ϕ 1/p
. Now (see [START_REF] Carl | Entropy, Compactness and the Approximation of Operators[END_REF], Proposition 2.4.3), one has a n (C ϕ ) ≤ √ 2n c n (C ϕ ), hence the result.

We can then deduce, with the same proof, the following version of [START_REF] Li | Estimates for approximation numbers of some classes of composition operators on the Hardy space[END_REF], Theorem 2.3.

Recall ([11], Definition 2.2) that a symbol ϕ ∈ A(D) (i.e. ϕ : D → D is continuous and analytic in D) is said to be globally regular if ϕ(D) ∩ ∂D = {ξ 1 , . . . , ξ l } and there exists a modulus of continuity ω (i.e. a continuous, increasing and sub-additive function ω : [0, A] → R + , which vanishes at zero, and that we may assume to be concave), such that, writing E ξj = {t ; γ(t) = ξ j }, one has T = l j=1 E ξj + [-r j , r j ] for some r 1 , . . . , r l > 0, and for some positive constants C, c > 0:

|γ(t) -γ(t j )| ≤ C 1 -|γ(t)| (3.1)
c ω(|t -t j |) ≤ |γ(t) -γ(t j )| (3.2) for j = 1, . . . , l, all t j ∈ E ξj with |t -t j | ≤ r j . Theorem 3.2 Let ϕ be a symbol in A(D) whose image touches ∂D exactly at the points ξ 1 , . . . , ξ l and which is globally-regular. Then there are constants κ, K, L > 0, depending only on ϕ, such that, for every k ≥ 1:

(3.3) a k (C ϕ ) ≤ K ω -1 (κ 2 -N k ) κ 2 -N k 1/p
, where N k is the largest integer such that lN d N < k and d N is the integer part of log κ 2 -N ω -1 (κ 2 -N ) log(χ -p ) + 1, with 0 < χ < 1 an absolute constant. As a corollary, we get for lens maps λ θ (as well as for polygonal maps), in the same way as Theorem 2.4 in [START_REF] Li | Estimates for approximation numbers of some classes of composition operators on the Hardy space[END_REF], p. 550 (recall that then ω(h) ≈ h θ ), the following upper bound. For the cusp map, we also have as in [START_REF] Li | Estimates for approximation numbers of some classes of composition operators on the Hardy space[END_REF], Theorem 4.3 (here, ω(h) ≈ 1/ log(1/h)). 
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 1 .3) C *ϕ (e a ) = e ϕ(a) still holds.

(1. 7 )

 7 a n (T ) ≥ c n (T ) and a n (T ) ≥ b n (T ) , and, when X and Y are Hilbert spaces, one has a n (T ) = b n (T ) = c n (T ) ([16], Theorem 2.1).
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Theorem 3 . 3

 33 Let ϕ = λ θ be the lens map of parameter θ acting on H p , 1 < p < ∞. Then, for positive constants b and c depending only on θ and p:a n (C λ θ ) ≤ c e -b √ n .

Theorem 3 . 4

 34 Let ϕ = χ be the cusp map. For some positive constants b and c depending only on p, one has:a n (C χ ) ≤ c e -b n/ log n .
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