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We show that the decay of approximation numbers of compact composition operators on the Dirichlet space D can be as slow as we wish. We also prove the optimality of a result of O. El-Fallah, K. Kellay, M. Shabankhah and H. Youssfi on boundedness on D of self-maps of the disk all of whose powers are norm-bounded in D.

Introduction

Recall that if ϕ is an analytic self-map of D, a so-called Schur function, the composition operator C ϕ associated to ϕ is formally defined by

C ϕ (f ) = f • ϕ .
The Littlewood subordination principle ( [START_REF] Cowen | Composition operators on spaces of analytic functions[END_REF], p. 30) tells us that C ϕ maps the Hardy space H 2 to itself for every Schur function ϕ. Also recall that if H is a Hilbert space and T : H → H a bounded linear operator, the n-th approximation number a n (T ) of T is defined as (1.1) a n (T ) = inf{ T -R ; rank R < n}, n = 1, 2, . . . .

In [START_REF] Li | On approximation numbers of composition operators[END_REF], working on that Hardy space H 2 (and also on some weighted Bergman spaces), we have undertaken the study of approximation numbers a n (C ϕ ) of composition operators C ϕ , and proved among other facts the following:

Theorem 1.1 Let (ε n ) n≥1 be a non-increasing sequence of positive numbers tending to 0. Then, there exists a compact composition operator C ϕ on H 2 such that

lim inf n→∞ a n (C ϕ ) ε n > 0 .
As a consequence, there are composition operators on H 2 which are compact but in no Schatten class.

The last item had been previously proved by Carroll and Cowen ([3]), the above statement with approximation numbers being more precise.

For the Dirichlet space, the situation is more delicate because not every analytic self-map of D generates a bounded composition operator on D. When this is the case, we will say that ϕ is a symbol (understanding "of D"). Note that every symbol is necessarily in D.

In [START_REF] Lefèvre | Approximation numbers of composition operators on the Dirichlet space[END_REF], we have performed a similar study on that Dirichlet space D, and established several results on approximation numbers in that new setting, in particular the existence of symbols ϕ for which C ϕ is compact without being in any Schatten class S p . But we have not been able in [START_REF] Lefèvre | Approximation numbers of composition operators on the Dirichlet space[END_REF] to prove a full analogue of Theorem 1.1. Using a new approach, essentially based on Carleson embeddings and the Schur test, we are now able to prove that analogue. Theorem 1.2 For every sequence (ε n ) n≥1 of positive numbers tending to 0, there exists a compact composition operator C ϕ on the Dirichlet space D such that

lim inf n→∞ a n (C ϕ ) ε n > 0 .
Turning now to the question of necessary or sufficient conditions for a Schur function ϕ to be a symbol, we can observe that, since (z n / √ n) n≥1 is an orthonormal sequence in D and since formally C ϕ (z n ) = ϕ n , a necessary condition is as follows:

(1.2) ϕ is a symbol =⇒ ϕ n D = O ( √ n) .
It is worth noting that, for any Schur function, one has:

ϕ ∈ D =⇒ ϕ n D = O (n)
(of course, this is an equivalence). Indeed, anticipating on the next section, we have for any integer n ≥ 1:

ϕ n 2 D = |ϕ(0)| 2n + D n 2 |ϕ(z)| 2(n-1) |ϕ ′ (z)| 2 dA(z) ≤ |ϕ(0)| 2 + D n 2 |ϕ ′ (z)| 2 dA(z) ≤ n 2 ϕ 2 D ,
giving the result.
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Now, the following sufficient condition was given in [START_REF] El-Fallah | Level sets and composition operators on the Dirichlet space[END_REF]:

(1.3) ϕ n D = O (1) =⇒ ϕ is a symbol .
In view of (1.2), one might think of improving this condition, but it turns out to be optimal, as says the second main result of that paper.

Theorem 1.3 Let (M n ) n≥1 be an arbitrary sequence of positive numbers tending to ∞. Then, there exists a Schur function ϕ ∈ D such that:

1) ϕ n D = O (M n ) as n → ∞; 2) ϕ is not a symbol on D.
The organization of that paper will be as follows: in Section 2, we give the notation and background. In Section 3, we prove Theorem 1.2; in Section 3.1, we prove Theorem 1.3; and we end with a section of remarks and questions.

2 Notation and background. 

f 2 D := |f (0)| 2 + D |f ′ (z)| 2 dA(z) < +∞ . If f (z) = ∞ n=0 c n z n , one has: (2.2) f 2 D = |c 0 | 2 + ∞ n=1 n |c n | 2 .
Then . D is a norm on D, making D a Hilbert space, and . H 2 ≤ . D . For further information on the Dirichlet space, the reader may see [START_REF] Arcozzi | The Dirichlet space: a survey[END_REF] or [START_REF] Ross | The classical Dirichlet space, Recent advances in operatorrelated function theory[END_REF].

The Bergman space B is the space of analytic functions f : D → C such that:

f 2 B := D |f (z)| 2 dA(z) < +∞ . If f (z) = ∞ n=0 c n z n , one has f 2 B = ∞ n=0 |cn| 2 n+1 . If f ∈ D, one has by definition: f 2 D = f ′ 2 B + |f (0)| 2 .
Recall that, whereas every Schur function ϕ generates a bounded composition operator C ϕ on Hardy and Bergman spaces, it is no longer the case for the Dirichlet space (see [START_REF] Maccluer | Angular derivatives and compact composition operators on the Hardy and Bergman spaces[END_REF], Proposition 3.12, for instance).

We denote by b n (T ) the n-th Bernstein number of the operator T : H → H, namely:

(2.3) b n (T ) = sup dim E=n inf f ∈SE T x
where S E denotes the unit sphere of E. It is easy to see ( [START_REF] Lefèvre | Approximation numbers of composition operators on the Dirichlet space[END_REF]) that b n (T ) = a n (T ) for all n ≥ 1 .

(recall that the approximation numbers are defined in (1.1)).

If ϕ is a Schur function, let

(2.4) n ϕ (w) = #{z ∈ D ; ϕ(z) = w} ≥ 0
be the associated counting function. If f ∈ D and g = f • ϕ, the change of variable formula provides us with the useful following equation ( [START_REF] Zorboska | Composition operators on weighted Dirichlet spaces[END_REF], [START_REF] Lefèvre | Approximation numbers of composition operators on the Dirichlet space[END_REF]):

(2.5)

D |g ′ (z)| 2 dA(z) = D |f ′ (w)| 2 n ϕ (w) dA(w)
(the integrals might be infinite). In those terms, a necessary and sufficient condition for ϕ to be a symbol is as follows ([17], Theorem 1). Let:

(2.6) ρ ϕ (h) = sup ξ∈T S(ξ,h) n ϕ dA
where S(ξ, h) = D ∩ D(ξ, h) is the Carleson window centered at ξ and of size h. Then ϕ is a symbol if and only if:

(2.7)

sup 0<h<1 1 h 2 ρ ϕ (h) < ∞.
This is not difficult to prove. In view of (2.5), the boundedness of C ϕ amounts to the existence of a constant C such that:

D |f ′ (w)| 2 n ϕ (w) dA(w) ≤ C D |f ′ (z)| 2 dA(z) , ∀f ∈ D.
Since f ′ = h runs over B as f runs over D, and with equal norms, the above condition reads:

D |h(w)| 2 n ϕ (w) dA(w) ≤ C D |h(z)| 2 dA(z) , ∀h ∈ B.
This exactly means that the measure n ϕ dA is a Carleson measure for B. Such measures have been characterized in [START_REF] Hastings | A Carleson theorem for Bergman spaces[END_REF] and that characterization gives (2.7).

But this condition is very abstract and difficult to test, and sometimes more "concrete" sufficient conditions are desirable. In [START_REF] Lefèvre | Approximation numbers of composition operators on the Dirichlet space[END_REF], we proved that, even if the Schur function extends continuously to D, no Lipschitz condition of order α, 0 < α < 1, on ϕ is sufficient for ensuring that ϕ is a symbol. It is worth noting that the limiting case α = 1, so restrictive it is, guarantees the result.

Proposition 2.1 Suppose that the Schur function ϕ is in the analytic Lipschitz class on the unit disk, i.e. satisfies:

|ϕ(z) -ϕ(w)| ≤ C |z -w| , ∀z, w ∈ D .
Then C ϕ is bounded on D.

Proof. Let f ∈ D; one has:

C ϕ (f ) 2 D = |f ϕ(0) | 2 + D |f ′ ϕ(z) | 2 |ϕ ′ (z)| 2 dA(z) ≤ |f ϕ(0) | 2 + ϕ ′ 2 ∞ D |f ′ ϕ(z) | 2 dA(z) .
This integral is nothing but C ϕ (f ′ ) 2 B and hence, since C ϕ is bounded on the Bergman space B, we have, for some constant K 1 :

D |f ′ ϕ(z) | 2 dA(z) ≤ K 2 1 f ′ 2 B ≤ K 2 1 f 2 D .
On the other hand,

|f ϕ(0) | ≤ (1 -|ϕ(0)| 2 ) -1/2 f H 2 ≤ (1 -|ϕ(0)| 2 ) -1/2 f D ,
and we get

C ϕ (f ) 2 D ≤ K 2 f 2 D , with K 2 = K 2 1 + (1 -|ϕ(0)| 2 ) -1 .
3 Proof of Theorem 1.2

We are going to prove Theorem 1.2 mentioned in the Introduction, which we recall here. Theorem 3.1 For every sequence (ε n ) of positive numbers with limit 0, there exists a compact composition operator C ϕ on D such that

lim inf n→∞ a n (C ϕ ) ε n > 0 .
Before entering really in the proof, we may remark that, without loss of generality, by replacing ε n with inf(2 -8 , sup k≥n ε k ), we can, and do, assume that (ε n ) n decreases and ε 1 ≤ 2 -8 .

Moreover, we can assume that (ε n ) n decreases "slowly", as said in the following lemma. Lemma 3.2 Let (ε i ) be a decreasing sequence with limit zero and let 0 < ρ < 1. Then, there exists another sequence ( ε i ), decreasing with limit zero, such that ε i ≥ ε i and ε i+1 ≥ ρ ε i , for every i ≥ 1.

Proof. We define inductively ε i by ε 1 = ε 1 and

ε i+1 = max(ρ ε i , ε i+1 ).
It is seen by induction that ε i ≥ ε i and that ε i decreases to a limit a ≥ 0. If ε i = ε i for infinitely many indices i, we have a = 0. In the opposite case, ε i+1 = ρ ε i from some index i 0 onwards, and again a = 0 since ρ < 1.

We will take ρ = 1/2 and assume for the sequel that

ε i+1 ≥ ε i /2.
Proof of Theorem 3.1. We first construct a subdomain Ω = Ω θ of D defined by a cuspidal inequality:

(3.1) Ω = {z = x + iy ∈ D ; |y| < θ(1 -x) , 0 < x < 1} , where θ : [0, 1] → [0, 1[ is a continuous increasing function such that (3.2) θ(0) = 0 and θ(1 -x) ≤ 1 -x . Note that since 1 -x ≤ √ 1 -x 2 , the condition |y| < θ(1 -x) implies that z = x + iy ∈ D. Note also that 1 ∈ Ω and that Ω is a Jordan domain.
We introduce a parameter δ with ε 1 ≤ δ ≤ 1ε 1 . We put:

(3.3) θ(δ j ) = ε j δ j
and we extend θ to an increasing continuous function from (0, 1) into itself (piecewise linearly, or more smoothly, as one wishes). We claim that:

(3.4) θ(h) ≤ h and θ(h) = o (h) as h → 0 .
Indeed, if δ j+1 ≤ h < δ j , we have θ(h)/h ≤ θ(δ j )/δ j+1 = ε j /δ, which is ≤ ε 1 /δ ≤ 1 and which tends to 0 with h.

We define now ϕ = ϕ θ : D → Ω as a continuous map which is a Riemann map from D onto Ω, and with ϕ(1) = 1 (a cusp-type map). Since ϕ is univalent, one has n ϕ = 1I Ω , and since Ω is bounded, ϕ defines a symbol on D, by (2.7). Moreover, (3.4) implies that A[S(ξ, h) ∩ Ω] ≤ h θ(h) for every ξ ∈ T; hence, ρ ϕ being defined in (2.6), one has ρ ϕ (h) = o (h 2 ) as h → 0 + . In view of [START_REF] Zorboska | Composition operators on weighted Dirichlet spaces[END_REF], this little-oh condition guarantees the compactness of C ϕ : D → D.

It remains to minorate its approximation numbers.

The measure µ = n ϕ dA is a Carleson measure for the Bergman space B, and it was proved in [START_REF] Lefèvre | Compact composition operators on the Dirichlet space and capacity of sets of contact points[END_REF] that C * ϕ C ϕ is unitarily equivalent to the Toeplitz operator T µ = I * µ I µ : B → B defined by:

(3.5) T µ f (z) = D f (w) (1 -wz) 2 dA(w) = D f (w)K w (z) dA(w) ,
where I µ : B → L 2 (µ) is the canonical inclusion and K w the reproducing kernel of B at w, i.e. K w (z) = 1 (1-wz) 2 . Actually, we can get rid of the analyticity constraint in considering, instead of T µ , the operator S µ = I µ I * µ : L 2 (µ) → L 2 (µ), which corresponds to the arrows:

L 2 (µ) I * µ -→ B Iµ -→ L 2 (µ) .
We use the relation (3.5) which implies:

(3.6) a n (C ϕ ) = a n (I µ ) = a n (I * µ ) = a n (S µ ) .
We set:

(3.7) c j = 1 -2δ j and r j = ε j δ j

One has r j = ε j (1c j )/2.

Lemma 3.3

The disks ∆ j = D(c j , r j ), j ≥ 1, are disjoint and contained in Ω.

Proof.

If z = x + iy ∈ ∆ j , then 1 -x > 1 -c j -r j = (1 -c j )(1 -ε j /2) = 2δ j (1 -ε j /2) ≥ δ j and |y| < r j = θ(δ j ); hence |y| < θ(δ j ) ≤ θ(1 -x) and z ∈ Ω. On the other hand, c j+1 -c j = 2(δ j -δ j+1 ) = 2(1 -δ)δ j ≥ 2ε 1 δ j ≥ 2ε j δ j = 2r j > r j + r j+1 ; hence ∆ j ∩ ∆ j+1 = ∅.
We will next need a description of S µ .

Lemma 3.4 For every g ∈ L 2 (µ) and every z ∈ D:

I * µ g(z) = Ω g(w) (1 -wz) 2 dA(w) (3.8) S µ g(z) = Ω g(w) (1 -wz) 2 dA(w) 1I Ω (z) . (3.9)
Proof. K w being the reproducing kernel of B, we have for any pair of functions f ∈ B and g ∈ L 2 (µ):

I * µ g, f B = g, I µ f L 2 (µ) = Ω g(w)f (w) dA(w) = Ω g(w) K w , f B dA(w) = Ω g(w)K w dA(w), f B , so that I * µ g = Ω g(w)K w dA(w)
, giving the result. In the rest of the proof, we fix a positive integer n and put:

(3.10)

f j = 1 r j 1I ∆j , j = 1, . . . , n .
Let:

E = span (f 1 , . . . , f n ) .
This is an n-dimensional subspace of L 2 (µ).

The ∆ j 's being disjoint, the sequence (f 1 , . . . , f n ) is orthonormal in L 2 (µ). Indeed, those functions have disjoint supports, so are orthogonal, and:

f 2 j dµ = f 2 j n ϕ dA = ∆j 1 r 2 j dA = 1 .
We now estimate from below the Bernstein numbers of I * µ . To that effect, we compute the scalar products m i,j = I * µ (f i ), I * µ (f j ) . One has:

m i,j = f i , S µ (f j ) = Ω f i (z)S µ f j (z) dA(z) = Ω×Ω f i (z)f j (w) (1 -wz) 2 dA(z) dA(w) = 1 r i r j ∆i×∆j 1 (1 -wz) 2 dA(z) dA(w) . Lemma 3.5 We have (3.11) m i,i ≥ ε 2 i 32 , and |m i,j | ≤ ε i ε j δ j-i for i < j . Proof. Set ε ′ i = ri 1-c 2 i = εi 2(1+ci) . One has εi 4 ≤ ε ′ i ≤ εi 2 .
We observe that (recall that A(∆ i ) = r 2 i ):

m i,i -ε ′ i 2 = 1 r 2 i ∆i×∆i 1 (1 -wz) 2 - 1 (1 -c 2 i ) 2 dA(z) dA(w) .
Therefore, using the fact that, for z ∈ ∆ i and w ∈ D:

|1 -wz| ≥ 1 -|z| ≥ 1 -c i -r i = 1 -c i -ε i 1 -c i 2 ≥ (1 -c i ) 1 - ε i 2 ≥ 1 -c i 2
and then the mean-value theorem, we get: [START_REF] Ross | The classical Dirichlet space, Recent advances in operatorrelated function theory[END_REF]. This gives us the lower bound

|m i,i -ε ′ i 2 | ≤ 1 r 2 i ∆i×∆i 1 (1 -wz) 2 - 1 (1 -c 2 i ) 2 dA(z) dA(w) ≤ 1 r 2 i ∆i×∆i 32 r i (1 -c i ) 3 dA(z) dA(w) = 32 r 3 i (1 -c i ) 3 ≤ 32 × 8 ε ′ i 3 ≤ ε ′ i 2 2 , since ε i ≤ ε 1 ≤ 2 -8 implies that ε ′ i ≤ 1/(32 × 
m i,i ≥ ε ′ i 2 /2 ≥ ε 2 i /32.
Next, for i < j:

|m i,j | ≤ 1 r i r j ∆i×∆j 1 (1 -wz) 2 dA(z) dA(w) ≤ 1 r i r j 4 (1 -c i ) 2 r 2 i r 2 j = 4 ε i ε j δ i+j 4 δ 2i = ε i ε j δ j-i ,
and that ends the proof of Lemma 3.5.

We further write the n × n matrix M = (m i,j ) 1≤i,j≤n as M = D + R where

D is the diagonal matrix m i = m i,i with m i ≥ ε 2 i 32 , 1 ≤ i ≤ n.
Observe that M is nothing but the matrix of S µ on the orthonormal basis (f 1 , . . . , f n ) of E, so that we can identify M and S µ on E. Now the following lemma will end the proof of Theorem 3.1.

Lemma 3.6 If δ ≤ 1/200, we have:

(3.12) D -1 R ≤ 1/2 .
Indeed, by the ideal property of Bernstein numbers, Neumann's lemma and the relations:

M = D(I + D -1 R) , and D = M Q with Q ≤ 2, we have b n (D) ≤ b n (M ) Q ≤ 2 b n (M )
, that is:

a n (S µ ) = b n (S µ ) ≥ b n (M ) ≥ b n (D) 2 = m n,n 2 ≥ ε 2 n 64 ,
since the n first approximation numbers of the diagonal matrix D (the matrices being viewed as well as operators on the Hilbertian space C n with its canonical basis) are m 1,1 , . . . , m n,n . It follows that, using (3.6):

(3.13) a n (I µ ) = a n (I * µ ) = a n (S µ ) ≥ ε n 8 •
In view of (3.6), we have as well a n (C ϕ ) ≥ ε n /8, and we are done.

Proof of Lemma 3.6. Write M = (m i,j ) = D(I + N ) with N = D -1 R. One has:

(3.14) N = (ν i,j ), with ν i,i = 0 and ν i,j = m i,j m i,i for j = i .

We shall show that N ≤ 1/2 by using the (unweighted) Schur test, which we recall ( [START_REF] Halmos | A Hilbert space problem book[END_REF], Problem 45):

Proposition 3.7 Let (a i,j ) 1≤i,j≤n be a matrix of complex numbers. Suppose that there exist two positive numbers α, β > 0 such that:

1. n j=1 |a i,j | ≤ α for all i; 2. n i=1 |a i,j | ≤ β for all j.
Then, the (Hilbertian) norm of this matrix satisfies A ≤ √ αβ.

It is essential for our purpose to note that:

i < j =⇒ |ν i,j | ≤ 32 δ j-i , (3.15) i > j =⇒ |ν i,j | ≤ 32 (2 δ) i-j . (3.16)
Indeed, we see from (3.11) and (3.14) that, for i < j:

|ν i,j | = |m i,j | m i,i ≤ 32 ε i ε j ε -2 i δ j-i ≤ 32 δ j-i since ε j ≤ ε i .
Secondly, using ε j /ε i ≤ 2 i-j for i > j (recall that we assumed that ε k+1 ≥ ε k /2), as well as |m i,j | = |m j,i |, we have, for i > j:

|ν i,j | = |m j,i | m i,i ≤ 32 ε j ε i δ i-j ≤ 32 (2 δ) i-j .
Now, for fixed i, (3.15) gives:

n j=1 |ν i,j | = j>i |ν i,j | + j<i |ν i,j | ≤ 32 j>i δ j-i + j<i (2 δ) i-j ≤ 32 δ 1 -δ + 2 δ 1 -2 δ ≤ 32 3 δ 1 -2 δ ≤ 96 198 ≤ 1 2 ,
since δ ≤ 1/200. Hence:

(3.17)

sup i j |ν i,j | ≤ 1/2 .
In the same manner, but using (3.16) instead of (3.15), one has:

(3.18) sup j i |ν i,j | ≤ 1/2 .
Now, (3.17), (3.18) and the Schur criterion recalled above give:

N ≤ 1/2 × 1/2 = 1/2 , as claimed.
Remark. We could reverse the point of view in the preceding proof: start from θ and see what lower bound for a n (C ϕ ) emerges. For example, if θ(h) ≈ h as is the case for lens maps (see [START_REF] Lefèvre | Approximation numbers of composition operators on the Dirichlet space[END_REF]), we find again that a n (C ϕ ) ≥ δ 0 > 0 and that C ϕ is not compact. But if θ(h) ≈ h 1+α with α > 0, the method only gives a n (C ϕ ) e -αn (which is always true: see [START_REF] Lefèvre | Approximation numbers of composition operators on the Dirichlet space[END_REF], Theorem 2.1), whereas the methods of [START_REF] Lefèvre | Approximation numbers of composition operators on the Dirichlet space[END_REF] easily give a n (C ϕ ) e -α √ n . Therefore, this µ-method seems to be sharp when we are close to non-compactness, and to be beaten by those of [START_REF] Lefèvre | Approximation numbers of composition operators on the Dirichlet space[END_REF] for "strongly compact" composition operators. and:

Ω = • F
Then Ω is a simply connected domain. Indeed, it is connected thanks to the B 0,n and the P n , since the P k,n were added to ensure that. Secondly, its unbounded complement is connected as well, since we take one value of n out of two in the union of sets B k,n defining F .

Let now f : D → Ω be a Riemann map, and ϕ = e -f : D → D.

We introduce the Carleson window W = W (1, h) defined as:

W (1, h) = {z ∈ D ; 1 -h ≤ |z| < 1 and | arg z| < π h} .
This is a variant of the sets S(1, h) of Section 2. We also introduce the Hastings-Luecking half-windows W ′ n defined by:

W ′ n = {z ∈ D ; 1 -2 -n < |z| < 1 -2 -n-1 and | arg z| < π 2 -n }.
We will also need the sets:

E n = e -(Tn∪B0,2n+1∪Pn) = e -(B0,2n∪B0,2n+1∪P0,n) ,
for which one has:

ϕ(D) ⊆ ∞ n=1 E n .
Next, we consider the measure µ = n ϕ dA, and a Carleson window W = W (1, h) with h = 2 -2N . We observe that W ′ 2N ⊆ W and claim that: Lemma 3.9 One has:

1) w ∈ W ′ 2N =⇒ n ϕ (w) ≥ l N ; 2) ϕ p 2 D p 2 ∞ n=1 l n 16 -n e -p 4 -n .
Proof of Lemma 3.9.

1) Let w = r e iθ ∈ W ′ 2N with 1-2 -2N < r < 1-2 -2N -1 and |θ| < π 2 -2N . As -(log r + iθ) ∈ B 0,2N , one has -(log r + iθ) = f (z 0 ) for some z 0 ∈ D. Similarly, -(log r + iθ) + 2kπi, for 1 ≤ k < l N , belongs to B k,2N
and can be written as f (z k ), with z k ∈ D. The z k 's, 0 ≤ k < l N , are distinct and satisfy ϕ(z k ) = e -f (z k ) = e -f (z0) = w for 0 ≤ k < l N , thanks to the 2πi-periodicity of the exponential function.

2) We have A(E n ) e -2ε2n+2 4 -2n ≤ 4 -2n (the term e -2ε2n+2 coming from the Jacobian of e -z ) and we observe that

w ∈ E n =⇒ |w| 2p-2 ≤ (1 -2 -2n-1 ) 2p-2 e -p 4 -n .
It is easy to see that n ϕ (w) ≤ l n for w ∈ E n ; thus we obtain, forgetting the constant term |ϕ(0)| 2p ≤ 1, using (2.5) and keeping in mind the fact that n ϕ (w) = 0 for w / ∈ ϕ(D): End of the proof of Theorem 3.8. Note that, as a consequence of the first part of the proof of Lemma 3.9, one has

µ(W ) ≥ µ(W ′ 2N ) = W ′ 2N n ϕ dA ≥ l N A(W ′ 2N ) l N h 2 ,
which implies that sup 0<h<1 h -2 µ[W (1, h)] = +∞ and shows that C ϕ is not bounded on D by Zorboska's criterion ( [START_REF] Zorboska | Composition operators on weighted Dirichlet spaces[END_REF], Theorem 1), recalled in (2.7).

It remains now to show that we can adjust the non-decreasing sequence of integers (l n ) so as to have ϕ p D = O (M p ). To this effect, we first observe that, if one sets F (x) = x 2 e -x , we have:

p 2 ∞ n=1 16 -n e -p 4 -n = ∞ n=1 F p 4 n 1 .
Indeed, let s be the integer such that 4 s ≤ p < 4 s+1 . We have: where we used that F is increasing on (0, 1) and satisfies F (x) min(x 2 , 1/x) for x > 0. We finally choose the non-decreasing sequence (l n ) of integers as:

l n = min(n, M 2 n ) .
In view of Lemma 3.9 and of the previous observation, we obtain: 

ϕ p 2

  We denote by D the open unit disk of the complex plane and by A the normalized area measure dx dy/π of D. The unit circle is denoted by T = ∂D. The notation A B indicates that A ≤ c B for some positive constant c. A Schur function is an analytic self-map of D and the associated composition operator is defined, formally, by C ϕ (f ) = f •ϕ. The operator C ϕ maps the space Hol (D) of holomorphic functions on D into itself. The Dirichlet space D is the space of analytic functions f : D → C such that (2.1)

ϕ p 2 D = p 2 ϕ 2 ∞l n 16

 22216 (D) |w| 2p-2 n ϕ (w) dA(w) ≤ p n=1 En |w| 2p-2 n ϕ (w) dA(w) -n e -p 4 -n ,ending the proof of Lemma 3.9.

F ( 4

 4 -n ) < ∞ ,

D p 2 ∞ n=1 16 -n e -p 4 -n l n ≤ p 2 p n=1 16 -n e -p 4 -n l p + p 2 n>p 16 -n l n l p + p 2 n>p 4 -

 216416421624 n l p + p 2 4 -p M 2 p ,as desired. This choice of (l n ) gives us an unbounded composition operator on D such that ϕ p D = O (M p ), which ends the proof of Theorem 3.8.

* Supported by a Spanish research project MTM 2012-05622.

Optimality of the EKSY result

El Fallah, Kellay, Shabankhah and Youssfi proved in [START_REF] El-Fallah | Level sets and composition operators on the Dirichlet space[END_REF] the following: if ϕ is a Schur function such that ϕ ∈ D and ϕ p D = O (1) as p → ∞, then ϕ is a symbol on D. We have the following theorem, already stated in the Introduction, which shows the optimality of their result. Theorem 3.8 Let (M p ) p≥1 be an arbitrary sequence of positive numbers such that lim p→∞ M p = ∞. Then, there exists a Schur function ϕ ∈ D such that:

1)

Remark. We first observe that we cannot replace lim by lim sup in Theorem 3.8. Indeed, since ϕ ∈ D, the measure µ = n ϕ dA is finite, and

where c and δ are positive constants.

Proof of Theorem 3.8. We may, and do, assume that (M p ) is non-decreasing and integer-valued. Let (l n ) n≥1 be an non-decreasing sequence of positive integers tending to infinity, to be adjusted. Let Ω be the subdomain of the right half-plane C 0 defined as follows. We set:

and we consider the (essentially) disjoint boxes (k = 0, 1, . . .):

as well as the union

which is a kind of broken tower above the "basis" B 0,2n of even index. We also consider, for 1 ≤ k ≤ l n -1, very thin vertical pipes P k,n connecting B k,2n and B k-1,2n , of side lengths 4 -2n and 2π(1 -2 -2n ) respectively: P k,n = P 0,n + 2kπi , and we set:

Finally, we set: