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Abstract. We show that the decay of approximation numbers of compact com-
position operators on the Dirichlet space D can be as slow as we wish, which
was left open in the cited work. We also prove the optimality of a result of
O. El-Fallah, K. Kellay, M. Shabankhah and A. Youssfi on boundedness on D
of self-maps of the disk all of whose powers are norm-bounded in D.
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1 Introduction

Recall that if ϕ is an analytic self-map of D, a so-called Schur function, the
composition operator Cϕ associated to ϕ is formally defined by

Cϕ(f) = f ◦ ϕ .

The Littlewood subordination principle ([4], p. 30) tells us that Cϕ maps the
Hardy space H2 to itself for every Schur function ϕ. Also recall that if H is a
Hilbert space and T : H → H a bounded linear operator, the n-th approximation
number an(T ) of T is defined as

(1.1) an(T ) = inf{‖T −R‖ ; rankR < n}, n = 1, 2, . . . .

In [12], working on that Hardy space H2 (and also on some weighted Bergman
spaces), we have undertaken the study of approximation numbers an(Cϕ) of
composition operators Cϕ, and proved among other facts the following:

∗Supported by a Spanish research project MTM 2009-08934.
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Theorem 1.1 Let (εn)n≥1 be a non-increasing sequence of positive numbers
tending to 0. Then, there exists a compact composition operator Cϕ on H2 such
that

lim inf
n→∞

an(Cϕ)

εn
> 0 .

As a consequence, there are composition operators on H2 which are compact but
in no Schatten class.

The last item had been previously proved by Carroll and Cowen ([3]), the
above statement with approximation numbers being more precise.

For the Dirichlet space, the situation is more delicate because not every
analytic self-map of D generates a bounded composition operator on D. When
this is the case, we will say that ϕ is a symbol (understanding “of D”). Note
that every symbol is necessarily in D.

In [11], we have performed a similar study on that Dirichlet space D, and
established several results on approximation numbers in that new setting, in
particular the existence of symbols ϕ for which Cϕ is compact without being
in any Schatten class Sp. But we have not been able in [11] to prove a full
analogue of Theorem 1.1. Using a new approach, essentially based on Carleson
embeddings and the Schur test, we are now able to prove that analogue.

Theorem 1.2 For every sequence (εn)n≥1 of positive numbers tending to 0,
there exists a compact composition operator Cϕ on the Dirichlet space D such
that

lim inf
n→∞

an(Cϕ)

εn
> 0 .

Turning now to the question of necessary or sufficient conditions for a Schur
function ϕ to be a symbol, we can observe that, since (zn/

√
n)n≥1 is an orthonor-

mal sequence in D and since formally Cϕ(z
n) = ϕn, a necessary condition is as

follows:

(1.2) ϕ is a symbol =⇒ ‖ϕn‖D = O (
√
n) .

It is worth noting that, for any Schur function, one has:

ϕ ∈ D =⇒ ‖ϕn‖D = O (n)

(of course, this is an equivalence). Indeed, anticipating on the next section, we
have for any integer n ≥ 1:

‖ϕn‖2D = |ϕ(0)|2n +

∫

D

n2 |ϕ(z)|2(n−1)|ϕ′(z)|2 dA(z)

≤ |ϕ(0)|2 +
∫

D

n2 |ϕ′(z)|2 dA(z) ≤ n2‖ϕ‖2D,

giving the result.
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Now, the following sufficient condition was given in [5]:

(1.3) ‖ϕn‖D = O (1) =⇒ ϕ is a symbol .

In view of (1.2), one might think of improving this condition, but it turns out
to be optimal, as says the second main result of that paper.

Theorem 1.3 Let (Mn)n≥1 be an arbitrary sequence of positive numbers tend-
ing to ∞. Then, there exists a Schur function ϕ ∈ D such that:

1) ‖ϕn‖D = O (Mn) as n → ∞;

2) ϕ is not a symbol on D.

The organization of that paper will be as follows: in Section 2, we give the
notation and background. In Section 3, we prove Theorem 1.2; in Section 3.1,
we prove Theorem 1.3; and we end with a section of remarks and questions.

2 Notation and background.

We denote by D the open unit disk of the complex plane and by A the
normalized area measure dx dy/π of D. The unit circle is denoted by T = ∂D.
The notation A . B indicates that A ≤ cB for some positive constant c.

A Schur function is an analytic self-map of D and the associated composition
operator is defined, formally, by Cϕ(f) = f ◦ϕ. The operator Cϕ maps the space
Hol (D) of holomorphic functions on D into itself.

The Dirichlet space D is the space of analytic functions f : D → C such that

(2.1) ‖f‖2D := |f(0)|2 +
∫

D

|f ′(z)|2 dA(z) < +∞ .

If f(z) =
∑∞

n=0 cnz
n, one has:

(2.2) ‖f‖2D = |c0|2 +
∞∑

n=1

n |cn|2 .

Then ‖ . ‖D is a norm on D, making D a Hilbert space, and ‖ . ‖H2 ≤ ‖ . ‖D. For
further information on the Dirichlet space, the reader may see [1] or [16].

The Bergman space B is the space of analytic functions f : D → C such
that:

‖f‖2B :=

∫

D

|f(z)|2 dA(z) < +∞ .

If f(z) =
∑∞

n=0 cnz
n, one has ‖f‖2

B
=
∑∞

n=0
|cn|2
n+1 . If f ∈ D, one has by

definition:
‖f‖2D = ‖f ′‖2B + |f(0)|2 .
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Recall that, whereas every Schur function ϕ generates a bounded composi-
tion operator Cϕ on Hardy and Bergman spaces, it is no longer the case for the
Dirichlet space (see [14], Proposition 3.12, for instance).

We denote by bn(T ) the n-th Bernstein number of the operator T : H → H ,
namely:

(2.3) bn(T ) = sup
dimE=n

(
inf

f∈SH

‖Tx‖
)

where SH denotes the unit sphere of H . It is easy to see ([11]) that

bn(T ) = an(T ) for all n ≥ 1 .

(recall that the approximation numbers are defined in (1.1)).

If ϕ is a Schur function, let

(2.4) nϕ(w) = #{z ∈ D ; ϕ(z) = w} ≥ 0

be the associated counting function. If f ∈ D and g = f ◦ ϕ, the change of
variable formula provides us with the useful following equation ([17], [11]):

(2.5)

∫

D

|g′(z)|2 dA(z) =
∫

D

|f ′(w)|2 nϕ(w) dA(w)

(the integrals might be infinite). In those terms, a necessary and sufficient
condition for ϕ to be a symbol is as follows ([17], Theorem 1). Let:

(2.6) ρϕ(h) = sup
ξ∈T

∫

S(ξ,h)

nϕ dA

where S(ξ, h) = D∩D(ξ, h) is the Carleson window centered at ξ and of size h.
Then ϕ is a symbol if and only if:

(2.7) sup
0<h<1

1

h2
ρϕ(h) < ∞.

This is not difficult to prove. In view of (2.5), the boundedness of Cϕ amounts
to the existence of a constant C such that:

∫

D

|f ′(w)|2 nϕ(w) dA(w) ≤ C

∫

D

|f ′(z)|2 dA(z) , ∀f ∈ D.

Since f ′ = h runs over B as f runs over D, and with equal norms, the above
condition reads:

∫

D

|h(w)|2 nϕ(w) dA(w) ≤ C

∫

D

|h(z)|2 dA(z) , ∀h ∈ B.

This exactly means that the measure nϕ dA is a Carleson measure for B. Such
measures have been characterized in [7] and that characterization gives (2.7).
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But this condition is very abstract and difficult to test, and sometimes more
“concrete” sufficient conditions are hoped for. In [11], we proved that, even if
the Schur function extends continuously to D, no Lipschitz condition of order
α, 0 < α < 1, on ϕ is sufficient for ensuring that ϕ is a symbol. It is worth
noting that the limiting case α = 1, as restrictive as it guarantees the result.

Proposition 2.1 Suppose that the Schur function ϕ is in the analytic Lipschitz
class on the unit disk, i.e. satisfies:

|ϕ(z)− ϕ(w)| ≤ C |z − w| , ∀z, w ∈ D .

Then Cϕ is bounded on D.

Proof. Let f ∈ D; one has:

‖Cϕ(f)‖2D = |f
(
ϕ(0)

)
|2 +

∫

D

|f ′(ϕ(z)
)
|2|ϕ′(z)|2 dA(z)

≤ |f
(
ϕ(0)

)
|2 + ‖ϕ′‖2∞

∫

D

|f ′(ϕ(z)
)
|2 dA(z) .

This integral is nothing but ‖Cϕ(f
′)‖2

B
and hence, since Cϕ is bounded on the

Bergman space B, we have, for some constant K1:
∫

D

|f ′(ϕ(z)
)
|2 dA(z) ≤ K2

1‖f ′‖2B ≤ K2
1‖f‖2D .

On the other hand,

|f
(
ϕ(0)

)
| ≤ (1− |ϕ(0)|2)−1/2‖f‖H2 ≤ (1− |ϕ(0)|2)−1/2‖f‖D ,

and we get
‖Cϕ(f)‖2D ≤ K2‖f‖2D ,

with K2 = K2
1 + (1 − |ϕ(0)|2)−1. �

3 Proof of Theorem 1.2

We are going to prove Theorem 1.2 mentioned in the Introduction, which
we recall here.

Theorem 3.1 For every sequence (εn) of positive numbers with limit 0, there
exists a compact composition operator Cϕ on D such that

lim inf
n→∞

an(Cϕ)

εn
> 0 .

Before entering really in the proof, we may remark that, without loss of
generality, by replacing εn by inf(ε1, . . . , εn, 2

−8), we can, and do, assume that
(εn)n decreases and ε1 ≤ 2−8.

Moreover, we can assume that (εn)n decreases “slowly”, as said in the fol-
lowing lemma.
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Lemma 3.2 Let (εi) be a decreasing sequence with limit zero and let 0 < ρ < 1.
Then, there exists another sequence (ε̂i), decreasing with limit zero, such that
ε̂i ≥ εi and ε̂i+1 ≥ ρ ε̂i, for every i ≥ 1.

Proof. We define inductively ε̂i by ε̂1 = ε1 and

ε̂i+1 = max(ρ ε̂i, εi+1).

It is seen by induction that ε̂i ≥ εi and that ε̂i decreases to a limit a ≥ 0.
If ε̂i = εi for infinitely many indices i, we have a = 0. In the opposite case,
ε̂i+1 = ρ ε̂i from some index i0 onwards, and again a = 0 since ρ < 1. �

We will take ρ = 1/2 and assume for the sequel that εi+1 ≥ εi/2.

Proof of Theorem 3.1. We first construct a subdomain Ω = Ωθ of D defined
by a cuspidal inequality:

(3.1) Ω = {z = x+ iy ∈ D ; |y| < θ(1− x)} ,

where θ : [0, 1[→ [0, 1[ is an increasing function such that

(3.2) θ(0) = 0 and θ(1 − x) ≤ 1− x .

Note that since 1 − x ≤
√
1− x2, the condition |y| < θ(1 − x) implies that

z = x+ iy ∈ D. Note also that 1 ∈ Ω and that Ω is a Jordan domain.

We introduce a parameter δ with ε1 ≤ δ ≤ 1− ε1. We put:

(3.3) θ(δj) = εj δ
j

and we extend θ to an increasing continuous function from (0, 1) into itself
(piecewise linearly, or more smoothly, as one wishes). We claim that:

(3.4) θ(h) ≤ h and θ(h) = o (h) as h → 0 .

Indeed, if δj+1 ≤ h < δj , we have θ(h)/h ≤ θ(δj)/δj+1 = εj/δ, which is
≤ ε1/δ ≤ 1 and which tends to 0 with h.

We define now ϕ = ϕθ : D → Ω as a Riemann map from D onto Ω, with
continuous extend from D onto Ω and with ϕ(1) = 1 (a cusp-type map). Since
ϕ is univalent, one has nϕ = 1IΩ, and since Ω is bounded, ϕ defines a symbol
on D, by (2.7). Moreover, (3.4) implies that A[S(ξ, h) ∩ Ω] ≤ h θ(h) for every
ξ ∈ T; hence, ρϕ being defined in (2.6), one has ρϕ(h) = o (h2) as h → 0+. In
view of [17], this little-oh condition guarantees the compactness of Cϕ : D → D.

It remains to minorate its approximation numbers.
The measure µ = nϕ dA is a Carleson measure for the Bergman space B, and

it was proved in [10] that C∗
ϕCϕ is unitarily equivalent to the Toeplitz operator

Tµ = I∗µIµ : B → B defined by:

(3.5) Tµf(z) =

∫

D

f(w)

(1− wz)2
dA(w) =

∫

D

f(w)Kw(z) dA(w) ,
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where Iµ : B → L2(µ) is the canonical inclusion and Kw the reproducing kernel
of B at w, i.e. Kw(z) =

1
(1−wz)2 .

Actually, we can get rid of the analyticity constraint in considering, instead of
Tµ, the operator Sµ = IµI

∗
µ : L

2(µ) → L2(µ), which corresponds to the arrows:

L2(µ)
I∗

µ−→B
Iµ−→L2(µ) .

We use the relation (3.5) which implies:

(3.6) an(Cϕ) = an(Iµ) = an(I
∗
µ) =

√
an(Sµ) .

We set:

(3.7) cj = 1− 2δj and rj = εj δ
j

One has rj = εj(1− cj)/2.

Lemma 3.3 The disks ∆j = D(cj , rj), j ≥ 1, are disjoint and contained in Ω.

Proof. If z = x + iy ∈ ∆j , then 1 − x > 1 − cj − rj = (1 − cj)(1 − εj/2) =
(1 − cj)δ

j ≥ δj and |y| < rj = θ(δj); hence |y| < θ(δj) ≤ θ(1 − x) and z ∈ Ω.
On the other hand, cj+1 − cj = 2(δj − δj+1) = 2(1 − δ)δj ≥ 2ε1δ

j ≥ 2εjδ
j =

2rj > rj + rj+1; hence ∆j ∩∆j+1 = ∅. �

We will next need a description of Sµ.

Lemma 3.4 For every g ∈ L2(µ) and every z ∈ D:

I∗µg(z) =

∫

Ω

g(w)

(1− wz)2
dA(w)(3.8)

Sµg(z) =

(∫

Ω

g(w)

(1− wz)2
dA(w)

)
1IΩ(z) .(3.9)

Proof. Kw being the reproducing kernel of B, we have for any pair of functions
f ∈ B and g ∈ L2(µ):

〈I∗µg, f〉B = 〈g, Iµf〉L2(µ) =

∫

Ω

g(w)f(w) dA(w) =

∫

Ω

g(w) 〈Kw, f〉B dA(w)

=
〈 ∫

Ω

g(w)Kw dA(w), f
〉
B
,

so that I∗µg =
∫
Ω g(w)Kw dA(w), giving the result. �

In the rest of the proof, we fix a positive integer n and put:

(3.10) fj =
1

rj
1I∆j

, j = 1, . . . , n .

Let:
E = span (f1, . . . , fn) .
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This is an n-dimensional subspace of L2(µ).

The ∆j ’s being disjoint, the sequence (f1, . . . , fn) is orthonormal in L2(µ).
Indeed, those functions have disjoint supports, so are orthogonal, and:

∫
f2
j dµ =

∫
f2
j nϕ dA =

∫

∆j

1

r2j
dA = 1 .

We now estimate from below the Bernstein numbers of I∗µ. To that effect,
we compute the scalar products mi,j = 〈I∗µ(fi), I∗µ(fj)〉. One has:

mi,j = 〈fi, Sµ(fj)〉 =
∫

Ω

fi(z)Sµfj(z) dA(z)

=

∫∫

Ω×Ω

fi(z)fj(w)

(1− wz)2
dA(z) dA(w)

=
1

rirj

∫∫

∆i×∆j

1

(1− wz)2
dA(z) dA(w) .

Lemma 3.5 We have

(3.11) mi,i ≥
ε2i
32

, and |mi,j | ≤ εi εj δ
j−i for i < j .

Proof. Set ε′i =
ri

1−c2
i

= εi
2(1+ci)

. One has εi
4 ≤ ε′i ≤ εi

2 . We observe that (recall

that A(∆i) = r2i ):

mi,i − ε′i
2
=

1

r2i

∫∫

∆i×∆i

[
1

(1− wz)2
− 1

(1 − c2i )
2

]
dA(z) dA(w) .

Therefore, using the fact that, for z ∈ ∆i and w ∈ D:

|1−wz| ≥ 1−|z| ≥ 1− ci− ri = 1− ci−εi

(1− ci
2

)
≥ (1− ci)

(
1− εi

2

)
≥ 1− ci

2

and then the mean-value theorem, we get:

|mi,i − ε′i
2| ≤ 1

r2i

∫∫

∆i×∆i

∣∣∣∣
1

(1− wz)2
− 1

(1− c2i )
2

∣∣∣∣ dA(z) dA(w)

≤ 1

r2i

∫∫

∆i×∆i

32 ri
(1− ci)3

dA(z) dA(w)

=
32 r3i

(1− ci)3
≤ 32× 8 ε′i

3 ≤ ε′i
2

2
,

since εi ≤ ε1 ≤ 2−8 implies that ε′i ≤ 1/(32×16). This gives us the lower bound

mi,i ≥ ε′i
2
/2 ≥ ε2i /32.
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Next, for i < j:

|mi,j | ≤
1

rirj

∫∫

∆i×∆j

∣∣∣∣
1

(1− wz)2

∣∣∣∣ dA(z) dA(w) ≤
1

rirj

4

(1− ci)2
r2i r

2
j

=
4 εi εj δ

i+j

4 δ2i
= εi εj δ

j−i ,

and that ends the proof of Lemma 3.5. �

We further write the n× n matrix M = (mi,j)1≤i,j≤n as M = D+R where

D is the diagonal matrix mi = mi,i with mi ≥ ε2i
32 , 1 ≤ i ≤ n. Observe that M

is nothing but the matrix of Sµ on the orthonormal basis (f1, . . . , fn) of E, so
that we can identify M and Sµ on E.

Now the following lemma will end the proof of Theorem 3.1.

Lemma 3.6 If δ ≤ 1/8, we have:

(3.12) ‖D−1R‖ ≤ 1/2 .

Indeed, by the ideal property of Bernstein numbers, Neumann’s lemma and
the relations:

M = D(I +D−1R) , and D = MQ with ‖Q‖ ≤ 2,

we have bn(D) ≤ bn(M) ‖Q‖ ≤ 2 bn(M), that is:

an(Sµ) = bn(Sµ) ≥ bn(M) ≥ bn(D)

2
=

mn,n

2
≥ ε2n

64
,

since the n first approximation numbers of the diagonal matrix D (the matrices
being viewed as well as operators on the Hilbertian space Cn with its canonical
basis) are m1,1, . . . ,mn,n. It follows that, using (3.6):

(3.13) an(Iµ) = an(I
∗
µ) =

√
an(Sµ) ≥

εn
8

·

In view of (3.6), we have as well an(Cϕ) ≥ εn
8 , and we are done. �

Proof of Lemma 3.6. Write M = (mi,j) = D(I +N) with N = D−1R. One
has:

(3.14) N = (νi,j), with νi,i = 0 and νi,j =
mi,j

mi,i
for j 6= i .

We shall show that ‖N‖ ≤ 1/2 by using the (unweighted) Schur test, which we
recall ([6], Problem 45):

Proposition 3.7 Let (ai,j)1≤i,j≤n be a matrix of complex numbers. Suppose
that there exist two positive numbers α, β > 0 such that:

1.
∑n

j=1 |ai,j | ≤ α for all i;

2.
∑n

i=1 |ai,j | ≤ β for all j.

Then, the (Hilbertian) norm of this matrix satisfies ‖A‖ ≤ √
αβ.
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It is essential for our purpose to note that:

i < j =⇒ |νi,j | ≤ 32 δj−i ,(3.15)

i > j =⇒ |νi,j | ≤ 32 (2 δ)i−j .(3.16)

Indeed, we see from (3.11) and (3.14) that, for i < j:

|νi,j | =
|mi,j |
mi,i

≤ 32 εi εj ε
−2
i δj−i ≤ 32 δj−i

since εj ≤ εi. Secondly, using εj/εi ≤ 2i−j for i > j (recall that we assumed
that εk+1 ≥ εk/2), as well as |mi,j | = |mj,i|, we have, for i > j:

|νi,j | =
|mj,i|
mi,i

≤ 32
εj
εi

δi−j ≤ 32 (2 δ)i−j.

Now, for fixed i, (3.15) gives:

n∑

j=1

|νi,j | =
∑

j>i

|νi,j |+
∑

j<i

|νi,j | ≤ 32

(∑

j>i

δj−i +
∑

j<i

(2 δ)i−j

)

≤ δ

1− δ
+

2 δ

1− 2 δ
≤ 10

21
≤ 1/2 ,

since δ ≤ 1/4. Hence:

(3.17) sup
i

(∑

j

|νi,j |
)
≤ 1/2 .

Exactly in the same manner, but using (3.16) and the fact that 2 δ ≤ 1/4, one
has:

(3.18) sup
j

(∑

i

|νi,j |
)
≤ 1/2 .

Now, (3.17), (3.18) and the Schur criterion recalled above give:

‖N‖ ≤
√
1/2× 1/2 = 1/2 ,

as claimed. �

Remark. We could reverse the point of view in the preceding proof: start from
θ and see what lower bound for an(Cϕ) emerges. For example, if θ(h) ≈ h as
is the case for lens maps (see [11]), we find again that an(Cϕ) ≥ δ0 > 0 and
that Cϕ is not compact. But if θ(h) ≈ h1+α with α > 0, the method only
gives an(Cϕ) & e−αn (which is always true: see [11], Theorem 2.1), whereas the

methods of [11] easily give an(Cϕ) & e−α
√
n. Therefore, this µ-method seems

to be sharp when we are close to non-compactness, and to be beaten by those
of [11] for “strongly compact” composition operators.

10



3.1 Optimality of the EKSY result

El Fallah, Kellay, Shabankhah and Youssfi proved in [5] the following: if
ϕ is a Schur function such that ϕ ∈ D and ‖ϕp‖D = O (1) as p → ∞, then
ϕ is a symbol on D. We have the following theorem, already stated in the
Introduction, which shows the optimality of their result.

Theorem 3.8 Let (Mp)p≥1 be an arbitrary sequence of positive numbers such
that limp→∞ Mp = ∞. Then, there exists a Schur function ϕ ∈ D such that:

1) ‖ϕp‖D = O (Mp) as p → ∞;

2) ϕ is not a symbol on D.

Remark. We first observe that we cannot replace lim by lim sup in Theorem 3.8.
Indeed, since ϕ ∈ D, the measure µ = nϕ dA is finite, and

‖ϕp‖2D = p2
∫

D

|w|2p−2 dµ(w) ≥ c p2
(∫

D

|w|2 dµ(w)
)p−1

≥ c δp ,

where c and δ are positive constants.

Proof of Theorem 3.8. We may, and do, assume that (Mp) is non-decreasing
and integer-valued. Let (ln)n≥1 be an non-decreasing sequence of positive inte-
gers tending to infinity, to be adjusted. Let Ω be the subdomain of the right
half-plane C0 defined as follows. We set:

εn = − log(1− 2−n) ∼ 2−n ,

and we consider the (essentially) disjoint boxes (k = 0, 1, . . .):

Bk,n = B0,n + 2kπi ,

with:
B0,n = {u ∈ C ; εn+1 ≤ Reu ≤ εn and |Imu| ≤ 2−nπ} ,

as well as the union
Tn =

⋃

0<k<ln

Bk,2n ,

which is a kind of broken tower above the "basis" B0,2n of even index.
We also consider, for 1 ≤ k ≤ ln − 1, very thin vertical pipes connecting the

Bk,2n of side lengths 4−2n and 2π(1− 2−2n) respectively:

Pk,n = P0,n + 2kπi ,

and we set:
Pn =

⋃

0≤k<ln

Pk,n

Finally, we set:

F =

( ∞⋃

n=1

B0,n

)
∪
( ∞⋃

n=1

Tn

)
∪
( ∞⋃

n=1

Pn

)
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and:

Ω =
◦
F

Then Ω is a simply connected domain. Indeed, it is connected thanks to
the B0,n and the Pn, since the Pk,n were added to ensure that. Secondly, its
unbounded complement is connected as well, since we take one value of n out
of two in the union of sets Bk,n defining F .

Let now f : D → Ω be a Riemann map, and ϕ = e−f : D → D.

We introduce the Carleson window W = W (1, h) defined as:

W (1, h) = {z ∈ D ; 1− h ≤ |z| < 1 and | arg z| < π h} .

This is a variant of the sets S(1, h) of Section 2. We also introduce the Hastings-
Luecking half-windows W ′

n defined by:

W ′
n = {z ∈ D ; 1− 2−n < |z| < 1− 2−n−1 and | arg z| < π 2−n}.

We will also need the sets:

En = e−(Tn∪B0,2n+1∪Pn) = e−(B0,2n∪B0,2n+1∪P0,n) ,

for which one has:

ϕ(D) ⊆
∞⋃

n=1

En .

Next, we consider the measure µ = nϕ dA, and a Carleson window W =
W (1, h) with h = 2−2N . We observe that W ′

2N ⊆ W and claim that:

Lemma 3.9 One has:

1) w ∈ W ′
2N =⇒ nϕ(w) ≥ lN ;

2) ‖ϕp‖2D . p2
∑∞

n=1 ln 16
−n e−p 4−n

.
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Proof of Lemma 3.9. 1) Let w = r eiθ ∈ W ′
2N with 1−2−2N < r < 1−2−2N−1

and |θ| < π 2−2N . As −(log r + iθ) ∈ B0,2N , one has −(log r + iθ) = f(z0) for
some z0 ∈ D. Similarly, −(log r + iθ) + 2kπi, for 1 ≤ k < lN , belongs to Bk,2N

and can be written as f(zk), with zk ∈ D. The zk’s, 0 ≤ k < lN , are distinct
and satisfy ϕ(zk) = e−f(zk) = e−f(z0) = w for 0 ≤ k < lN , thanks to the
2πi-periodicity of the exponential function. As a consequence,

µ(W ) ≥ µ(W ′
2N ) =

∫

W ′

2N

nϕ dA ≥ lNA(W ′
2N ) & lNh2 ,

implying that sup0<h<1 h
−2µ[W (1, h)] = +∞ and showing that Cϕ is not

bounded on D by Zorboska’s criterion ([17], Theorem 1) recalled in (2.7).

2) We have A(En) ≤ e−2ε2n4−2n ≤ 4−2n (the term e−2ε2n coming from the
Jacobian of e−z) and we observe that

w ∈ En =⇒ |w|2p−2 ≤ (1 − 2−2n−1)2p−2 ≤ e−p 4−n

,

so, as above, nϕ(w) ≤ 2 ln. We thus obtain, forgetting the constant term
|ϕ(0)|2p ≤ 1, using (2.5) and keeping in mind the fact that nϕ(w) = 0 for
w /∈ ϕ(D):

‖ϕp‖2D = p2
∫

ϕ(D)

|w|2p−2 nϕ(w) dA(w)

≤ p2
( ∞∑

n=1

∫

En

|w|2p−2 nϕ(w) dA(w)

)

≤ p2
( ∞∑

n=1

∫

En

|w|2p−2 (2 ln) dA(w)

)

. p2
∞∑

n=1

ln 16
−n e−p 4−n

,

ending the proof of Lemma 3.9. �

It remains now to show that we can adjust the non-decreasing sequence of
integers (ln) so as to have ‖ϕp‖D = O (Mp). To this effect, we first observe that,
if one sets F (x) = x2 e−x, we have:

p2
∞∑

n=1

16−n e−p 4−n

=

∞∑

n=1

F
( p

4n

)
. 1 .

Indeed, let s be the integer such that 4s ≤ p < 4s+1. We have:

∞∑

n=1

F
( p

4n

)
.

s∑

n=1

4n

p
+
∑

n>s

F (4−(n−s−1)) . 1 +
∞∑

n=0

F (4−n) < ∞ ,
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where we used that F is increasing on (0, 1) and satisfies F (x) . min(x2, 1/x)
for x > 0. We finally choose the non-decreasing sequence (ln) of integers as:

ln = min(n,M2
n) .

In view of Lemma 3.9 and of the previous observation, we obtain:

‖ϕp‖2D . p2
∞∑

n=1

16−n e−p 4−n

ln

≤ p2
p∑

n=1

16−n e−p 4−n

lp + p2
∑

n>p

16−nln

. lp + p2
∑

n>p

4−n . lp + p2 4−p . M2
p ,

as desired. This choice of (ln) gives us an unbounded composition operator on
D such that ‖ϕp‖D = O (Mp), which ends the proof of Theorem 3.8. �
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