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1. Introduction

There are strong topological conditions for a compact manifold M of dimen-

sion 2n to admit a Kahler structure [20, 10] :

(i) the Betti numbers bzfl(M] are non-zero for l<i<n

(ii) the Betti numbers &2z-È(Àf) are even

(iii) bi(M} > bi-
2
(M} for 1 < / < n

(iv) the Hard Lefschetz Theorem holds for M

(v) the minimal model of M is formal (so in particular all Massey products

of M vanish).

Gordon and Benson have proved that if a compact nilmanifold admits a

Kahler structure then it is a torus [5] more precisely they proved that the

condition (iv) fails for any symplectic structure on a non-toral nilmanifold M.

This result was independently proved by Hasegawa [12] by showing that (v) fails

for M.

For a compact solvmanifold M of dimension 4 it is known that M has a

Kahler structure if and only if it is a complex torus or a hyperelliptic surface. In

fact, Auslander and Szczarba in [4] proved that if the first Betti number bÈ(M) of

M is 2, M is a fiber bundle over T
2
 with fiber T

2
. Then by Ue [19] M has a

complex structure only if it is a hyperelliptic surface or a primary Kodaira surface

which is a compact nilmanifold. Thus, if M is a Kahler manifold, it must be a

hyperelliptic surface. Since !<&È(M)<4, M can be a Kahler manifold only if it

is a complex torus or a hyperelliptic surface. The fact that a hyperelliptic surface

is a solvmanifold follows from Auslander [3]. The above result may be general-

ized as the following conjecture : A compact solvmanifold has a Kahler structure

if and only if it is a finite quotient of a complex torus.

In contrast to the case of compact nilmanifolds there are compact symplectic

*Partially supported by DGICYT-Spain, Proyectos PB89-0571 and PB91-0142
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solvmanifolds which are not nilmanifolds that satisfy both conditions (iv) and (v)

[6, 11, 9, 2]. More precisely:

(1) There is a family of 4-dimensional compact solvmanifolds M\k) satisfy-

ing (i)-(v) which do not admit Kahler structures [ll, 9]. In fact, M
4
(k) does not

admit complex structures. By using these manifolds it is possible to construct new

examples of higher dimension, but we do not know whether any of these examples

admit complex or Kahler structures. The problem is that the above results depend

strongly on Kodaira's classification of surfaces.

(2) There is a family of six-dimensional compact symplectic non-nilpotent

solvmanifolds M
6
(k) satisfying (i)~(v). These manifolds are the natural generaliza-

tion to dimension 6 of the manifolds M
4
(k) of Fernandez and Gray [ll].

Unfortunately we do not know whether any of these admit Kahler structures [2].

But it is amazing that the manifolds M
6
(k) have complex structures.

(3) In [6] Benson and Gordon have constructed two examples of non-

nilpotent solvable Lie groups of dimension 8, each one of those satisfies one of the

conditions (iv) or (v), but not the other.

The purpose of this paper is to construct a compact symplectic (non-nilpotent)

solvmanifold M
6
 = √/G of dimension 6 which does not satisfy either (iv) or (v)

and, hence, does not admit Kahler structures. We show that the minimal model of

M
6
 is not formal by proving that there are non-trivial (quadruple) Massey products,

however we remark that all the (triple) Massey products of M
6
 vanish. Then the

approach used in [?] to show that non-abelian compact nilmanifolds are non

formal fails for the solvable case.

Another problem related with the one considered above is the following.

Samelson [17] proved that every compact even dimensional Lie group possesses a

left invariant complex Structure. But the same is not true for non-compact Lie

groups. In fact, since the manifold M
4
(k) does not admit complex structures then

the corresponding Lie group G
4
(&) does not admit left invariant complex structures

(see Cordero, Fernandez and Gray [8]). In the same paper they have constructed

a 6-dimensional nilpotent Lie group with no left invariant complex structure.

Since we do not know whether the manifold M
6
 admits complex structures or not,

we can not use this method to decide whether G admits a left invariant complex

structure. But from direct computations we prove, in the last section, that G has

no left invariant complex structures.

The authors wish to express their thanks to the referee for many valuable

suggestions. In particular, to point us the observation of which are the compact

Kahler solvmanifolds of (complex) dimension 2, as well as, the conjecture of which

are the compact solvmanifolds of (real) dimension 2n with a Kahler structure.

2. The Lie Group G

Let G be the connected and solvable Lie group of dimension 6 consisting of
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matrices of the form

A=

where t, x, yi, Zi^R, l<i<2. Then, a global system of coordinates {t, x, y\, y2,

ZÈ, Z2\ for G is given by

t(A) = t, x(A)=x, yi(A)=y
i9
 z

i
(A)=z

i
, l<z<2;

and a standard computation shows that a basis for the left invariant 1-forms on G

consists of

a=dt
y
 ‚ = dx, „È = e~

t
dyÈ—˜e~

t
dzÈ,

À'
0

0
, 0

\ o

0

0

0
0

0

xe?

0

e*

0
0
0

0

0
e~*

0

0

0

0

0

0

1

0

À
z\
Zl

t
 /
I/

Then we have

(2.1)
, d‰È=-a/\‰È, d3

2
=

We denote by {T, X, Yfl, Y
2
, Zi, Z

2
} the dual basis of left invariant vector

fields. From (2.1) we obtain

(2.2)
[T, Y

l
] = Y

1
, [ T , F

2
] = -K, [√,ZÈ]=ZÈ,

[T, z
2
]=-z

2
, [x, ZI]=FI, [x, z

2
]=y

r
2,

and the other brackets being zero.

Let */ be the Lie algebra of G. From (2.2) we compute the derived series of

i, Z
2
>, =0, 2<r

and the descending central series of

i, Z
2
>, J-C

1
^, 2<r.

Then G is · non-nilpotent solvable Lie group. One says that a Lie group G

with Lie algebra *§ is completely solvable if ad(X): *§ - ̂ ^ has only real

eigenvalues for each X Œ ̂  . Equivalently, *§ is isomorphic to a Lie subalgebra of

the real upper triangular matrices in gl(n, R) for some n. A simple inspection

shows that G is completely solvable.

Alternatively, G may be described as a semi-direct product G = R
2
Q£ˆR

4
,

where ˆ(t, x) is the linear transformation of /?
4
 given by the matrix
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We notice that

0

0

0

˙ operal

(fl, À:, yi, y
2)
 .

/*' 0
o

 e
-<

0 0

\ 0 0

*<?< 0 \ le'

0 *e~' \ / 0

e
< o Ho
0

 e
-'/ \0

on group in G is

ÀK?'
0

e*
0

;
 0

e
-

f

0
0

given

0

Àre"*

0

e-'.

0
0

e*
0

by

\

Then G = /?
2
oc0

J
‚

4

?
 where /?

2
 is a connected abelian subgroup and R

4
 is the

nilpotent commutator subgroup.

REMARK 1. Let H be the connected Lie group of dimension 7 consisting of

matrices of the form

A—
f'0

0
o

\ o

0

0
0
0
0

0

e'
0
0
0

0

0
e~'

0
0

0
0
0
0

1

0

yÎ

ZÈ

Z2

¿ i

I/

where t, Xi, yi, Zfl^R, l<z'<2. We notice that G is a closed subgroup of H. In

fact, G is the Lie subgroup of the matrices A^H such that x\=X2. As above H

may be described as a semi-direct product H = R
3
°^ˆR

4
, where ˆ(t, Xi, Xz) is the

linear transformation of R
4
 given by the matrix

A direct computation shows that a basis for the left invariant 1 -forms on H

consists of

a=dt, ‚È =
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Then we have

da=Q, d‚È = -a/\‚È, dfa=-a/\fa, d„È = -a/\„È-‚/\‰È,

d„
2
=af\„

2
-‚/\3

2
, d‰È=-a/\‰È, d‰

2
=a/\‰

2
.

If we put G
2
 = /flX S

1
, then G

2
 is the Lie group considered by Benson and Gordon

[6].

3. The solvmanifold M
6

We shall construct a cocompact discrete subgroup √ of G.

Let B^SL(2
y
 Z) be a unimodular matrix with integer entries and with distinct

real eigenvalues, say Î and /√
1
. Take ‚o=logÎ, i.e. e

a
°=Î. Then there exists a

matrix PeG/(2, R) such that

Consider the subgroup √Q=(aoZ)xZ of R
2
. We can easily check that the

lattice L on R
4
 defined by

L=((mÈ, mJP*, (m, n
2
)P

t
\

where mi, m
2
, HI, n

2
^Z and P* is the transpose of P, is invariant under the

subgroup /o. Thus, √ = √
Q
^ˆL is a cocompact subgroup of G.

We denote by M
6
=G/√ the compact quotient manifold. Then M

6
 is a six

dimensional non-nilpotent completely solvable manifold.

REMARK 2. Alternatively, the manifold M
 6
 may be viewed as the total space of a

T
4
-bundle over T

2
. In fact, let T* = R*/L be the 4-dimensional torus and p : Z

2
— >

Diff ( T
4
) the representation defined as follows : p(p, q) represents the transforma-

tion of T
4
 covered by the linear transformation of R

4
 given by the matrix

0 qe
pao

e
-pao Q

0 e
pao

0 0 e

This representation determines an action A : Z
2
 X ( T

4
 X R

2
) - > T

4
 X R

2
 defined

by

A((p, q\ [yi, y
2
, z\, z

2
], (n, r

2
))=(p(p, q)([y\, y

2
, zi, z

2
]\ (n+p, r

2
+q)}.

Then  : T
4
X^R

2
 - » T

2
 is a T

4
-bundle where the projection  is given by

 [ [ y È , V2, zi, z
2
], (ri, r

2
)] = [(n, r

2
)].
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In fact, this bunble is the suspension of the representation p(see [14]). Then it is

clear that T
4
X

Z
^R

2
 may be canonically identified with M

6
.

Next, we shall compute the real cohomology of M
 6
. Since M

6
 is completely

solvable we can use a theorem of Hattori [13] which asserts that the de Rham

cohomology ring H*(M
6
, /?) is isomorphic with the cohomology ring H*(*§} of

the Lie algebra ^ of G. For simplicity we denote the left invariant forms [a, /?,

71,72, 81, 82} and their projections onto M
6
 by the same symbols. Thus, we obtain :

H\M\ À) = {1},

H\M\ *) = {[*], [/?]},

Thus,

Hence M
6
 satisfies conditions (i)-(iii).

Now let a) be the 2-form on M
 6
 given by

(3.1) ·; = ‚(

where a, b, c^R. A simple computation shows that d˘ = Q and that

Hence ·>
3
÷Ë if and only if ·=t=0, c÷O. This proves the following

Proposition 3.1. M
6
 is a compact symplectic manifold. Let ˘ be a 2-form

on M
6
 given by (3.1), where a, b, c^R and #÷O, c÷O. Then ˘ is a symplectic

form.

A compact Kahler manifold satisfies the Hard Lefschetz Theorem. In order to

continue the analysis of the manifold M
6
 we introduce the following

DEFINITION. Let (M
2n

, ˘) be a compact symplectic manifold. We say that (M
2n

,

˘) satisfies the Hard Lefschetz Theorem // the mappings

n
~

p
: H

p
(M

2n
, R) - >H

2n
~

p
(M

2n
, R)



SYMPLECTIC SOLVMANIFOLD WITHOUT KAHLER STRUCTURES 25

are all isomorphisms, 0<p<n.

(We notice that in [ 1 6] , McDuff calls (M
2n

, ˘) a Lefschetz manifold when the

mapping /\˘
n
~

l
 : H\M

2n
, R) - >H

2n
~

l
(M

2n
, R) is an isomorphism. Our present

definition is more restrictive.)

Theorem 3.1. M
6
 does not satisfy the Hard Lefschetz Theorem.

Proof. Let us compute the morphism

À[˘] : H\M\ R) - >H
4
(M

Q
, R).

We obtain

This implies that À[˘] : H
2
(M

6
, R) - >H

4
(M

6
, R) is not an isomorphism. .

Corollary 1. The compact symplectic solvmanifold M
6
 does not admit

Kahler structures.

We note that a straightforward computation shows that all the (triple) Massey

products of M
Q
 vanish. However we have the following

Theorem 3.2. The minimal model of M
6
 is not formal.

Proof. It is sufficient to exhibit a (quadruple) non-trivial Massey product. For

this we recall that if there are cohomology classes [ÎÈ]^H
p
(M*, À), [Î

2
]^H

q
(M

6
,

À), [Îz\˙ŒH
r
(M\ R) and [A

4
](ŒH

S
(M

6
, ^represented by differential forms À, A

2
,

Îs and À) such that the (triple) Massey products <[À], [À], [Às]> and ^[/flz], [/is],

are zero, then there exists the (quadruple) Massey product <[ÎÈ], [^2], [Îa],

). Moreover, it is zero if and only if there are differential forms /È^Ÿ
p+Ú

~
1
(M

6
),

r
-

1
(M*), /s^Ÿ^^KM

6
), µ^Cl

p+q+r
-

2
(M

6
) and µ

2
flŒCl

q+r+s
-

2
(M

6
) satisfy-

ing :

(1)

(2)

(3)

(4)

(5)

(6) the cohomology class [(-
is zero in H

p+q+r+s
~

2
(M\ R).
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Now, because all the (triple) Massey products on M
6
 are zero, it is defined the

(quadruple) Massey product <[5ÈÀ&], [/?], [/?], [/?]>. We shall prove that is

non-zero.

Let us suppose that <[‰ÈÀ&], [/?], [/?], [£]> = 0. Then, there exist differential

forms /
2
, /

3
, µ

2
^Ÿ

l
(M*) and /i, µÈ^Ÿ

2
(M

6
) satisfying

(2') 0 = rf/2,

(3'> 0=˝f/
3
,

(4')

(5')

(6') [-<

Since <S ÈÀ&À£ = ˝f(-/ÈÀ<S
2
), from (√) we get a differential form /fl with d/fl=0

and such that

(7) /È=-/ÈÀ&+/È.

Substituting (7) in (4') we have

(8)

From (8) and (2') it follows that the cohomology class [(5ÈÀ5
2
]À[/

2
] belongs to

*(M
6
, R) and so

(9) f
2
=t‚ for some

Moreover, because the cohomology class [‰ iÀ&À‚] is zero, from (8) and (9) we

obtain L3À7ÈÀ<S
2
] = [#]À[/fl], and then we have

(10) À'=

for some fl, q^R. Now, from (7) and (10) we get

(11) /È=

On the other hand, from (9), (3') and (5') we obtain /
2
— /s = s/? for some s^/fl, and

so

(12) f
3
 = (t-s)‚.

From (9) and (12), condition (5') becomes :

(5") dµ
z
 = 0.

It is easy to get :
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(13) /ÈÀ/3

From (9), (11), (5") and (13), conditions (4') and (6') become

(4")

(6") -

But, we can check that ‚ /\‰È/\‰2 = d( — 71 À&) and #À(/
2
À5 È—

72). These equations and (4") imply that there is a closed differential form µfl such

that µÈ=-(* + 0 ) 7 È À < ⁄ 2 - 7 È À 7 2 + µfl, and thus

. Then, condition (6") becomes:

= 0. So, the

cohomology class [7ÈÀ7
2
À/3] belongs to [/3]H

2
(M

Q
, R) + [‰ÈÀ‰2\H

l
[M*

9
 R\

which is generated by {[/?À 7ÈÀ<?
2
], [f lrÀ‰ÈÀ&]}. This is impossible because the

family {|>ÈÀ72À£], [£À7ÈÀ&], [a/\‰È/\‰
2
]} is free.

REMARK 3. Theorem 3.2 also proves that M
6
 does not admit Kahler structures.

Next, we shall prove that the minimal model of the complex of left invariant

differential forms of 62 (G
2
=HxS

1

9
 where H is the Lie group of dimension 7

constructed in Remark 1) is formal, but it does not verify the Hard Lefschetz

Theorem (see [6]). Then a compact manifold of the form √/G2 could not be

Kahler. Unfortunately we do not know if 62 admits a cocompact subgroup.

Proposition 3.2. The complex of the left invariant differential forms of G
2

is formal.

Proof. We need to show that the d.g.c.a. (À^*, d
2
), made up of the left

invariant differential forms of 62, and the d.g.c.a. (//*(*/ 2, R), 0) have the same

minimal model. We first recall the structure of (A^fl, d
2
) and H*($

2
, À)(cf. [6]).

A basis of ˙/* is the family (a, /?, µi, v\
y
 ÓÈ, µ

2y
 V

2
, £2} and the differential operator

d is given by

da=Q d‚ = G

On the other hand, the cohomology of ^2 can be written as a product

where A is the following gca :
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, |>ÈÀi/
2
Àµ

2
À<?

2
],

and À
l
 = j4

3
 = jfl

5
 = 0. Consider ˆ : (ÀZ, d) - >j4 the bigraded model of A (cf.

[15]). A straightforward calculation gives

Zo
6
={0}

ZM/} z$={o]
Z

2

4
={xi, yj, zj} Zfl={hj} Zt={e}

ZS={Q} ZS={Q} Z? = {
Cfll gj

} Zo
3
-{0}

Z
4

2
={0} Z

3

2
-{0} Zl-{0} ZÈ

2
={0} Zo

2

Z^flO} Z^flO} Zs^flO} Z^flO} Zfl = {0} Zo

with

l</<4, (/, k, /) any permutation of (2, 3, 4), and

We construct a d.g.c.a.-morphism flfl : À({flr, /?}, 0)(x)(ylZ, rf) - K-À^*, d)

inducing an isomorphism in cohomology. This will end the proof. Put

^(other genarators) = 0.

This map extends naturally to a g.c.a.-morphism ¯ : (À{a, /?}, 0)®(ÀZ, d) - >

(À^§*, d). It remains to prove that ˆ is a differential operator and that ¯* is an

isomorphism.

• A direct calculation shows that ¯(dx) = dˆ(x} for x = a, ‚ and for each

generator x^ (J (ÀZ)
p

q
. Consider x<^Z% a generator with p + q>§ by

<
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definition of ¯ we have ¯(x) = Q. Since dZÓ^(AZ)q-\ the writing of dx

does not contain any of the following monomials :

bi, e, #4, b\e, b\b^ bÈb±, bsb*. By construction the operator ¯ vanishes when

is evaluated on the other monomials of Z. We conclude that ˆ(dx) is 0.

$fl* is an isomorphism because

4. The moduli space of complex structures on M
6

First, let us recall the following lemma [l] :

Lemma 4.1. Let G be a (real) Lie group of (real) dimension 2n. Then the

space of left invariant almost complex structures on G has dimension 2n
2
.

In our case the space of left invariant almost complex structures on G has

dimension 18. This lemma gives no information about left invariant complex

structures, but since G has a canonical parallelization, it is extremely easy to

determine when a left invariant almost complex structure is integrable.

We set

El
=
 T

t
 E2 — X, Es

==
 Yl, Efl

 =
 ±2, Es

 =
 Zl, Ee

 =
 Z2.

Let / be a left invariant almost complex structure on G. Then / has constant

coefficients with respect to the basis [Ei, £2, £3, E^ £5, E&}. Write

where the a,jk are constants. The Nijenhuis tensor Nj of / is defined by

Nj(U, V) = [JU,JV]-f[JU, V]-J[U,JV]-[U, V],

for all vector fields C7, V on G.

Proposition 4.1. G has no left invariant complex structures. Equivalently,

the manifold M
6
 has no complex structures with constant coefficients with respect

to the canonical parallelization {Ei, £2, £3, E
4
, E

5
, EG}.
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Proof. Let / be a left invariant integrable almost complex structure on G.

Below, we shall prove that the matrix o f / with respect to the basis (£∫ , l<i<6}

must have the form

I a\\ a\2 #13 au #15 a\<\

(221 #22 #23 #24 #25 #26

0 0 #33 #34 #35 #36

0 0 #43 #44 #45 #46

i 0 0 #53 #54 #55 #56 i

\ 0 0 #63 #64 #65 #66/

(4.1) J =

Let us suppose (4.1). Since J
2
=—I, we obtain

(4.2) #11 + #12#21 = #22 + #12#21 = ~ 1,

(4.3) 012(011 + #22) = 02i(0n + #22) = 0,

and so #12, #21 are non-zero, and 0n + 022 = 0.

Moreover, we have

0=Nj(E
2
, E

3
)

= (#22#35 — #33#35 ~ #36#4s)^3 + ( ~ 2#21 #34 + #22#36 ~ #34#35 ~ #36#44) £4

5 ~ #3Ë(2#21 + #35 + #46)^6,

= (2021 #43 + #22#45 ~ #33#45 ~ #43#46)£
<
3 + (#22#46 ~ #34#45

+ #4‰(2#21 — #35 — #46)£s ~ (#46 + #36#4‰)£6.

These equations imply

(4.4) aiδ^— #36#45,

(4.5) 0 = #3θ(2#21 + #35 + 04β),

(4.6) #4δ(#22~ #33) = #4s(#46 — 2#2l),

(4.7) 0 = #4δ(2#21 — #35 — #46),

(4.8) #46=— #36#45.

From (4.4) and (4.8) we obtain

(4.9) #46 =±#35.

Assume that #46= — #35. Since #21^0, then (4.5) and (4.7) imply #36 = #4s = 0.

Again (4.4) and (4.8) imply #35 = #46 = 0. Now, from (4.6) it follows that #43 = 0

and so JE
4
 = a44E

4
. This implies 044= — 1, which is a contradiction. Thus, (4.9)

must be

(4.10) #46 =#35.

From (4.10), (4.5) and (4.7) we have
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(
 , #36(#21 + #3‰) = 0,

#4s(#21 — #3‰) = 0,

or equivalently

, _, #36#21
 =

 ~ #36#35,

#45#21 = #35#45.

Then, from (4.4) and (4.12) we obtain

3 3
#35 — ~#36#45#35=#21#36#45=#35#36#4‰ = ~ #35,

that is #35 = 0. Thus #46=0. But #21^0 and (4.12) imply #36=#45 = 0. Now, #21

^0 and (4.6) imply #43 — 0, and hence JE
4
 = a^E^ which is not possible. There-

fore, G carries no left invariant integrable almost complex structures.

Finally we shall give a proof of (4.1) : For this we shall show : (I) #41 = 0, (II)

#3i = 0, (I–)#6i = 0, (IV)#42 = 0, (V)#5i = 0, (VI) #32 = 0, (VII) #52 = 0, and (VIII) #
62

= 0.

From (2.2) we have

(4.13)

s + (2#34#41 + #32#46 ~

To prove (I), let us suppose that #41^0. Then from (4.13), equating to zero

the coefficients of Ei, Ei, E‚ and E
4
, it follows

(4. 14) #31 = #32= #34= #36 = 0.

Also, from (4.13) we have #35#42 = 0. If #35 = 0, then JE$ = a aEs, and so #33 =

— 1, which is a contradiction. Thus, we get

(4.15) #35^0 and #
42

 = 0.

Since /
2
=— / and JEs = #33^3 + #35^5 we have

(4. 1 6) #51 = #52 = #54 = #56 = #12 = #33 + #55 = 0.

From (4.14) and (4.16) we obtain

(4
 17)

= {#22(#55 — #33) — #33#55 ~ l}£s ~ #3‰(#22 + #55)^5.

7)
 Q=Nj(E

2
,

= {#22(#5

Since #35^0, from (4.16) and (4.17) we get

#22 +#55 = 0 and 2#22#55+#55 — 1 = 0.

These equations imply #55= — 1, which a contradiction. This proves (I).

(II) Let us suppose that #31 =£0. Then from (4.13) and (I) we obtain

(4. 1 8) #42 = #43 = #45 = 0.
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From (I), (2.2) and (4.18) it follows that

Q=Nj(E
2
, £4) = #46(#22-#4

4
)£4-#46£6.

This identity implies that #46=0. Then, from (I) and (4.18) we obtain JEt =

#44^4 which is not possible.

To prove (III), we suppose that #6i^0. Then, from (I) and (II) we obtain that

the coefficient of E\ in Nj(E$, E&) is 2#
5
È#6i, and hence, we get

(4.19) 051 = 0.

From (I), (II) and (4.19) we deduce that the coefficient of Ei in Nj(E
2
, E‚) and

in Nj(EÈ, Es) is #2i#eÈ and — #36#6i, respectively. Thus, we have

(4.20) #21 = #36 = 0.

From (4.20) we conclude that the coefficient of E
5
 in Nj(E2, £3) is —#35.

Thus, we get

(4.21) £35 = 0.

From (I), (II) and (4.21) we deduce that the coefficient of £2 in Nj(E^ Es) is

— #32. Thus, we get

(4.22) #32 = 0.

From (4.22) we have

0=Nj(E*
9
 £

6
)=2#34#6i£4.

This equation implies that

(4.23) #34 = 0.

Now, from (I), (II) and (4.20)-(4.23) we have JEs = a&Es, which is not

possible and we obtain (III).

To prove (IV), we compute the coefficient of £2 in Nj(E±, E&) and we obtain

— #42^2 = 0, from which we deduce (IV).

To prove (V), let us suppose that #51 =£0. Then from (IV) we deduce that the

coefficient of E\ in Nj(E
2
, Es) is — #2i#sÈ, from which we deduce

(4.24) #2i = 0.

Moreover we have that the coefficient of E\ in Nj(EÈ, E‚) and in N/(EÈ, Es)

is — #5i#65 and — #35#sÈ, respectively, from which we get

(4.25) #35 =#65 = 0.

Also we have that the coefficient of E\ in Nj(EÈ, E
2
) is — #25#sÈ, and that the

coefficient of £5 in Nj(EÈ, Es) is — 2#45#sÈ, from which we obtain
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(4.26) #25=045 = 0.

Now, from (I), (II) and (4.26), we obtain

Q=Nj(E
3
, E

4
) = 032046^4,

and so 032046=0. Suppose that 032=^0 and #46 = 0. Then

and since /
2
=—/, we find

(4.27)
043032 = 0,

043034+044=—!.

Because 032^0, (4.27) implies 043 = 0 and 044= — 1. But it is not possible.

Thus, it must be 032=0. From this identity, (4.26), and equating to zero the

coefficient of E
2
 in Nj(EÈ, £2), we get

(4.28) 026062 = 0.

Thus, if 051^0, from (I)-(IV), (4.24), (4.25), (4.26) and 0
32

 = 0, it follows that

the matrix of / is of the form

T

7011 012 013 014 015 016\

0 022 023 024 0 026

0 0 033 034 0 036

0 0 043 044 0 046

051 052 053 054 055 056 i

\ 0 062 063 064 0 066 /

From (4.28) and / = — / we obtain 022= — 1, which is not possible. Thus, we have

(V).

To prove (VI) we compute the coefficients of £2 and £5 in Nj(E$, £5). They

are —(032 + 035052) and —032035, respectively. Then we deduce (VI).

To prove (VII), let us suppose that 052^0. If we compute the coefficient of £2

in Nj(E
2
, £5), then we obtain —021052 = 0, which implies that 021 = 0. Thus, if 052

=£0, according to (I)-(VI), the matrix o f / would be:

/011 012 013 014 015 016\

0 022 023 024 025 026

0 0 033 034 035 036

0 0 043 044 045 046

0 052 053 054 055 056 I

\ 0 062 063 064 065 066 /

(4.29) /=

and, since /
2
= —/, we obtain ·n= — 1, which is a contradiction. This proves

(VII).

Finally, to prove (VIII), let us suppose that #62 =£0. If we compute the
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coefficient of £2 in Nj(E2, EG), then we obtain a2\a&2—0, which implies that a^i —

0. Then, if #62 =£0, the matrix of / is of the form (4.29). Again we have a

contradiction. This proves (VIII), and the proof of (4.1) is completed.
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