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STEENROD SQUARES ON INTERSECTION COHOMOLOGY AND A

CONJECTURE OF M. GORESKY AND W. PARDON

DAVID CHATAUR, MARTINTXO SARALEGI-ARANGUREN, AND DANIEL TANRÉ

Abstract. We prove a conjecture raised by M. Goresky and W. Pardon, concerning
the range of validity of the perverse degree of Steenrod squares in intersection coho-
mology. This answer turns out to be of importance for the definition of characteristic
classes in the framework of intersection cohomology.

For this purpose, we present a construction of cupi-products on the cochain complex,
built on the blow-up of some singular simplices and introduced in a previous work.
We extend to this setting the classical properties of the associated Steenrod squares,
including Adem and Cartan relations, for any loose perversities. In the case of a PL-
pseudomanifold and range 2p, we prove that our definition coincides with M. Goresky’s
definition. We show also that our Steenrod squares are topological invariants which
do not depend on the choice of a stratification of X.

Several examples of concrete computation of perverse Steenrod squares are given,
including the case of isolated singularities and, more especially, we describe the Steen-
rod squares on the Thom space of a vector bundle, as a function of the Steenrod
squares of the base space and the Stiefel-Whitney classes of the bundle. We detail
also an example of a non-trivial square, Sq2 : Hp → Hp+2, whose information is lost
if we consider it as taking values in H2p, showing the interest of the Goresky-Pardon
conjecture.

Intersection cohomology was introduced by M. Goresky and R. MacPherson in [11]
and [12], in order to adapt Poincaré duality to singular manifolds and extend charac-
teristic classes to this paradigm. Steenrod squares on the intersection cohomology of a
pseudomanifold, X, were already defined and studied by M. Goresky in [10]. For that,
he uses a sheaf introduced by Deligne and proves that the Steenrod construction of
cupi-products induces a morphism, SqiG : Hr

p(X;F2) → Hr+i
2p (X;F2), for any Goresky-

MacPherson perversity p such that 2p(ℓ) ≤ ℓ − 2 for any ℓ and with F2 the field with
two elements.

Here, we consider the blow-up, Ñ∗(X), of the normalized cochain complex on a filtered
version of the singular simplicial set associated to X. This notion of blow-up, defined in
[4] and recalled in Section 1, comes from a version adapted to differential forms already

existent in [3]. The elements of Ñ∗(X) have a perverse degree (see Definition 1.2) which

allows the definition of a complex, Ñ∗
p (X), for any loose perversity p. In [4], we have

proved that the blow-up, C̃∗(X), gives the Goresky-MacPherson intersection cohomology
of the pseudomanifold X, for the complementary perversity, when we are working over
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a field. With Proposition 1.5, the blow-up Ñ∗(X) inherits this property; we denote its
cohomology by H∗

TW,•(X;F2).

When the coefficients of Ñ∗(X) are in F2, we define a structure of cupi-products,

∪i : Ñ
∗
p (X) ⊗ Ñ∗

q (X) → Ñ∗
p+q(X), for any loose perversities p, q. This is done following

the work of C. Berger and B. Fresse in [1] (see also [18]): we consider a normalized,
homogeneous Bar resolution, E(2), of the symmetric group Σ2 and prove that there exists

a Σ2-equivariant cochain map, ψ2 : E(2) ⊗ Ñ∗
p (X)⊗ Ñ∗

q (X) → Ñ∗
p+q(X). Such a map is

called a structure of perverse E(2)-algebra on Ñ∗
• (X); its construction comes from the

existence of a diagonal on E(2), established in [1]. Moreover, we prove in Theorem A that
the cupi-products arising from the existence of ψ2 verify the two following properties,
a ∪|a| a = a and a ∪i a

′ = 0, if i ≥ min(|a|, |a′|) where |a|, |a′| are the respective degrees
of a and a′.

The definition of perverse E(2)-algebras can be extended to perverse E(n)-algebras, for
any n. As this work is concerned with Steenrod squares, we consider only perverse E(2)-
algebras over F2. Nevertheless, it is clear that our methods of proof can be enhanced to

give a structure of perverse E∞-algebras over Z on Ñ∗
• (X). We will come back on these

points in a forthcoming paper.
As usual, Steenrod squares are defined on Hk

TW,p(X;F2) by Sqi(a) = a ∪k−i a. Using

May’s presentation of Steenrod squares in [18], we see that the classical properties of
Steenrod squares are direct consequences of the structure of perverse E(2)-algebra. We
collect them, together with Adem and Cartan relations, in Theorem B. (One may observe
that the proof of the Adem relation on a tensor product needs a brief incursion in the
world of perverse E(4)-algebras over F2.)

In Theorem B, we also answer positively to the problem asked by M. Goresky in [10,
Page 493] and to the conjecture made by M. Goresky and W. Pardon in [13, Conjec-
ture 7.5]. This problem concerns the range of the perversities: with the definition of
Steenrod squares via the cupi-products, it is clear that Sqi sends Hk

TW,p(X;F2) into

Hk+i
TW,2p(X;F2). We prove that, in fact, there is a lifting as a map, Sqi : Hk

TW,p(X;F2) →

Hk+i
TW,L(p,i)(X;F2), where L(p, i) is the loose perversity defined by L(p, i)(ℓ) =

min(2p(ℓ), p(ℓ) + i), which is exactly [13, Conjecture 7.5]. This reveals an important
fact because it allows the lifting of Wu classes in intersection cohomology, in a lower
part of the poset of perversities.

In Theorem C, we prove that our definition of Steenrod squares coincides with Goresky’s

definition introduced in [10]. For doing that, we transform the blow-up, Ñ∗
• , into a sheaf

IN∗
• on X and prove that IN∗

• is isomorphic to the Deligne sheaf, in the derived cate-
gory of sheaves on X. The rest of the proof comes from a unicity theorem for Steenrod
squares defined on an injective sheaf, established by M. Goresky, [10].

We end this part of the work with examples of concrete computation of perverse
Steenrod squares, beginning with the case of isolated singularities. From it, we are
able to write the Steenrod squares on the intersection cohomology of the Thom space
associated to a vector bundle, as a function of the Steenrod squares of the base space
and the Stiefel-Whitney classes of the bundle. We detail also an example of a non-trivial
square, Sq2 : HTW,p(X;F2) → HTW,L(p,2)(X;F2), whose information is lost if we consider
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it as values in HTW,2p, showing the interest of the Goresky-Pardon conjecture. This last
example can also be seen as a tubular neighborhood of a stratum, which is the first step
in the study of intersection cohomology of pseudomanifolds.

In Theorem D, we prove that Steenrod squares, Sqi : Hr
TW,p(X;F2) → Hr+i

TW,L(p,i)(X;F2),

are topological invariants when X is a PL-pseudomanifold. This completes the re-
sult of [10] that the Steenrod squares are topological invariants, as homomorphisms
Hr
p(X;F2) → Hr+i

2p (X;F2). The proof is combinatorial, using the description of Steen-

rod squares made by Steenrod in [22].
We emphasize now some particularities which are important in the process of the

proof of the Goresky-Pardon conjecture. The main point is that our technique allows
an explicit construction of the cupi-products at the level of cochain complexes, without
requiring the derived category for their definition. In the context of filtered objects,
observe first that the notion of filtered singular simplices is a natural one, see Remark 1.7.

The second modus operandi is the blow-up of these simplices. In differential geometry,
a blow-up is the replacement of a sub manifold N of a manifold M by the boundary of
a tubular neighborhood of N in M . Its simplicial version can be illustrated as follows
in the case of ∆ = ∆j0 ∗∆j1 : we cut off a small open neighborhood of ∆j0 in ∆ to get

∆̃ = c∆j0 ×∆j1 . For instance,

∆j0

∆ = ∆j0 ∗∆j1 has for blow-up ∆̃ = c∆j0 ×∆j1 .

∆j1

(
∆j0 × {1}

)
×∆j1

∆j1

c∆j0

In the general case of ∆ = ∆j0 ∗ · · · ∗∆jn , we use an inductive process which consists
in cutting off a small open neighborhood of the smallest stratum. As an illustration,

∆j0

∆j1

∆ = ∆j0 ∗∆j1 ∗∆j2 has for blow-up ∆̃ = c∆j0 × c∆j1 ×∆j2 .

∆j2

(
∆j0 × {1}

)
× c∆j1 ×∆j2

c∆j0 ×
(
∆j1 × {1}

)
×∆j2

∆j2

c∆j0
c∆j1
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The faces containing ∆ji × {1} as a factor, which play a fundamental role in the
definition of the perverse degree (see Definition 1.2), have been shadowed in the previous
drawings.

The motivation for such process occurs when one determines the intersection co-
homology of a pseudomanifold with differential forms : as these forms cannot be de-
fined on the singular strata, the only possibility is to define them on the regular part
and ask for some control in the neighborhood of strata. That is what we do here for
cochains. As observed in [8], by G. Friedman and J.E. McClure, the classical way for
the definition of a cup-product (with back and front faces) does not fit with perverse
degrees. But, one advantage of the blow-up is that we can define the cup-product (and
more generally the cupi-products) stratum after stratum, on each factor of the product
c∆j0 ×· · ·× c∆jn−1 ×∆jn , from the classical definition and in a compatible way with the
perverse structure. Finally, this procedure reveals itself of an easy use and does not lose
any information in cohomology; it gives the same structure on cohomology as Goresky’s
definition, as it is established in Section 4.

Contents
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In Section 1, we recall basic notions concerning filtered face sets and their intersection
cohomology. Section 2 is devoted to the construction of a structure of perverse E(2)-

algebra on the blow-up, Ñ∗(X), which corresponds to the building of cupi-products. In
Section 3, we establish the main properties of perverse Steenrod squares, including the
proof of the perverse range conjecture of M. Goresky and W. Pardon. The comparison
between our definition and Goresky’s definition of Steenrod squares, in the case of a
pseudomanifold, is done in Section 4. The particular case of isolated singularities and
the treatment of Steenrod squares in the intersection cohomology of a Thom space are
presented in Section 5. An example of a square, Sq2, in the intersection cohomology of
the total space of a fibration whose fiber is a cone is given in Section 6. This example
shows the interest of having a range of perversity in L(p, i) instead of 2p. Finally,
Section 7 is devoted to the topological invariance of our Steenrod squares.

All the cohomology groups appearing in this text are over the field with two elements,
F2. If there is no ambiguity, we simplify the notation H∗(X;F2) in H

∗(X).
We thank the anonymous referee for her/his comments and suggestions which have

contributed to improve the organization and the writing.
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1. Blow-up and perversity

In this section, we recall the basics of a simplicial version of intersection cohomology,
already introduced in [4].

Let ∆k be the standard simplex of Rk+1, whose vertices, v0, . . . , vk, verify vi =
(t0, . . . , tk), with tj = 0 if j 6= i and ti = 1. Let δi : {0, 1, . . . , k − 1} → {0, 1, . . . , k}
defined by

δi(j) =

{
j if j < i,
j + 1 if j ≥ i.

Such maps generate linear applications, still denoted δi : ∆
k−1 → ∆k and defined by

δi(vj) = vδi(j). More generally, any map σ : {0, 1, . . . , ℓ} → {0, 1, . . . , k} generates a

linear application σ : ∆ℓ → ∆k.

We fix an integer n and consider the category ∆∆∆
[n]
F

whose

• objects are the joins, ∆ = ∆j0 ∗ ∆j1 ∗ · · · ∗ ∆jn , where ∆ji is the simplex of
dimension ji, possibly empty, with the conventions ∆−1 = ∅ and ∅ ∗X = X,

• maps are the σ : ∆ = ∆j0∗∆j1∗· · ·∗∆jn → ∆′ = ∆k0∗∆k1∗· · ·∗∆kn , of the shape
σ = ∗ni=0σi, with σi : {0, 1, . . . , ji} → {0, 1, . . . , ki} an injective order-preserving
map for each i.

The category ∆∆∆
[n],+
F

is the full subcategory of ∆∆∆
[n]
F

whose objects are the joins ∆j0 ∗
∆j1 ∗ · · · ∗∆jn with ∆jn 6= ∅, i.e., jn ≥ 0. To any such element, we associate its blow-up
which is the map

µ : ∆̃ = c∆j0 × · · · × c∆jn−1 ×∆jn → ∆ = ∆j0 ∗ · · · ∗∆jn ,

defined by

µ([y0, s0], . . . , [yn−1, sn−1], yn) = s0y0 + (1− s0)s1y1 + · · ·

+(1− s0) · · · (1− sn−2)sn−1yn−1

+(1− s0) · · · (1− sn−2)(1− sn−1)yn,

where yi ∈ ∆ji and [yi, si] ∈ c∆ji = (∆ji × [0, 1])/(∆ji ×{0}). The prism ∆̃ is sometimes
also called the blow-up of ∆.

Observe that this blow-up is well defined thanks to the restriction to the subcategory

∆∆∆
[n],+
F

. In the topological setting (see Remark 1.7) this restriction means that we do not
consider simplices entirely included in the singular part.

Definition 1.1. A filtered face set, of formal dimension n, is a contravariant functor,

K, from the category ∆∆∆
[n]
F

to the category of sets, i.e., (j0, . . . , jn) 7→ K(j0,...,jn). The

restriction of the filtered face set, K, to ∆∆∆
[n],+
F

is denoted K+.
If K and K ′ are filtered face sets, a filtered face map, f : K → K ′, is a natural trans-

formation between the two functors K and K ′. We denote by ∆∆∆
[n]
F
−Sets the category

of filtered face sets.

To any simplicial set, Y , we can associate the F2-vector space Cd(Y ) generated by the
d-dimensional simplices of Y . The normalized chain complex, Nd(Y ), is the quotient of
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Cd(Y ) by the degeneracies si,

Nd(Y ) = Cd(Y )/s0Cd−1(Y ) + · · · + sd−1Cd−1(Y ).

We consider also the duals N∗(Y ) = homF2(N∗(Y ),F2) and C
∗(Y ) = homF2(C∗(Y ),F2).

Any face operator, δi : ∆
jℓ → ∆jℓ+1, for some ℓ ∈ {0, . . . , n−1}, induces a chain map,

δ∗i : N
∗(c∆j0)⊗ · · · ⊗N∗(c∆jℓ+1)⊗ · · · ⊗N∗(∆jn) → N∗(c∆j0)⊗ · · · ⊗N∗(c∆jℓ)⊗ · · · ⊗

N∗(∆jn), defined by the identity on the factors in ∆ji for i 6= ℓ.
We denote also by δi : ∆

j0 ∗ · · · ∗ ∆jℓ ∗ · · · ∗ ∆jn → ∆j0 ∗ · · · ∗ ∆jℓ+1 ∗ · · · ∗ ∆jn

the operator defined by δi : ∆
jℓ → ∆jℓ+1 and the identity maps. For any simplex,

σ : ∆j0∗· · ·∗∆jℓ+1∗· · ·∗∆jn → K+, we define a simplex, ∂iσ : ∆
j0∗· · ·∗∆jℓ∗· · ·∗∆jn → K,

by ∂iσ = σ ◦ δi, and a complex,

Ñ∗
σ = N∗(c∆j0)⊗ · · · ⊗N∗(c∆jn−1)⊗N∗(∆jn).

These previous considerations on face operators can easily be adapted to the case ℓ = n.

A global section (or cochain) on K is a function which assigns to each simplex σ ∈ K+

an element cσ ∈ Ñ∗
σ such that c∂iσ = δ∗i (cσ) for all σ ∈ K+ and all δi ∈ ∆∆∆

[n],+
F

. (The

restriction to ∆∆∆
[n],+
F

implies ∆jn 6= ∅.)

The space of global sections is denoted by Ñ∗(K) and called the blow-up of N∗ over
the filtered face set K. Global sections have an extra degree, called the perverse degree,
that we describe now.

Let σ : ∆j0 ∗ · · · ∗∆jn → K+ and ℓ ∈ {1, . . . , n} such that ∆jn−ℓ 6= ∅. For any cochain

cσ ∈ N∗(c∆j0)⊗ · · · ⊗N∗(c∆jn−1)⊗N∗(∆jn), its restriction

(1) cσ,n−ℓ ∈ N∗(c∆j0)⊗ · · · ⊗N∗(∆jn−ℓ × {1}) ⊗ · · · ⊗N∗(c∆jn−1)⊗N∗(∆jn)

can be written cσ,n−ℓ =
∑

k c
′
σ,n−ℓ(k)⊗ c′′σ,n−ℓ(k), with

• c′σ,n−ℓ(k) ∈ N∗(c∆j0)⊗ · · · ⊗N∗(c∆jn−ℓ−1)⊗N∗(∆jn−ℓ × {1}) and

• c′′σ,n−ℓ(k) ∈ N∗(c∆jn−ℓ+1)⊗ · · · ⊗N∗(∆jn).

Observe that each term of the tensor product in Formula (1) has a finite canonical basis
and the decomposition of cσ,n−ℓ can be canonically chosen in function of the associated
basis of the tensor product.

Definition 1.2. If cσ,n−ℓ 6= 0, the ℓ-perverse degree, ‖cσ‖ℓ, of cσ is equal to

‖cσ‖ℓ = sup
k

{
|c′′σ,n−ℓ(k)| such that c′σ,n−ℓ(k) 6= 0

}
,

where |c′′σ,n−ℓ(k)| denotes the usual degree of the cochain c′′σ,n−ℓ(k).

If cσ,n−ℓ = 0 or ∆jn−ℓ = ∅, we set ‖cσ‖ℓ = −∞.

The perverse degree of a global section c ∈ Ñ∗(K) is the n-tuple

‖c‖ = (‖c‖1, . . . , ‖c‖n),

where ‖c‖ℓ is the supremum of the ‖cσ‖ℓ for all σ ∈ K+.

Intersection cohomology requires a notion of perversity that we introduce now, fol-
lowing the convention of [15].
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Definition 1.3. A loose perversity is a map p : N → Z, i 7→ p(i), such that p(0) = 0.
A perversity is a loose perversity such that p(i) ≤ p(i + 1) ≤ p(i) + 1, for all i ∈ N.
A Goresky-MacPherson perversity (or GM-perversity) is a perversity such that p(1) =
p(2) = 0.

If p1 and p2 are two loose perversities, we set p1 ≤ p2 if we have p1(i) ≤ p2(i), for all
i ∈ N. The poset of all loose perversities is denoted Pnloose.

The lattice of GM-perversities, denoted Pn, admits a maximal element, t, called the
top perversity and defined by t(i) = i− 2, if i ≥ 2, t(0) = t(1) = 0.

To these posets, we add an element, ∞, which is the constant map to ∞. We call
it the infinite perversity despite the fact that it is not a perversity in the sense of the

previous definition. Finally, we set P̂n = Pn ∪ {∞} and P̂nloose = Pnloose ∪ {∞}.

Definition 1.4. Let p be a loose perversity. A global section c ∈ Ñ∗(K) is p-admissible
if ‖c‖i ≤ p(i), for any i ∈ {1, . . . , n}. A global section c is of p-intersection if c and its
differential, δc, are p-admissible.

We denote by Ñ∗
p (K) the complex of global sections of p-intersection and by H∗

p(K; Ñ)
its homology.

By using the same process with C∗ in place of N∗, we obtain a second complex

of global sections of p-intersection, C̃∗
p(K), of homology H∗

p(K; C̃). Directly from [4,

Theorem A], we get an isomorphism between these two cohomologies.

Proposition 1.5. Let K be a filtered face set and p be a loose perversity. The canon-

ical surjection, C∗(−) → N∗(−), induces a quasi-isomorphism, Ñ∗
p (K) → C̃∗

p(K), and

therefore an isomorphism H∗
p (K; Ñ) ∼= H∗

p(K; C̃).

If there is no ambiguity, we denote by H∗
TW,p(K) this common value and called it the

Thom-Whitney cohomology (henceforth TW-cohomology) of K with coefficients in F2

for the loose perversity p.
The topological objects corresponding to the filtered face sets are locally conical,

stratified topological spaces. We consider here only the case of pseudomanifolds defined
as follows.

Definition 1.6. An n-dimensional topological pseudomanifold is a nonempty topological
space with a filtration by closed subsets,

∅ = X−1 ⊆ X0 ⊆ · · · ⊆ Xn−2 = Xn−1 $ Xn = X,

such that, for all i, Xi\Xi−1 is an i-dimensional metrizable topological manifold or the
empty set. Moreover, for each point x ∈ Xi\Xi−1, i 6= n, there exist,

(a) an open neighborhood, V , of x in X, endowed with the induced filtration,
(b) an open neighborhood, U , of x in Xi\Xi−1,
(c) a compact topological pseudomanifold, L = (Lj)0≤j≤n−i−1, of dimension n − i − 1,

whose cone, c̊L = (L × [0, 1[)/(L × {0}), is endowed with the conic filtration, i.e.,
(̊cL)i = c̊Li−1, for i ≥ 0,

(d) a homeomorphism, ϕ : U × c̊L→ V , such that
(1) ϕ(u, v) = u, for any u ∈ U , with v the cone point,
(2) ϕ(U × c̊Lj) = V ∩Xi+j+1, for any j ∈ {0, . . . , n− i− 1}.
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The couple (V, ϕ) is called a conic chart of x and the filtered space, L, the link of x.

This definition makes sense with an induction on the dimension, starting from pseu-
domanifolds of dimension 0 which are discrete topological spaces, by definition. Also,
one can prove that the subspace Xn\Xn−2 is dense.

Remark 1.7. The set of filtered singular simplices is the bridge between pseudomanifolds
and the more general notion of filtered face sets. More precisely, for any pseudomanifold,
X, we define (see [4, Example 1.5]) the singular filtered face set by

ISingF(X)j0,...,jn = {σ : ∆j0 ∗ · · · ∗∆jn → X | σ−1Xi = ∆j0 ∗ · · · ∗∆ji}.

Such simplex is called filtered.

IfX is a pseudomanifold andK = ISingF(X), we use the notations Ñ∗
p (X), C̃∗

p(X) and

H∗
TW,p(X) for the Thom-Whitney complexes and their cohomology. (As Xn−1 = Xn−2,

the case i = 1 in Definition 1.4, is vacuous in this setting.)

We end this section with a reminder of Goresky-MacPherson cohomology (with co-
efficients in F2) and its link with the blow-up. Let p be a loose perversity. A filtered
simplex, σ : ∆ = ∆j0 ∗ · · · ∗ ∆jn → X, has a perverse degree, ‖σ‖ = (‖σ‖0, . . . , ‖σ‖n),
where ‖σ‖ℓ = dim(∆j0 ∗ · · · ∗∆jn−ℓ), with the convention ‖σ‖ℓ = −∞ if σ−1Xn−ℓ = ∅.

A p-admissible simplex ofX is a filtered simplex, σ : ∆ = ∆j0∗· · ·∗∆jn → X, such that
‖σ‖ℓ ≤ dim∆−ℓ+p(ℓ), for any ℓ ∈ {1, . . . , n}. A p-admissible chain is a linear combina-
tion of p-admissible simplices. A chain, c, is of p-intersection if c and its boundary, ∂c, are

p-admissible. Denote by CGM,p
∗ (X), NGM,p

∗ (X) the complexes of p-intersection chains,

by C∗
GM,p(X) = hom(CGM,p

∗ (X),F2), N
∗
GM,p(X) = hom(NGM,p

∗ (X),F2) their dual and

by H∗
GM,p(X) = H(C∗

GM,p(X)) = H(N∗
GM,p(X)) their homology, called the Goresky-

MacPherson ([11]) intersection cohomology of X (henceforth GM-cohomology) with co-
efficients in F2. This cohomology is isomorphic to the original Goresky-MacPherson
cohomology in the case of a pseudomanifold, X, and a GM-perversity, p, see [4, Propo-
sition A.29] and [15].

The GM and TW cohomologies are related in [4, Theorem B] that we recall here.

Proposition 1.8. Let X be a pseudomanifold, p and q be two perversities such that
q ≥ 0 and p(i) + q(i) = i − 2 for any i ∈ {2, . . . , n}. Then there is an isomorphism
between the GM and the TW cohomologies, H∗

TW,q(X) ∼= H∗
GM,p(X).

2. Perverse E(2)-algebras and filtered face sets

Steenrod squares are built from an action of a normalized homogeneous Bar resolution,
E(2), of the symmetric group Σ2, on the normalized singular cochains. This is the way the
non-commutativity of the cup-product is controlled up to higher coherent homotopies.
This action enriches the multiplicative structure given by the cup-product. We first
review it in order to adapt this construction to the perverse setting.

Recall that the resolution E(2) of F2 as Σ2-module is defined by

. . .→ E(2)i
d
→ E(2)i−1 → · · ·

with E(2)i = F2(ei, τi), dei = dτi = ei−1 + τi−1. (As we are using cochain complexes,
E(2) is negatively graded.) From the isomorphism Σ2

∼= {ei, τi} with τi the generator
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of Σ2, the action (on the left) of Σ2 defines a natural action on E(2). This action is
extended to the tensor product E(2)⊗E(2) as a diagonal action. Moreover, the complex
E(2) is equipped with a Σ2-equivariant diagonal, D : E(2) → E(2) ⊗ E(2), defined by

D(ei) =

i∑

j=0

ej ⊗ τ j .ei−j ,

with τ.ek = τk, τ.τk = ek. This diagonal is essential for the definition of the structure

of E(2)-algebra on Ñ∗(K). Finally, observe that, for any vector space V , there is a
Σ2-action on homF2(V

⊗2, V ), defined by (τ.f)(v1 ⊗ v2) = f(v2 ⊗ v1).

Definition 2.1. An E(2)-algebra structure on a cochain complex, A∗, is a cochain map,
ψ : E(2) ⊗A⊗2 → A, which is Σ2-equivariant as map from E(2) to homF2(A

⊗2, A).

If we denote ψ(ei ⊗ x1 ⊗ x2) by x1 ∪i x2, the previous definition is equivalent to

(1) ψ(τi ⊗ x1 ⊗ x2) = ψ(ei ⊗ x2 ⊗ x1) = x2 ∪i x1,
(2) together with the Leibniz condition:

δ(x1 ∪i x2) = x1 ∪i−1 x2 + x2 ∪i−1 x1 + δx1 ∪i x2 + x1 ∪i δx2.

This means that an E(2)-algebra structure is given by a cochain map, called cupi-product,
∪i : A

r ⊗As → Ar+s−i, satisfying the previous Leibniz condition.
Let L be a simplicial set. In [1], C. Berger et B. Fresse prove the existence of an

E(2)-action on the normalized cochain complex of L, i.e., the existence of a cochain map

ψL : E(2) ⊗N∗(L)⊗
2
→ N∗(L), ei ⊗ x1 ⊗ x2 7→ x1 ∪i x2,

which satisfies the requirements of Definition 2.1. As it is established by May in [18],
classical properties of cupi-products are a direct consequence of this E(2)-algebra struc-
ture, except two of them that we quote in the next definition. (Mention that N∗(L)
satisfies these two additional properties, see [1].)

Definition 2.2. An E(2)-algebra, A∗, is nice if it verifies the two next properties, for
all x, x′ ∈ A of respective degrees |x| and |x′|,

(i) x ∪|x| x = x,

(ii) x ∪i x
′ = 0 if i > min(|x|, |x′|).

Observe the useful next property of nice E(2)-algebras.

Lemma 2.3. Let A be a nice E(2)-algebra. If a ∈ Ad and b ∈ Ad, we have

a ∪d b = b ∪d a.

Proof. Property (ii) of Definition 2.2 and Leibniz rule imply

δ(a ∪d+1 b) = 0

= a ∪d b+ b ∪d a+ δa ∪d+1 b+ a ∪d+1 δb

= a ∪d b+ b ∪d a.

�
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We recall now from [1] the construction of the tensor product of E(2)-algebras. Let

ψi : E(2)⊗A
⊗2

i → Ai be E(2)-algebras for i = 0, 1. We use the diagonal D of E(2) for the
construction of an E(2)-action on the tensor product A0⊗A1, as the following composite,
denoted by Φ,

E(2) ⊗ (A0 ⊗A1)
⊗2 Sh // E(2) ⊗A⊗2

0 ⊗A⊗2

1
D⊗id⊗id // E(2) ⊗ E(2) ⊗A⊗2

0 ⊗A⊗2

1

Sh
��

A0 ⊗A1 E(2)⊗A⊗2

0 ⊗ E(2) ⊗A⊗2

1 ,
ψ0⊗ψ1oo

where Sh are appropriate shuffle maps. We have to verify that the map Φ satisfies the
two conditions stated after Definition 2.1. Assertion (2) is the compatibility with the
differentials which is direct here, because Φ is the composite of maps that are compatible
with the differentials. Thus, we are reduced to Assertion (1). Recall from the definition
of the diagonal of E(2),

D(ei) =
i∑

j=0

ej ⊗ τ j .ei−j and D(τi) =
i∑

j=0

τ.ej ⊗ τ j+1.ei−j =
i∑

j=0

τj ⊗ τ j.τi−j .

A computation from the definition of Φ gives,

Φ(τi ⊗ a0 ⊗ a1 ⊗ b0 ⊗ b1) =
i∑

j=0

ψ0(τj ⊗ a0 ⊗ b0)⊗ ψ1(τ
j .τi−j ⊗ a1 ⊗ b1),

Φ(ei ⊗ b0 ⊗ b1 ⊗ a0 ⊗ a1) =
i∑

j=0

ψ0(ej ⊗ b0 ⊗ a0)⊗ ψ1(τ
j.ei−j ⊗ b1 ⊗ a1).

If j is even, we have

ψ1(τ
j.ei−j ⊗ b1 ⊗ a1) = ψ1(ei−j ⊗ b1 ⊗ a1) = ψ1(τi−j ⊗ a1 ⊗ b1) = ψ1(τ

j .τi−j ⊗ a1 ⊗ b1).

A similar computation in the case j odd gives

Φ(τi ⊗ a0 ⊗ a1 ⊗ b0 ⊗ b1) = Φ(ei ⊗ b0 ⊗ b1 ⊗ a0 ⊗ a1).

Consider now a family of E(2)-algebras, ψi : E(2) ⊗ A⊗2

i → Ai, with i = 0, . . . , n.
As D : E(2) → E(2) ⊗ E(2) is the diagonal of a Bar resolution, it is a cochain map,
coassociative ([1]) and we may iterate it as,

D
2(ei) =

i∑

j=0

D(ej)⊗ τ j .ei−j =
i∑

j=0

j∑

k=0

ek ⊗ τk.ej−k ⊗ τ j .ei−j .

If we set i1 = k, i2 = j − k, i3 = i− j, this last expression can be written as

D
2(ei) =

∑

(i1,i2,i3) with i1+i2+i3=i

ei1 ⊗ τ i1 .ei2 ⊗ τ i1+i2 .ei3 .
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More generally, an induction gives,

D
n−1(ei) =

∑

(i1,...,in) with i1+···+in=i

ei1 ⊗ τ i1 .ei2 ⊗ · · · ⊗ τ i1+···+in−1 .ein .

As in the previous case of two E(2)-algebras, the action of E(2) on ⊗n
i=0Ai is obtained

from appropriate shuffle maps and the iteration Dn−1 of the diagonal. By using the
notation in cupi-products, this structure is defined as the map

(2) E(2) ⊗ (⊗n
i=0Ai)

⊗2 Φ // ⊗n
i=0Ai

which sends the element ei ⊗ (⊗n
i=0xi)⊗ (⊗n

i=0yi) to∑

(i1,...,in) with i1+···+in=i

(x1 ∪i1 y1)⊗ (x2 ∪
i1
i2
y2)⊗ · · · ⊗ (xn ∪

i1+···+in−1

in
yn),

where we set, for j ≥ 0,

(3) x ∪ji y =

{
x ∪i y if j is even,
y ∪i x if j is odd.

Up to shuffle maps, Φ is obtained as a composite and tensor product of equivariant
cochain maps; thus it satisfies the requirements of Definition 2.1. Moreover, as we
establish below, the tensor product of nice E(2)-algebras is a nice E(2)-algebra.

Lemma 2.4. Any tensor product of nice E(2)-algebras is a nice E(2)-algebra for the
product structure coming from the diagonal of E(2).

Proof. By coassociativity of the diagonal of E(2), it is sufficient to reduce the proof to
the case of the tensor product of two nice E(2)-algebras, A and B.

Let x =
∑

k ak ⊗ bk ∈ (A⊗B)d and x′ =
∑

ℓ a
′
ℓ ⊗ b′ℓ ∈ (A⊗B)d

′

with d ≤ d′. We set
f = d+m with m ≥ 0. One compute

x ∪f x
′ =

∑

f1+f2=f

∑

k,ℓ

(ak ∪f1 a
′
ℓ)⊗ (bk ∪

f1
f2
b′ℓ).

If the element (ak ∪f1 a
′
ℓ)⊗ (bk ∪

f1
f2
b′ℓ) of this sum is not equal to zero, we must have

f1 ≤ min(|ak|, |a
′
ℓ|) and f2 ≤ min(|bk|, |b

′
ℓ|),

which implies f = f1 + f2 = d +m ≤ |ak| + |bk| = d and m = 0. We have established
Property (ii) of Definition 2.2. As for Property (i), we consider

x ∪d x =
∑

f1+f2=d

∑

k,k′

(ak ∪f1 ak′)⊗ (bk ∪
f1
f2
bk′).

As above, if the element (ak ∪f1 ak′) ⊗ (bk ∪
f1
f2
bk′) of this sum is not equal to zero, we

must have
f1 ≤ min(|ak|, |ak′ |) and f2 ≤ min(|bk|, |bk′ |).

Suppose min(|ak|, |ak′ |) = |ak|, then we have |bk′ | ≤ |bk|, because |ak|+ |bk| = |ak′ |+ |bk′ |,
and also d = |ak|+ |bk| = f1 + f2 ≤ |ak|+ |bk′ |, which imply |bk| = |bk′ |. Therefore, the
non-zero elements of this sum must be of the shape (ak ∪d−r ak′) ⊗ (bk ∪

d−r
r bk′) with

|ak| = |ak′ | = d−r, |bk| = |bk′ | = r. With Lemma 2.3, if ak 6= ak′ , the same term appears
twice, as (ak ∪d−r ak′)⊗ (bk ∪

d−r
r bk′) and as (ak′ ∪d−r ak)⊗ (bk′ ∪

d−r
r bk). Their sum is
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equal to zero. With the same argument applied to the case bk 6= bk′ , we have reduced
the previous expression to

x ∪d x =
∑

k

(ak ∪d−r ak)⊗ (bk ∪r bk)

=
∑

k

ak ⊗ bk = x,

and Property (i) of Definition 2.2 is established. �

We come back to the intersection setting and recall ([4]) that a perverse cochain

complex is a functor defined on P̂n, with values in the category of cochain complexes. A

functor from P̂nloose with values in the category of cochain complexes is called a generalized
perverse cochain complex. For instance, if K is a filtered face set, the association p 7→
Ñ∗
p (K) is a (generalized) perverse cochain complex and this association is natural in K.

Definition 2.5. Let A∗
• be a generalized perverse cochain complex. We denote by

ϕqp : A
∗
p → A∗

q the morphism associated to p ≤ q. A perverse E(2)-algebra structure on

A∗
• is a family of cochain maps, ψp,q : E(2)⊗A∗

p ⊗A∗
q → A∗

p+q, verifying

(i) a compatibility condition with perversities: for any loose perversities, p1, q1, p2, q2,
with p1 ≤ p2 and q1 ≤ q2, the following diagram is commutative

E(2)⊗A∗
p1

⊗A∗
q1

ψp1,q1 //

id⊗ϕ
p2
p1

⊗ϕ
q2
q1

��

A∗
p1+q1

ϕ
p2+q2
p1+q1

��
E(2) ⊗A∗

p2
⊗A∗

q2
.

ψp2,q2 // A∗
p2+q2

(ii) a Σ2-equivariance as map from E(2) to (hom(A∗
p⊗A∗

q, A
∗
p+q))p,q with the following

Σ2-action on the codomain:
To any family ηp,q : A

∗
p ⊗ A∗

q → A∗
p+q, we associate the family (τη)p,q : A

∗
p ⊗ A∗

q →
A∗
p+q, defined by (τη)p,q(x1 ⊗ x2) = ηq,p(x2 ⊗ x1).

Equivalently, a perverse E(2)-algebra structure on A∗
• is entirely determined by maps,

called perverse cupi-products, ∪i : A
r
p ⊗ Asq → Ar+s−ip+q , satisfying the previous Leibniz

condition and the compatibility conditions with the poset structure of perversities. (The
two settings are related by x ∪i y = ψp,q(ei ⊗ x ⊗ y).) Nice perverse E(2)-algebras are
defined as in Definition 2.2.

When A∗
• is a perverse cochain complex and the sum p + q replaced by the sum of

GM-perversities, p⊕ q, in Definition 2.5, we say that A∗
• is a GM-perverse E(2)-algebra.

Let K be a filtered face set and σ : ∆ = ∆j0 ∗∆j1 ∗ · · · ∗∆jn → K. With the tensor
product of E(2)-algebras recalled in (2) and the structure of nice E(2)-algebra defined
on the normalized cochain complex in [1], we get a structure of nice E(2)-algebra on the

tensor product Ñ∗(K)σ = N∗(c∆j0)⊗ · · · ⊗N∗(c∆jn−1)⊗N∗(∆jn). The next theorem
establishes the compatibility of this structure with the perverse degrees.
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Theorem A. Let K be a filtered face set and p be a loose perversity. The generalized

perverse cochain complex, p 7→ Ñ∗
p (K), is a nice perverse E(2)-algebra, natural in K,

for the filtered face maps.

Recall that a continuous map, f : X = (Xj)0≤j≤n → Y = (Yj)0≤j≤n, between pseudo-
manifolds is a stratum preserving stratified map if, for any stratum S′ of Y ′, f−1(S′) is a
union of strata of X and f−1(Yn−ℓ) = Xn−ℓ, for any ℓ ≥ 0. As any stratum preserving,

stratified map induces a filtered face set map, ISingF(X) → ISingF(Y ), (see [4, Example
1.5]) the next result is a direct consequence of Theorem A.

Corollary 2.6. Let X be a pseudomanifold and p be a loose perversity. The generalized

perverse cochain complex, p 7→ Ñ∗
p (ISing

F(X)), is a nice perverse E(2)-algebra, natural
in X by stratum preserving stratified maps.

Proof of Theorem A. A cochain c ∈ Ñ∗(K) associates to any simplex, σ : ∆ = ∆j0 ∗ · · · ∗
∆jn → K+, an element cσ ∈ N∗(c∆j0)⊗ · · · ⊗N∗(c∆jn−1)⊗N∗(∆jn).

If we set (c ∪i c
′)σ = cσ ∪i c

′
σ, by naturality of the structure of E(2)-algebra on

N∗(c∆j0)⊗ · · · ⊗N∗(c∆jn−1)⊗N∗(∆jn), we get a global section c∪i c
′ ∈ Ñ∗(K). More

precisely, we have a Σ2-equivariant cochain map,

E(2) ⊗ Ñ∗(K)⊗2 → Ñ∗(K),

entirely defined by ei⊗c⊗c
′ 7→ c∪i c

′, which gives to Ñ∗(K) a structure of E(2)-algebra.
The niceness of this structure is a direct consequence of Lemma 2.4.

The naturality inK comes from the naturality of the E(2)-algebra structure on a tensor

product, already mentioned, and from the naturality of the association, K 7→ Ñ∗
p (K),

see [4, Proposition 1.36].
We study now the behavior of this structure with the perverse degree. The perversity

degree being a local notion, we consider c and c′ in N∗(c∆j0) ⊗ · · · ⊗ N∗(c∆jn−1) ⊗
N∗(∆jn), with jn ≥ 0, and ℓ ∈ {1, . . . , n} such that ∆jn−ℓ 6= ∅. We denote by cn−ℓ and
c′n−ℓ the respective restrictions of c and c′ to N∗(c∆j0)⊗ · · · ⊗N∗(∆jn−ℓ × {1})⊗ · · · ⊗

N∗(c∆jn−1)⊗N∗(∆jn).

We decompose c, c′ in c =
∑m

s=0 c
s
0⊗· · ·⊗csn, c

′ =
∑m′

t=0 c
′t
0⊗· · ·⊗c′tn and their restriction

in cn−ℓ =
∑m

s=0 c
s
0 ⊗ · · · ⊗ ι∗n−ℓc

s
n−ℓ⊗ · · · ⊗ csn, c

′
n−ℓ =

∑m
t=0 c

′t
0 ⊗ · · · ⊗ ι∗n−ℓc

′t
n−ℓ⊗ · · · ⊗ c′tn,

where ι∗n−ℓ is induced by the inclusion ∆jn−ℓ × {1} →֒ c∆jn−ℓ . By definition, we have

‖c‖ℓ = sup
s
{|csn−ℓ+1 ⊗ · · · ⊗ csn| such that cs0 ⊗ · · · ⊗ ι∗n−ℓc

s
n−ℓ 6= 0}.

Let

N∗(c∆j0)⊗ · · · ⊗N∗(c∆jn−ℓ)⊗ · · · ⊗N∗(c∆jn−1)⊗N∗(∆jn)

ι̂∗
n−ℓ

=id⊗ι∗
n−ℓ

⊗id

��
N∗(c∆j0)⊗ · · · ⊗N∗(∆jn−ℓ × {1}) ⊗ · · · ⊗N∗(c∆jn−1)⊗N∗(∆jn).

As the cupi-product is natural, we have ι̂∗n−ℓ(c ∪i c
′) = ι̂∗n−ℓ(c) ∪i ι̂

∗
n−ℓ(c

′).

• If ι̂∗n−ℓ(c) = 0 or ι̂∗n−ℓ(c
′) = 0, we have ι̂∗n−ℓ(c) ∪i ι̂

∗
n−ℓ(c

′) = 0 and thus

‖c ∪i c
′‖ℓ = −∞.
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• Suppose now ι̂∗n−ℓ(c) 6= 0 and ι̂∗n−ℓ(c
′) 6= 0. By definition of the cupi-product,

ι̂∗n−ℓ(c) ∪i ι̂
∗
n−ℓ(c

′) is a sum of tensor products whose elements are of two kinds:

(1) csj ∪fj c
′t
j , with j 6= n− ℓ, or

(2) ι̂∗n−ℓ(c
s
n−ℓ) ∪fn−ℓ

ι̂∗n−ℓ(c
′t
n−ℓ).

As |csj ∪fj c
′t
j | ≤ |csj |+ |c′tj | − fj, the cochain degree decreases and we obtain, for each ℓ,

‖c ∪i c
′‖ℓ ≤ ‖c‖ℓ + ‖c′‖ℓ,

by definition of the perverse degree, see Definition 1.2. Therefore, we have

‖c ∪i c
′‖ ≤ ‖c‖+ ‖c′‖.

Now, the rule of Leibniz implies

‖δ(c ∪i c
′)‖ ≤ max(‖δc‖ + ‖c′‖, ‖δc′‖+ ‖c‖, ‖c‖ + ‖c′‖).

Thus, if ‖c‖ ≤ p, ‖δc‖ ≤ p, ‖c′‖ ≤ q and ‖δc′‖ ≤ q, we have ‖c ∪i c
′‖ ≤ p + q and

‖δ(c ∪i c
′)‖ ≤ p + q. This implies that the E(2)-algebra structure on Ñ∗(K) induces

equivariant cochain maps

E(2) ⊗ Ñ∗
p (K)⊗ Ñ∗

q (K) → Ñ∗
p+q(K).

That means: Ñ∗
• (K) is a perverse E(2)-algebra. �

3. Steenrod perverse squares

From the existence of perverse cupi-products, we define Steenrod squares, as in the
classical case. In the next statement, when i > 0, the fact that the loose perversity
image of Sqi is L(p, i), defined by L(p, i)(ℓ) = min(2p(ℓ), p(ℓ) + i), answers positively a
conjecture of M. Goresky and W. Pardon, see [13, Conjecture 7.5]. More explicitly, we
prove the existence of a dashed arrow which lifts the square Sqi,

Hr+i
TW,L(p,i)

��

Hr
TW,p

Sqi //

99
t

t

t

t

t

Hr+i
TW,2p.

We still denote by Sqi this lifting.

Theorem B. Let K be a filtered face set and p, q be loose perversities The perverse
cupi-products induce natural perverse squares, defined by Sqi(x) = x ∪|x|−i x, for x ∈

H
|x|
TW,p(K), which satisfy the following properties.

(1) If i < 0, then Sqi(x) = 0.
(2) If i ≥ 0, then we have

Sqi : Hr
TW,p(K) → Hr+i

TW,L(p,i)(K),

where L(p, i) = min(2p, p + i) and
(i) Sqi(x) = 0 if i > |x|,
(ii) Sq|x|(x) = x2,
(iii) Sq0 = id.
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(iv) If x ∈ H
|x|
TW,p(K), y ∈ H

|y|
TW,q(K), one has the (internal) Cartan formula,

Sqi(x ∪ y) =
∑

i1+i2=i

Sqi1(x) ∪ Sqi2(y) ∈ H
|x|+|y|+i
TW,r (K),

with r = min(2p + 2q, p+ q + i) and ∪ = ∪0.
(v) For any pair (i, j), with i < 2j, one has the Adem relation,

SqiSqj =

[i/2]∑

k=0

(
j − k − 1
i− 2k

)
Sqi+j−kSqk

and SqiSqj sends H∗
TW,p into H∗+i+j

TW,r , with r = min(4p, 2p + i, p + i+ j).

Before proving this theorem, we establish a technical property on the tensor product
of two nice E(2)-algebras, which is the keystone in the proof of Theorem B.

Lemma 3.1. Let A and B be two nice E(2)-algebras and A ⊗ B their tensor product
equipped with the E(2)-algebra structure coming from the diagonal of E(2). Let x, x′ in
A, y, y′ in B such that |x| + |y| = |x′| + |y′| = d, |y| ≤ r and |y′| ≤ r. Then, for any

k ∈ {0, . . . , d−i} such that (x∪d−k−ix
′)⊗(y∪d−k−ik y′) 6= 0, we have |y∪d−k−ik y′| ≤ r+i.

Proof. Suppose d− k − i even. If (x ∪d−k−i x
′) ⊗ (y ∪k y

′) 6= 0, we must have k ≤
min(|y|, |y′|) and d− k − i ≤ min(|x|, |x′|), which implies

d− i−min(|x|, |x′|) ≤ k.

Suppose min(|x|, |x′|) = |x|. Then we have

|y|+ |y′| − d+ i+min(|x|, |x′|) = |y|+ |y′| − (|x|+ |y|) + i+ |x|

= |y′|+ i,

which implies

|y ∪k y
′| ≤ |y|+ |y′| − k ≤ |y|+ |y′| − d+ i+min(|x|, |x′|) ≤ |y′|+ i ≤ r + i.

A similar argument gives the result in the case min(|x|, |x′|) = |x′|. Also, the proof is
analogous to the previous one if d− k − i is odd, since |y′ ∪k y| ≤ |y′|+ |y| − k. �

Directly from the definition of cupk-products, the inequalities |y| ≤ r and |y′| ≤ r
imply |y ∪k y

′| ≤ 2r. Thus, the bound |y ∪k y
′| ≤ r + i obtained in Lemma 3.1 is

exactly what is needed for the proof of the Goresky-Pardon conjecture, as we show in
the beginning of the next proof.

Proof of Theorem B. Let i ≥ 0. From their definition as particular cupi-products, the
Steenrod squares have their image in the intersection cohomology with loose perversity
2p. We prove first that the loose perversity 2p can be replaced by L(p, i). We take over
the arguments and the method used at the end of the proof of Theorem A by considering
a cocycle c ∈ N∗(c∆j0)⊗· · ·⊗N∗(c∆jn−1)⊗N∗(∆jn), ℓ ∈ {1, . . . , n}, such that ∆jn−ℓ 6= ∅,
and the restriction cn−ℓ of c to N

∗(c∆j0)⊗ · · · ⊗N∗(∆jn−ℓ × {1})⊗ · · · ⊗N∗(c∆jn−1)⊗
N∗(∆jn). Observe first that, by naturality, we have (c ∪|c|−i c)n−ℓ = cn−ℓ ∪|cn−ℓ|−i cn−ℓ.

• If cn−ℓ = 0, we have (c ∪|c|−i c)n−ℓ = 0 and ‖c ∪|c|−i c‖ℓ = −∞.
• If cn−ℓ 6= 0, we decompose it in a canonical form, cn−ℓ =

∑
s c

′s
n−ℓ ⊗ c′′sn−ℓ ∈ A⊗ B,

with A = N∗(c∆j0)⊗· · ·⊗N∗(∆jn−ℓ ×{1}) and B = N∗(c∆jn−ℓ+1)⊗· · ·⊗N∗(c∆jn−1)⊗
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N∗(∆jn). Using Lemma 3.1, we know that (c′sn−ℓ ∪|cn−ℓ|−k−i c
′t
n−ℓ) ⊗ (c′′sn−ℓ ∪

|cn−ℓ|−k−i
k

c′′tn−ℓ) 6= 0 implies |c′′sn−ℓ ∪
|cn−ℓ|−k−i
k c′′tn−ℓ| ≤ p(ℓ) + i, for any pair of indices, (s, t), in the

writing of cn−ℓ. This implies ‖c ∪|c|−i c‖ ≤ p+ i, as announced.
The condition on the perversity of the differential of c ∪|c|−i c is immediate here

because c is a cocycle, and the naturality follows from the fact that the lifting already
exists at the level of the spaces of cocycles.

The list (1), (2)-(i), (2)-(ii), (2)-(iii) of properties is a direct consequence of Theo-
rem A and [18, Section 5].

Let A and B be two nice E(2)-algebras. By definition of the diagonal action of E(2)
on the tensor product, we have a Cartan external formula,

Sqi(a⊗ b) =
∑

i1+i2=i

Sqi1(a)⊗ Sqi2(b),

for a ∈ A and b ∈ B. In our case, each factor, A and B, satisfies the Cartan internal
formula. Therefore, the Cartan internal formula on A⊗B is a direct consequence of the
next equalities:

Sqi((a⊗ b) ∪ (a′ ⊗ b′)) =(1) Sqi((a ∪ a′)⊗ (b ∪ b′))

=(2)

∑

i1+i2=i

Sqi1(a ∪ a′)⊗ Sqi2(b ∪ b′)

=(3)

∑

j1+j2+k1+k2=i

(Sqj1(a) ∪ Sqj2(a′))⊗ (Sqk1(b) ∪ Sqk2(b′))

and
∑

i1+i2=i

Sqi1(a⊗ b) ∪ Sqi2(a′
⊗ b

′) =(2)

∑

s1+s2+t1+t2=i

(Sqs1(a)⊗ Sqs2(b)) ∪ (Sqt1(a′)⊗ Sqt2(b′))

=(1)

∑

s1+s2+t1+t2=i

(Sqs1(a) ∪ Sqt1(a′))⊗ (Sqs2(b) ∪ Sqt2(b′)),

where =(1) comes from the definition of the cup-product on a tensor product, =(2) from
the application of the Cartan external formula and =(3) from the Cartan internal formula
on each factor.

For the Adem’s formula (2)-(v), we need to recall some properties in order to track the
perversity conditions. The classical proof uses the Bar resolution, E(4), of F2 as a Σ4-
module, and the existence of a Σ4-equivariant cochain map, E(4) ⊗N∗(L)⊗4 → N∗(L),
for any simplicial set L, called an E(4)-algebra. As these objects appear just in this part
of proof, we do not recall them in detail, referring to [1, Section 1]. We mention only
the points related to the control of perversities.

Denote by ω : E(2) ⊗ E(2) ⊗ E(2) → E(4) the cochain map induced by the wreath
product Σ2 × Σ2 × Σ2 → Σ4. Let A be an E(2) and an E(4)-algebra whose structure
maps are respectively denoted ψ2 and ψ4. By definition, we say that A is an Adem-object
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([18]) if there is a commutative diagram

E(2) ⊗ E(2)⊗2 ⊗A⊗4 ω⊗id //

Sh
��

E(4) ⊗A⊗4 ψ4 // A

E(2) ⊗ (E(2) ⊗A⊗2)⊗2

id⊗ψ⊗2
2

// E(2) ⊗A⊗2

ψ2

66
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠

where Sh is the appropriate shuffle map.
Let ∆ = ∆j0 ∗ · · · ∗∆jn and A = N∗(c∆j0) ⊗ · · · ⊗ N∗(c∆jn−1) ⊗N∗(∆jn). Because

N∗(L) is an Adem-object for any simplicial set L and because the tensor product of two
nice E(2)-algebras which are Adem-objects is an Adem-object ([18, Lemma 4.2, Page
174]), A is an Adem-object.

In Theorem A, we prove that ψ2 restricts to a map E(2)⊗Ap ⊗Aq → Ap+q. Exactly
the same argument can be used for ψ4, replacing c ∪i c

′ by ψ4(αi ⊗ c1 ⊗ c2 ⊗ c3 ⊗ c4)
for each αi ∈ E(4), in the last part of the proof of Theorem A. Thus ψ4 restricts to a
map E(4) ⊗ Ap1 ⊗ Ap2 ⊗ Ap3 ⊗ Ap4 → Ap1+p2+p3+p4 and we get an Adem formula for
intersection cohomology.

Successive applications of Lemma 3.1 show that the non-zero terms in the right-hand
side of the Adem relation belong to intersection cohomology in perversities less than, or
equal to, min(4p, 2p+ 2j, 2p+ i, p+ i+ j) ≤ min(4p, 2p+ i, p+ i+ j), since i < 2j. The
same argument applied to the left-hand side implies that the non-zero terms belong also
to intersection cohomology in the same range of perversities. �

Remark 3.2. Previous definitions and results can be adapted to the context of GM-
perversities. By restricting to GM-perversities p and q such that p + q ≤ t, the cupi-
products are defined by

∪i : A
r
p ⊗Asq → Ar+s−ip⊕q ,

where the sum p⊕ q is taken in the lattice Pn, see [14] or [4, Section 2.1]. The Steenrod
squares introduced in Section 3,

Sqi : Hr
TW,p → Hr+i

TW,r,

are therefore defined for GM-perversities p, r such that min(2p, p+ i) ≤ r.

4. Comparison with Goresky’s construction

As this section is concerned with isomorphisms between different definitions of Steen-
rod squares in intersection cohomology, in some crucial points, we keep all the informa-
tion in the notations of cohomology groups.

In [12] (see also [2, Chapter V]), the intersection cohomology on a pseudomanifold, X,
is introduced by the use of a sheaf due to Deligne. The Deligne’s sheaf, Pp, is defined by
a sequence of truncations starting from the constant sheaf on Xn\Xn−2. As we are not
using this specific construction, we do not recall it, sending the reader to the previous
references.



18 DAVID CHATAUR, MARTINTXO SARALEGI-ARANGUREN, AND DANIEL TANRÉ

In [10], M. Goresky has already defined Steenrod squares, SqiG, on the intersection
cohomology, H∗(X;Pp), of a topological pseudomanifold, X, in the case of a GM-

perversity p. In this section, we prove that the two Steenrod squares, Sqi and SqiG,
coincide.

Recall the filtered face set ISingF(X) introduced in Remark 1.7. The next result
connects Goresky’s definition of Steenrod squares on H∗(X;Pp) to our definition of

Steenrod squares on the TW-cohomology of the filtered face set ISingF(X), denoted
H∗

TW,p(X).

Theorem C. Let X be an n-dimensional topological pseudomanifold. For any GM-
perversity q, there exists an isomorphism θ∗q : H

∗
TW,q(X) → H∗(X;Pq). Moreover, if p

is a GM-perversity such that 2p ≤ t, then the following diagram commutes,

Hr
TW,p(X)

Sqi //

θrp

��

Hr+i
TW,L(p,i)(X) // Hr+i

TW,2p(X)

θr+i
2p

��
Hr(X;Pp)

SqiG // Hr+i(X;P2p).

The previous statement implies that θr+i
L(p,i)◦Sq

i◦(θrp)
−1 : Hr(X;Pp) → Hr+i(X;PL(p,i))

is a lift of the Steenrod squares defined by Goresky, SqiG : H
r(X;Pp) → Hr+i(X;P2p).

Therefore the Goresky-Pardon conjecture has a positive answer.

From the functor Ñ∗, we define a presheaf on X by

IN∗
p (U) = Ñ∗

p (ISing
F(U)),

for any open set U of X. Denote by Cov(U) the directed set of open covers of U , ordered

by inclusions. For any U ∈ Cov(U), ISingF,U(U) is the sub-filtered face set of ISingF(U)
whose elements have a support included in an element of U. The sheafification of IN∗

p

is given by

IN∗
p(U) = lim

U∈Cov(U)
Ñ∗
p (ISing

F,U(U)),

see [9, Exemple 3.9.1.] in the case of singular cochains. The cupi-products introduced

in Section 3 on Ñ∗
• (ISing

F,U(U)) induce cupi-products on IN∗
•(U), by definition of the

last one as a direct limit.

Theorem C is a direct consequence of Lemmas 4.1 and 4.3. First, we connect the
definition of Steenrod squares on ISingF(X) with a definition involving the sheaf IN∗

•

on X.

Lemma 4.1. For any n-dimensional topological pseudomanifold, X, and any GM-
perversity p, we have a commutative diagram,

Hr
TW,p(X)

Sqi //

∼=

��

Hr+i
TW,L(p,i)(X)

∼=
��

Hr(X; INp)
Sqi // Hr+i(X; INL(p,i)),
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in which vertical maps are quasi-isomorphisms induced by the canonical map IN∗
• →

IN∗
•.

Proof. For any U ∈ Cov(X), there is a restriction map, rU : IN
∗
p (X) → Ñ∗

p (ISing
F,U(X)),

compatible with the inclusions of open covers. This gives the morphism,

IN∗
p (X) → Γ(X, IN∗

p) := lim
U∈Cov(X)

Ñ∗
p (ISing

F,U(X)),

induced by the canonical map IN∗
• → IN∗

•. By taking the direct limit of the quasi-
isomorphisms of Lemma 4.2, we get an isomorphism

H∗

(
lim

U∈Cov(U)
Ñ∗
p (ISing

F,U(U))

)
∼= H∗

(
Ñ∗
p (ISing

F(U))
)
= H∗

TW,p(U).

In a second step, by following the lines of [9, Exemple 3.9.1.], we prove that the sheaf,
IN∗

p, is soft. The elements of IN0
0
(U) are 0-admissible vertices; they are the vertices of

the regular part and the map N0(U) → IN0
0
(U) can be considered as the restriction to

the regular part. Also, in this degree 0, the presheaves N0 and IN0
0
are clearly sheaves

and N0(U) → IN0
0
(U), is a morphism of sheaves of rings. Observe also that IN∗

p (U)

is an IN0
0
(U)-module for the cup-product. As the sheaf N0 is soft, and as (see [9,

Théorème 3.7.1.]) any sheaf of modules over a soft sheaf of rings is soft, we deduce the
softness of IN∗

p. Thus, the hypercohomology is the cohomology of the space of sections
of the sheaf and we get a series of isomorphisms,

H∗(X; IN∗
p)

∼= H∗(Γ(X, IN∗
p))

∼= H∗(Ñ∗
p (ISing

F(X))) = H∗
TW,p(X).

By definition of the cupi-products on IN∗
•, the following diagram commutes,

IN r
p (X)⊗ IN s

q (X)
∪i //

≃

��

IN r+s−i
p⊕q (X)

≃

��

Γ(X, INr
p)⊗ Γ(X, INs

q)
∪i // Γ(X, INr+s−i

p⊕q ).

With the properties already established, the vertical maps are quasi-isomorphisms in-
duced by the canonical map IN∗

• → IN∗
•. The stated result is now a consequence of the

definition of Steenrod squares from cupi-products. �

Lemma 4.2. Let X be an n-dimensional pseudomanifold and U be an open cover of X.
The canonical inclusion, ι : ISingF,U(X) → ISingF(X), induces an isomorphism in in-
tersection cohomology, for any GM-perversity p.

Proof. With Proposition 1.5, we can replace Ñ∗(−) by the blow-up C̃∗(−), already
studied in [4]. Let q be the GM-perversity defined by p(k)+q(k) = k−2. Recall from [4,

Theorem B], the existence of a quasi-isomorphism, eval : C̃∗
p(K) → hom(CGM,q

∗ (K),F2),
defined for any filtered face set, K, as follows:

for any Φ ∈ C̃∗
p(K), σ : ∆j0 ∗ · · · ∗ ∆jn → K, we have Φσ =

∑
j Φ0,σ,j ⊗ · · · ⊗ Φn,σ,j ∈

C∗(c∆j0)⊗ · · · ⊗ C∗(∆jn) and we set

eval(Φ)(σ) =
∑

j

Φ0,σ,j([c∆
j0 ]) · . . . · Φn,σ,j([∆

jn ]),
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where [−] is the maximal simplex. By using it for K = ISingF(X) and K = ISingF,U(X),
we get the following diagram, whose commutativity follows directly from the definitions
of maps,

H∗
TW,p(ISing

F(X))
eval∗ //

ι∗TW

��

H∗
GM,q(ISing

F(X))

ι∗GM

��

H∗
TW,p(ISing

F,U(X))
eval∗ // H∗

GM,q(ISing
F,U(X)).

We know that the two evaluation maps, eval∗, are quasi-isomorphisms and we have
to prove that the map, ι∗TW, induced by the inclusion, ι, is an isomorphism. With the
commutativity of the previous diagram, and the fact that the homology is over a field,
it is sufficient to prove that

ιGM,∗ : H
GM,q
∗ (ISingF,U(X)) → HGM,q

∗ (ISingF(X))

is an isomorphism. Set Cq∗(X) = CGM,q
∗ (ISingF(X)). Recall from [4, Lemma A.16],

the existence of a chain map, which is the classical subdivision, sd: Cq∗(X) → Cq∗(X),

and, for any integer m, the existence of a homomorphism, T : Cq∗(X) → Cq∗+1(X), such

that ∂T + T∂ = id − sdm. By construction, for any element c ∈ Cq∗(X), there is an

integer m such that sdmc ∈ CGM,q
∗ (ISingF,U(X)). Moreover, if c ∈ CGM,q

∗ (ISingF,U(X))

then Tc ∈ CGM,q
∗ (ISingF,U(X)). Also, if c is a cycle, sdmc is a cycle also and the two

homology classes [c] and [sdmc] are equal. This implies the surjectivity and the injectivity
of ιGM,∗ through a classical argument. �

The second step in the proof of Theorem C is the comparison of the two definitions
of Steenrod squares, respectively associated to the sheaf IN∗

• and to the Deligne sheaf
P

∗
•. This is a consequence of the comparison of the two associated cupi-products, done

in the next lemma.

Lemma 4.3. Let X be an n-dimensional topological pseudomanifold and let p, q be two
GM-perversities, such that p⊕ q ≤ t, where p⊕ q is the smallest GM-perversity, r, such
that p + q ≤ r. Then, for any i, there is a commutative square in the derived category
of sheaves on X, linking the two cupi-products,

IN∗
p(X)⊗ IN∗

q(X)
∪i //

�� �O
�O
�O

IN∗
p⊕q(X)

���O
�O
�O

P
∗
p(X)⊗ P

∗
q(X)

∪i // P∗
p⊕q(X),

and such that vertical arrows are isomorphisms.

Proof. Let S∗ be a differential graded sheaf on the pseudomanifold X. We denote by
S∗
k the restriction of S∗ to the open set X\Xn−k, for k ∈ {2, . . . , n + 1}. Recall the

conditions (AX1) of [2, V.2.3]:

(a) S∗ is bounded, Si = 0 for i < 0 and S∗
2 is quasi-isomorphic to the ordinary singular

cohomology.
(b) For any k ∈ {2, . . . , n} and any x ∈ Xn−k\Xn−k−1, we have Hi(S)x = 0 if i > p(k).
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(c) The attachment map, αk : S
∗
k+1 → Rik∗S

∗
k, induced by the canonical inclusion

X\Xn−k → X\Xn−k−1, is a quasi-isomorphism up to p(k).

If S∗ is soft, from [20, Remark 2.3.], we may replace condition (c) by the following
equivalent one:
(c′) for any k ∈ {2, . . . , n}, j ≤ p(k) and x ∈ Xn−k\Xn−k−1, the restriction map induces
an isomorphism,

lim−→Ux
Hj(Γ(Ux;S

∗))
∼=
−→ lim−→Ux

Hj(Γ(Ux\Xn−k;S
∗)),

where Ux varies into a cofinal family of neighborhoods of x in X\Xn−k−1.

On the regular part, the sheaf IN∗
• is the sheafification of N∗ and thus computes the

singular cohomology. Therefore, condition (a) is satisfied for IN∗. In order to prove that
the sheaf IN∗

• satisfies the axioms (b) and (c′), we use the isomorphism established in
Lemma 4.1,

H∗(X; IN•) ∼= H∗
TW,•(X).

Let x ∈ Xn−k\Xn−k−1. The cohomology H∗(IN•)x is determined by the following
isomorphisms,

H
∗(IN•)x = lim−→Ux

H∗(Γ(Ux; IN•)) ∼= lim−→Ux
H∗

TW,•(Ux),

where the direct limits are taken over the open neighborhoods Ux of x. (The first equality
is the definition of the stalk at a point.) Moreover, these limits can also be obtained from
a restriction to a cofinal family of trivializing open neighborhoods, Ux ∼= Rn−k×cL, where
L is the link of x. Axiom (b) follows now from H∗

TW,p(R
n−k × cL) = H∗

TW,p(cL) = 0, if

∗ > p(k), see [4, Corollary 1.47].
The verification of (c′) is quite similar. As noticed in [20, Proof of Theorem 7.1.], we

are reduce to analyze the map,

lim−→Ux
H∗(Ux; IN•) → lim−→Ux

H∗(Ux\Xn−k; IN•),

where the direct limit is taken over a cofinal family of trivializing open neighborhoods
of x, Ux ∼= Rn−k×cL. We consider the following commutative diagram, whose horizontal
maps are induced by the canonical inclusions and vertical maps are isomorphisms,

H∗(Ux; IN•) //

∼=
��

H∗(Ux\Xn−k; IN•)

∼=
��

H∗(Rn−k × cL; IN•) //

∼=
��

H∗(Rn−k × (cL− {v}); IN•)

∼=
��

H∗(cL; IN•) // H∗(cL− {v}; IN•)
∼= // H∗(L; IN•).

Finally, we note that the composite at the bottom is an isomorphism when ∗ ≤ p(k), as
shows the classical computation of the intersection cohomology of a cone. Modulo the
vertical isomorphisms, this is exactly the axiom (c′).

Therefore, the sheaf IN∗
• satisfies conditions (AX1) and, by [2, Theorem 2.5], there

exists a quasi-isomorphism between IN∗
• and P

∗
• (see also [12]). As a consequence, these
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two sheaves have a common injective resolution and we may apply to it the uniqueness
of cupi-products established by M. Goresky in [10, Proposition 3.6]. �

From the previous results on cupi-products, we get an isomorphism of algebras of
cohomology, with coefficients in F2.

Corollary 4.4. If X is an n-dimensional pseudomanifold, there are isomorphisms of
perverse algebras,

H∗
TW,•(X) ∼= H∗(X; IN•) ∼= H∗(X;P•).

Moreover, if X is compact and PL, one has also an isomorphism of algebras,

H∗(X;P•) ∼= Ht−•
n−∗(X;F2),

with the intersection product on the last term.

Proof. The two first isomorphisms are consequences of the previous results on cupi-
products. The last one is established by G. Friedman in [6]. �

If we are interested only by the cup-product, ∪0, we may consider versions of the
sheaves, IN and P, over any field. In this case, the previous corollary is still true for
any field and not only for F2. With more work of this type, one should be able also
to show the existence of an isomorphism between our definition of cup-product and the
definition of G. Friedman and J. E. McClure ([8]).

5. Pseudomanifolds with isolated singularities

In this section, we determine Steenrod squares on the intersection cohomology of
pseudomanifolds with isolated singularities. In this case, if the pseudomanifold is of
dimension n, the perversity p is determined by one number, p(n). Recall now that the
intersection cohomology of a cone cY on a space Y is given by Hr

TW,p(cY ) = Hr(Y ), if

r ≤ p(n) and 0 otherwise.

Proposition 5.1. Let p be a GM-perversity and X be an n-dimensional pseudomanifold
obtained from a triangulated manifold with boundary, (W,∂W ), by attaching cones on
the connected components, (∂uW )u∈I , of ∂W , i.e., X is the push out

∂W = ⊔u∈I∂uW
ι //

��

W

��
⊔u∈Ic(∂uW ) // X.

We filter the pseudomanifold X by ∅ ⊂ {vu | u ∈ I} ⊂ X, where vu is the cone point of
c(∂uW ). Then, the following properties are satisfied.

(i) The cochain complex, Ñ∗
p (X), is quasi-isomorphic to the pullback in the category

of cochain complexes, N∗(W )⊕N∗(∂W ) τ≤p(n)N
∗(∂W ), where τ≤p(n)N

∗(∂W ) is the
usual truncation (see [2, Page 52]),

(τ≤p(n)N
∗(∂W ))r =





N r(∂W ) if r < p(n),

ZNp(n)(∂W ) if r = p(n),
0 if r > p(n),
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in which Z denotes the vector space of cocycles. Moreover, the GM-perverse E(2)-

algebra, p 7→ Ñ∗
p (X), is quasi-isomorphic to the pullback in the category of GM-

perverse E(2)-algebras, defined by p 7→ N∗(W ) ⊕N∗(∂W ) τ≤p(n)N
∗(∂W ), with the

E(2)-algebra structure on N∗(−) defined in [1].
(ii) The intersection cohomology of X is determined by

Hk
TW,p(X) =





Hk(W ) if k ≤ p(n),
Ker (Hk(W ) → Hk(∂W )) if k = p(n) + 1,
Hk(W,∂W ) if k > p(n) + 1.

(iii) If (α, ι∗α) ∈ N∗(W )⊕N∗(∂W ) τ≤p(n)N
∗(∂W ) is a cocycle of p-intersection and i is

a positive integer, we have

Sqi(α, ι∗α) = (Sqiα, ι∗Sqiα) ∈ H∗+i
TW,L(p,i)(X).

Proof. (i) Starting from a triangulation of (W,∂W ), we may suppose that X, W , ∂W
and ⊔u∈Ic(∂uW ) are triangulated in such a way that any simplex of the triangulation of
X is filtered, for the filtration ∅ ⊂ {vu | u ∈ I} ⊂ X.

Let Y be one of the spaces above and Y τ be the associated triangulated space. In
[7, Chapter 3 and Chapter 5], G. Friedman proves that the cochains C∗

GM,p(Y ) and

C∗
GM,p(Y

τ ) are quasi-isomorphic for any GM-perversity p. Let p and q be two GM-

perversities such that p(k) + q(k) = k − 2. There exists a quasi-isomorphism between

C∗
GM,q(Y ) and C̃∗

p(Y ), see [4, Theorem B] or Proposition 1.8. Recall also from Propo-

sition 1.5 the existence of a quasi-isomorphism between C̃∗
p(Y ) and Ñ∗

p (Y ). Thus, the
isomorphism,

C∗
GM,q(X

τ ) ∼= C∗(W τ )⊕(⊕u∈IC∗(∂uW τ )) (⊕u∈IC
∗
GM,q(c(∂uW )τ )),

obtained by construction of the triangulations, gives quasi-isomorphisms,

C∗
GM,q(X) ≃ C∗(W )⊕C∗(∂W ) (⊕u∈IC

∗
GM,q(c(∂uW )))

≃ C∗(W )⊕C∗(∂W ) (⊕u∈I τ≤t(n)−q(n)C
∗(∂uW ))

≃ C∗(W )⊕C∗(∂W ) τ≤t(n)−q(n)C
∗(∂W )

≃ N∗(W )⊕N∗(∂W ) τ≤t(n)−q(n)N
∗(∂W ).

Therefore we have obtained a quasi-isomorphism,

Ñ∗
p (X) ≃ N∗(W )⊕N∗(∂W ) τ≤p(n)N

∗(∂W ).

We investigate now the structure of E(2)-algebra. In [1], C. Berger and B. Fresse prove
that a restriction map, N∗(Y ) → N∗(Z), induced by an inclusion Z →֒ Y , is a morphism
of E(2)-algebras. Therefore, we obtain functors from the lattice of GM-perversities (and

∞) to GM-perverse E(2)-algebras, defined by p 7→ Ñ∗
p (X), p 7→ N∗(W ), p 7→ N∗(∂W ),

p 7→ τ≤p(n)N
∗(∂W ). Restriction maps define GM-perverse E(2)-algebra maps between

Ñ∗
p (X) and the three other GM-perverse E(2)-algebras. From them, we obtain a GM-

perverse E(2)-algebra map

(4) Ñ∗
p (X) → N∗(W )⊕N∗(∂W ) τ≤p(n)N

∗(∂W ),
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whose codomain is a pullback in the category of GM-perverse E(2)-algebras, see [1]. We
have proved above that this last map is a quasi-isomorphism for each p and the first
item of the statement is established.

(ii) An element of the previous sum is of the type (α, ι∗α), with ι∗α of degree less
than, or equal to, p(n). This means that, if α is of degree k, we must have





ι∗α = 0 if k > p(n),
ι∗α is a cocycle if k = p(n),
no condition if k < p(n).

This implies immediately Hk
TW,p(X) = Hk(W ) if k ≤ p(n) and that Hk

TW,p(X) =

Hk(W,∂W ) if k > p(n) + 1. In degree k = p(n) + 1, the p-intersection cohomology of
X is formed of the elements of Hk(W ) which are in the image of Hk(W,∂W ), i.e., the
kernel of Hk(W ) → Hk(∂W ).

(iii) The quasi-isomorphisms between Ñ∗
p (X) and N∗(W ) ⊕N∗(∂W ) τ≤p(n)N

∗(∂W )

defining a map of GM-perverse E(2)-algebras, they are compatible with the cupi-products,
and the right-hand complex of (4) can be used for the determination of cupi-products,
i.e., we have

(α, ι∗α) ∪i (β, ι
∗β) = (α ∪i β, ι

∗α ∪i ι
∗β),

from which we deduce the announced formula for Steenrod squares. �

Remark 5.2. This remark gives a direct proof of the Goresky-Pardon conjecture in the
case of isolated singularities. Let (α, ι∗α) be a cocycle in Nk(W )⊕Nk(∂W )τ≤p(n)N

k(∂W ).

The perverse degree of the Steenrod square, Sqj(α, ι∗α) = (α, ι∗α)∪k−j (α, ι
∗α), verifies

‖(α, ι∗α) ∪k−j (α, ι
∗α)‖ ≤(1) |ι

∗α ∪k−j ι
∗α| ≤(2) k + j ≤(3) p(n) + j,

where

• ≤(1) comes from the fact that the perverse degree of a cochain is less than, or
equal, to its usual degree,

• ≤(2) is a consequence of |a ∪i b| ≤ |a|+ |b| − i,
• ≤(3) uses ι

∗α = 0 if k > p(n).

Remark 5.3. The fact that the image of H∗
TW,p(X) by Sqi is in perversity L(p, i) =

min(2p, p+ i) is perfectly in phase with the characterization of the intersection cohomol-
ogy of X, written in Proposition 5.1.(ii). This remark follows from the next observations
for a cocycle (α, ι∗α) ∈ Nk(W )⊕Nk(∂W ) τ≤p(n)N

k(∂W ).

• If k ≤ p(n), then, by definition of the Steenrod squares in H∗(W ), we have
|Sqi(α)| = k + i ≤ p(n) + i.

– If i ≤ p(n), this implies |Sqi(α, ι∗α)| ≤ L(p, i)(n).
– If i > p(n), we have Sqi(α, ι∗α) = (Sqiα, ι∗Sqiα) = 0.

• If k > p(n), then ι∗α = 0 and |Sqi(α, ι∗α)| = k + i > p(n) + i ≥ L(p, i)(n).

In conclusion, Sqi respects the cæsuræ in the determination of the perverse cohomologies,
H∗

TW,p(X) and H∗
TW,L(p,i)(X). Moreover, in degrees k ≤ p(n), the Steenrod squares on

Hk
TW,p(X) coincide with the Steenrod squares on Hk(W ).
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Example 5.4 (Steenrod squares on the intersection cohomology of the suspension of a
manifold). Let X be an (n − 1)-dimensional manifold and p be a GM-perversity. The
following pushout defines ΣX, as in Proposition 5.1,

X−1 ⊔X1
ι−1⊔ι1 //

��

X × [−1, 1]

��
cX−1 ⊔ cX1

// ΣX,

where ι1 : X1 = X × {1} → X × [−1, 1] and ι−1 : X−1 = X × {−1} → X × [−1, 1]

are the canonical injections. From (i) of Proposition 5.1, we know that Ñ∗
p (ΣX) is

quasi-isomorphic to the cochain complex

(5)
N∗(X × [−1, 1])<p(n) ⊕ {α ∈ Np(n)(X × [−1, 1]) | dι∗1(α) = dι∗−1(α) = 0}

⊕ (Ker ι∗1 ∩Ker ι∗−1)
>p(n),

in which the superscript refers to the degree. For instance, (A)<k is the set of elements
of A of degree less than k.

The suspension, ΣX, can also be obtained as a cofiber, X1⊔X−1 → X×[−1, 1] → ΣX,
which gives a short exact sequence,

0 → (Ker ι∗1 ∩Ker ι∗−1) →֒ N∗(X × [−1, 1])
(ι∗1,ι

∗
−1)

−−−−−→ N∗(X1)⊕N∗(X−1) → 0.

The morphism of E(2)-algebras ([1]), N∗(ΣX) → N∗(X × [−1, 1]), lifts as a quasi-
isomorphism of cochain complexes, N∗(ΣX) → (Ker ι∗1 ∩ Ker ι∗−1). From (5) and the
previous observation, we deduce the intersection cohomology of the suspension ΣX, as

Hk
TW,p(ΣX) =





Hk(X) if k ≤ p(n),
0 if k = p(n) + 1,

Hk(ΣX) = Hk−1(X) if k > p(n) + 1.

With Remark 5.3, we know that, in degrees k ≤ p(n), the Steenrod squares on Hk
TW,p(ΣX)

coincide with the Steenrod squares on Hk(X). Moreover, the intersection of kernels be-
ing endowed with the induced structure of E(2)-algebra of N∗(X × [−1, 1]), the quasi-
isomorphism N∗(ΣX) → (Ker ι∗1∩Ker ι∗−1) is a morphism of E(2)-algebras, see [1]. Thus,

in degrees k > p(n) + 1, the Steenrod squares on Hk
TW,p(ΣX) coincide with the Steenrod

squares on Hk(ΣX), which are the suspensions of the Steenrod squares on X.

We consider now the case of the Thom space of a vector bundle, Rm → E → B.

Example 5.5 (Steenrod squares on the intersection cohomology of a Thom space). Let

Rm → DE
g
−→ B be the disk-bundle of associated sphere-bundle Sm−1 → SE

f
−→ B.

The Thom space, Th(E), is built from the disk-bundle along the process described in
Proposition 5.1. We filter Th(E) by the point of compactification. Let p be a GM-
perversity entirely determined in this case by the number p(n) with n = dimE. In this
example, we prove that the Steenrod squares on H∗

TW,p(Th(E)) are entirely determined
by the Steenrod squares on the base space and the Stiefel-Whitney classes of the bundle.

Denote by c ∈ Hm(B) the Euler class and by θ ∈ Hm(Th(E)) the Thom class.
Let j : DE → Th(E) be the canonical map and recall that the Thom isomorphism,
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Th : Hk−m(B) → Hk(Th(E)) ∼= Hk(DE , SE), is defined by Th(γ) = g∗(γ) ∪ θ. The
Euler and the Thom classes are connected by the two exact sequences,

. . . // Hk(Th(E))
j∗ // Hk(DE) // Hk(SE) // Hk+1(Th(E)) // . . .

. . . // Hk−m(B)
−∪c //

Th

OO

Hk(B)
f∗ //

g∗

OO

Hk(SE) // Hk+1−m(B) //

Th

OO

. . .

and j∗(θ) = g∗(c). From Proposition 5.1, we know that the complex, Ñ∗
p (Th(E)), is

quasi-isomorphic to

N
∗ = N∗(B)⊕N∗(SE) τ≤p(n)N

∗(SE)

∼= N<p(n)(B)⊕ {α ∈ Np(n)(B) | df∗(α) = 0}

⊕(Ker (Nk(B)
f∗
−→ Nk(SE))

>p(n).

Thus, we recover (see [16, Page 77]) the intersection cohomology of the Thom space,

Hk
TW,p(Th(E)) = Hk(N) =





Hk(B) if k ≤ p(n),
(Im (− ∪ c))k if k = p(n) + 1,
Hk−m(B) ∼=Th H

k(Th(E)) if k > p(n) + 1.

• In the case k ≤ p(n) + 1, the Steenrod squares, Sqi : Hk
p (Th(E)) → Hk+i

L(p,i)(Th(E)),

coincide with the Steenrod squares, Sqi : Hk(B) → Hk+i(B), cf. Remark 5.3.
• Let k > p(n) + 1 and γ ∈ Hk−m(B). The (classical) internal Cartan formula gives,

Sqj(g∗(γ) ∪ θ) =

j∑

ℓ=0

Sqj−ℓ(g∗(γ)) ∪ Sqℓ(θ)

=

j∑

ℓ=0

g∗(Sqj−ℓ(γ)) ∪ g∗(ωℓ) ∪ θ,

where the ωℓ’s are the Stiefel-Whitney classes of the fibration f , see [19, Page 91]. Set
µ = g∗(γ) ∪ θ = Th(γ) ∈ Hk(Th(E)). In this range of degrees, the Steenrod squares on
Th(E), denoted by SqTh, and the Steenrod squares on B, denoted by SqB, are related
by

SqjTh(µ) =

j∑

ℓ=0

g∗(Sqj−ℓB (γ) ∪ ωℓ) ∪ θ.

With the Thom isomorphism, Th : Hk−m(B) → Hk(Th(E)), the previous formula can
be written as,

SqjTh(µ) = Th

(
j∑

ℓ=0

Sqj−ℓB (Th−1(µ)) ∪ ωℓ

)
.
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6. Example of a fibration with fiber a cone

In this section, we construct an example showing the interest of the lifting of the
image of Sqi to the perversity L(p, i) instead of 2p. As the case of Sq1 was analyzed in
[13], we choose an example with Sq2.

Proposition 6.1. There exists a pseudomanifold X and a GM-perversity p, with an
explicit non-trivial perverse square,

Sq2 6= 0: H6
TW,p(X) → H8

TW,L(p,2)(X),

whose composition with the canonical map H8
TW,L(p,2)(X) → H8

TW,2p(X) is zero.

Proof. To begin with, we describe the general strategy of the proof. The first step is the

construction of a fibration, S7 × S4 → E
ϕ
−→ CP (2), with a non-trivial differential on a

generator a7 of H7(S7 × S4), in the Serre spectral sequence. Secondly, we consider the

fiberwise conification, c(S7 × S4) → X
ψ
−→ CP (2), of the fibration ϕ. The space X is a

pseudomanifold. A GM-perversity, p, on X is determined by the value p(12) = k and we
denote it by k. (As p is a GM-perversity, we have k ≤ 10.) In our fibration, depending
on the value of k, the element a7 is a class of p-intersection or not; more precisely, we
get H8

TW,k
(X) 6= 0 if k = 6 and H8

TW,k
(X) = 0 if k = 8. This property generates a

non-trivial Steenrod square, Sq2 : H6
TW,p(X) → H8

TW,L(p,2)(X), such that the composite

with the canonical map, H6
TW,p(X)

Sq2
−−→ H8

TW,L(p,2)(X) → H8
TW,2p(X), is the zero map.

Details are as follows.
• First, we observe, from the cellular approximation theorem and the construction

of K(Z, 8), that the classifying map of the top class, CP (2) × S4 → K(Z, 8), lifts as
a map f : CP (2) × S4 → S8. We denote by p1 : E → CP (2) × S4 the pullback of
the Hopf fibration, S15 → S8, along f . We compose p1 with the trivial fibration,
p2 : CP (2)× S4 → CP (2) and obtain a fibration

ϕ : E → CP (2),

whose fiber, F , is S7 × S4. To show this last point, consider the next commutative
diagram:

F //

��

E //

p1

��

S15

��

2 3

S4 //

��

CP (2)× S4 f //

p2

��

S8

1

∗ // CP (2)

The rectangle formed of 1 and 2 is a pullback. As 1 is a pullback, we deduce ([17,

Section III.4]) that 2 is a pullback. Therefore, the rectangle formed of 2 and 3 is a
pullback and the triviality of the map S4 → S8 implies that F is S7 × S4.
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We study now the Serre spectral sequence of the fibration ϕ. We denote by a4, a7
and a7 × a4 the generators of the reduced cohomology of S7 × S4 and by x and x2

the generators of the reduced cohomology of CP (2). An inspection of the degrees in

the differentials, dr : E
s,t
r → Es+r,t−r+1

r , shows that the only differential which can be
potentially non-trivial is

d4 : E
0,7
4 = E0,7

2 = F2a7 → E4,4
4 = E4,4

2 = F2(x
2 ⊗ a4).

By definition of S7 → E → CP (2) × S4 as a pullback of the Hopf fibration, we already
know ([21, Section III.4]) that the top class a7 of S7 transgresses on the product x2×a4.
This gives d4(a7) = x2⊗a4 in the Serre spectral sequence of the fibration ϕ : E → CP (2).

We continue with the determination of the image of the cohomology class x ⊗ a4 by
Sq2 in H∗(CP (2))⊗H∗(S7 × S4). From the external Cartan formula, we have

Sq2(x⊗ a4) = Sq2(x)⊗ a4 + Sq1(x)⊗ Sq1(a4) + x⊗ Sq2(a4).

The last two terms are zero, for degree reasons. The equality Sq2(x) = x2 gives

Sq2(x⊗ a4) = x2 ⊗ a4.

• The second step is the fiberwise conification, c(S7 × S4) → X
ψ
−→ CP (2), of the

fibration ϕ. If x ∈ CP (2), we denote by (S7 × S4)x the fiber over x and by vx the cone
point of the cone c((S7 × S4)x). A continuous section µ of ψ, defined by µ(x) = vx,
identifies CP 2 to a closed subspace of X. We filter X by ∅ ⊂ X0 = CP (2) ⊂ X. Observe
that the singular set in X is CP (2) and that the link of a singular point is S7 × S4.

Let k be a GM-perversity. The intersection cohomology, H∗
TW,k

(X), is the abutment

(see [5, Theorem 3.5]) of a Serre spectral sequence with

kE
r,s
2 = Hr(CP (2)) ⊗Hs

TW,k
(c(S7 × S4)).

We may replace the right-hand term of this tensor product by its value and obtain

kE
r,s
2 = Hr(CP (2))⊗Hs(S7 × S4),

if s ≤ k and 0 otherwise. The existence of a morphism, E → X, over the identity
on CP (2), gives a morphism of spectral sequences, (kE

r,s
∗ , d∗) → (Er,s∗ , d∗). From our

previous determination of the Serre spectral sequence, (Er,s∗ , d∗), associated to the fi-
bration ϕ : E → CP (2), we deduce that the differentials d∗ of kE

r,s
∗ are zero, except

d4(a7) = x2 ⊗ a4, if 7 ≤ k. Thus, in perversity k < 7, as the class a7 is not of k-
intersection, the class x2 ⊗ a4 survives and H8

TW,k
(X) 6= 0. But, if k = 8, the class a7 is

of 8-intersection and kills the element x2 ⊗ a4 (which is the only element of degree 8 in
the E2-term). Thus H8

TW,8
(X) = 0.

The square Sq2, that we have previously determined, arises in the GM-perversity 4
and we have

Sq2 : H6
TW,4

(X) = F2(x⊗ a4) → H8
TW,4

(X) = F2(x
2 ⊗ a4).

Observe that 6 = L(4, 4 + 2) is a GM-perversity and thus, with the argument above,
Sq2 still survives as map from H6

TW,4
to H8

TW,6
= H8

TW,4
. But, for the GM-perversity
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8 = 2 × 4, as H8
TW,8

(X) = 0, this square Sq2 disappears if we express it as a map from

H6
TW,4

to H8
TW,2×4

. �

7. Topological invariance of the Steenrod squares in intersection

cohomology

In the case of PL-pseudomanifolds, we know from [10] that the Steenrod squares are
topological invariants, as homomorphisms Hr

TW,p(X) → Hr+i
TW,2p(X). In this section, we

prove that the lifting we have introduced before, Sqi : Hr
TW,p(X) → Hr+i

TW,L(p,i)(X), is

also a topological invariant. The proof is based on the original combinatorial description
of Steenrod squares made in [22].

Theorem D. Let X be an n-dimensional PL-pseudomanifold and p be a GM-perversity.
Then, the Steenrod squares, Sqi : H∗

TW,p(X) → H∗+i
TW,L(p,i)(X), do not depend on the

stratification of X.

Theorem D is a direct consequence of Proposition 7.1 and Proposition 7.9. Before
stating and proving these two results, we need to introduce some material. First, recall
from [15, Page 150] and [7, Chapter 2], the existence of a PL-pseudomanifold, X∗, which
is an intrinsic coarsest stratification of X, together with a stratified map, ν : X → X∗,
defined by the identity map, see [4, Definition A.18]. In [15], H. King proves that
ν induces a quasi-isomorphism between the Goresky-MacPherson chain (and cochain)
complexes. Here we consider the map χ, induced by ν between the Thom-Whitney
complexes.

Proposition 7.1. Let X be an n-dimensional PL-pseudomanifold and p be a GM-
perversity. Then the canonical map, ν : X → X∗, induces a quasi-isomorphism,

χ : Ñ∗
p (X

∗) → Ñ∗
p (X).

Construction of χ, the local step. Before giving the proof, we detail the construction
of χ, based on the effect of ν : X → X∗ on filtered simplices of X. Let σ : ∆ = ∆j0 ∗
· · · ∗∆jn → X be a filtered simplex of X. Suppose that,

• for some integer 0 ≤ i ≤ n − 1, the set σ(∆j0 ∗ · · · ∗ ∆ji)\σ(∆j0 ∗ · · · ∗ ∆ji−1)
is included in an i-stratum of X which “disappears” inside an (i + 1)-stratum
of X∗,

• for the other indices, ℓ 6= i, the corresponding strata of σ(∆) stay unmodified.

Then, the filtered simplex σ : ∆ = ∆j0 ∗ · · · ∗∆jn → X becomes a filtered simplex of X∗,
ν ◦ σ : ∆(i) = ∆k0 ∗ · · · ∗∆kn → X∗, with

(6)

{
kℓ = jℓ if ℓ < i or ℓ > i+ 1,
ki = −1 and ki+1 = ji + ji+1 + 1.

This process is called an elementary amalgamation. In general, the simplex ν ◦ σ : ∆ →
X∗ can be written as a filtered simplex after a finite number of elementary amalgama-
tions. As we work with blow-ups, we need to consider two cases, depending if i+ 1 = n
or not. We write

Ñ∗(∆) = N∗(c∆j0)⊗ · · · ⊗N∗(c∆ji)⊗N∗(c∆ji+1)⊗ · · · ⊗N∗(∆jn)
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and

Ñ∗(∆(i)) =

{
N∗(c∆j0)⊗ · · · ⊗N∗(c∅) ⊗N∗(c∆ji+ji+1+1)⊗ · · · ⊗N∗(∆jn), if i 6= n− 1,
N∗(c∆j0)⊗ · · · ⊗N∗(c∅) ⊗N∗(∆jn−1+jn+1), if i = n− 1.

We define below two morphisms,

α : N∗(c∆a+b+1) → N∗(c∆a)⊗N∗(c∆b) and β : N∗(c∆a+b+1) → N∗(c∆a)⊗N∗(∆b),

which correspond to the cases i 6= n− 1 and i = n− 1.
Let v be the cone point of c∅. We use α and β for the definition of a morphism

ξi : Ñ
∗(∆(i)) → Ñ∗(∆) as follows. If Φ =

∑
j Φ0,j ⊗ · · · ⊗ Φn,j ∈ Ñ∗(∆(i)), we set

• for i 6= n− 1,

(7) ξi(Φ) =
∑

j

Φi,j([v]) · Φ0,j ⊗ · · · ⊗ Φi−1,j ⊗ α(Φi+1,j)⊗ Φi+2,j ⊗ · · · ⊗ Φn,j,

• for i = n− 1,

(8) ξi(Φ) =
∑

j

Φn−1,j([v]) · Φ0,j ⊗ · · · ⊗ Φn−2,j ⊗ β(Φn,j).

These ξi’s are the local ingredients used in the (global) definition of χ, stated below.

Construction of α : N∗(c∆a+b+1) → N∗(c∆a) ⊗ N∗(c∆b). We define α by its values
on the elements of a basis. If L is one of the simplicial complexes, c∆a, c∆b or c∆a+b+1,
we denote by {1F } the dual basis of N∗(L) obtained from the basis of faces, F , of L.

If we represent by Fa the faces of ∆a and by Fb the faces of ∆b, a face of c∆a+b+1 is
of the type c(Fa ∗ Fb) or Fa ∗ Fb, where Fa and Fb can also be the emptyset. A linear
map α is entirely determined by



α(1c(Fa∗Fb)) = 1cFa ⊗ 1cFb
, the cases Fa = ∅, Fb = ∅ being included,

α(1Fa∗Fb
) = 1cFa ⊗ 1Fb

, if Fb 6= ∅, the case Fa = ∅ being included,
α(1Fa) = 1Fa ⊗ 1vb + 1Fa ⊗ 1Vb

,

where 1Vb
is the sum of 1p when p runs in the set of vertices of ∆b and vb is the cone

point of c∆b.

Construction of β : N∗(∆a+b+1) → N∗(c∆a) ⊗ N∗(∆b). With the previous notation,
the linear map β is defined by

{
β(1Fa∗Fb

) = 1cFa ⊗ 1Fb
, if Fb 6= ∅, the case Fa = ∅ being included,

β(1Fa) = 1Fa ⊗ 1Vb
.

These maps verify the next properties whose proofs are postpone after the proof of
Proposition 7.1.

Lemma 7.2. The two morphisms, α : N∗(c∆a+b+1) → N∗(c∆a) ⊗ N∗(c∆b) and
β : N∗(∆a+b+1) → N∗(c∆a) ⊗ N∗(∆b), are compatible with the differentials and the
restrictions to faces of ∆a and ∆b.

Lemma 7.3. The morphism ξi : Ñ
∗(∆(i)) → Ñ∗(∆) is compatible with the differentials

and the restrictions to faces of the ∆jℓ’s. Moreover, it respects the perverse degree, i.e.,

ξi(Ñ
∗
p (∆(i))) ⊂ Ñ∗

p (∆), for any GM-perversity, p.
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Construction of χ : Ñ∗(X∗) → Ñ∗(X), the global step. Let σ : ∆σ = ∆j0 ∗ · · · ∗

∆jn → X be a filtered simplex of X, of blow-up ∆̃σ = c∆j0 × · · · × ∆jn . As we have
noted before, the domain of the filtered simplex, ν ◦ σ : ∆ν◦σ = ∆k0 ∗ · · · ∗∆kn → X∗,
has a different decomposition, obtained by a succession of elementary amalgamations.

We denote by ∆̃ν◦σ the associated blow-up.
These elementary amalgamations give a finite sequence of decompositions, ∆(iℓ)0≤ℓ≤m,

such that ∆(0) = ∆j0 ∗ · · · ∗∆jn = ∆σ and ∆(m) = ∆k0 ∗ · · · ∗∆kn = ∆ν◦σ. Two con-
secutive terms correspond to an elementary amalgamation, i.e., ∆(iℓ) = ∆x0 ∗ · · · ∗∆xn

and ∆(iℓ+1) = ∆y0 ∗ · · · ∗∆yn , with
{
yu = xu if u < iℓ or u > iℓ + 1,
yiℓ = −1 and yiℓ+1 = xiℓ + xiℓ+1

+ 1.

Recall the map ξiℓ : Ñ
∗(∆(iℓ+1)) → Ñ∗(∆(iℓ)) defined in (7) and (8). We set,

χσ = ξi0 ◦ · · · ◦ ξim−1 .

Finally, with Lemma 7.2, we have a map, χ : Ñ∗(X∗) → Ñ∗(X), defined on σ : ∆ → X

and Φ ∈ Ñ∗(X∗), by

χ(Φ)σ = χσ(Φν◦σ).

Proof of Proposition 7.1. With Lemma 7.3, the previous map, χ : Ñ∗(X∗) → Ñ∗(X), is

a cochain map which restricts as χ : Ñ∗
p (X

∗) → Ñ∗
p (X).

There exists also a map, evalN : Ñ∗(X) → hom(NGM
∗ (X),F2), defined as follows.

For any Φ ∈ Ñ∗(X) and σ : ∆j0 ∗ · · · ∗ ∆jn → X, with Φσ =
∑

j Φ0,j ⊗ · · · ⊗ Φn,j ∈

N∗(c∆j0)⊗ · · · ⊗N∗(∆jn), we set

evalN (Φ)(σ) =
∑

j

Φ0,j([c∆
j0 ]) · . . . · Φn,j([∆

jn ]).

Let q be the GM-perversity such that p+ q = t. The canonical morphism, ρ∗ : C∗(−) →

N∗(−), induces ρ∗ : hom(NGM,q
∗ (−),F2) → hom(CGM,q

∗ (−),F2) and ρ̃ : Ñ
∗
p (−) → C̃∗

p(−).
The previous map, evalN is connected with the morphism eval introduced in the proof
of Lemma 4.2 by ρ∗ ◦ evalN = eval ◦ ρ̃. As ρ̃ and eval are quasi-isomorphisms (cf.
Proposition 1.5 and Proposition 1.8), we know that the composite ρ∗ ◦evalN is a quasi-
isomorphism. Consider now the following diagram,

(9) Ñ∗
p (X

∗)
evalN //

χ

��

hom(NGM,q
∗ (X∗),F2)

ρ∗ //

N∗(ν)
��

hom(CGM,q
∗ (X∗),F2)

C∗(ν)
��

Ñ∗
p (X)

evalN // hom(NGM,q
∗ (X),F2)

ρ∗ // hom(CGM,q
∗ (X),F2).

The right-hand square is commutative by naturality of ρ∗. We prove now the commu-

tativity of the left-hand one. Let Φ ∈ Ñ∗
p (X

∗) and σ : ∆σ = ∆j0 ∗ · · · ∗∆jn → X be a
filtered simplex, of associated filtered simplex ν ◦ σ : ∆ν◦σ → X∗. We have to check

(10) (N∗(ν) ◦ evalN (Φ))(σ) = evalN (χ(Φ))(σ).
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For a given σ, we can decompose ν in a finite number of elementary amalgamations

and thus replace χσ : Ñ
∗(∆ν◦σ) → Ñ∗(∆σ) by ξi : Ñ

∗(∆(i)) → Ñ∗(∆), as defined in

(7) and (8). Set Φν◦σ =
∑

j Φ0,j ⊗ · · · ⊗ Φn,j ∈ Ñ∗(∆(i)) and suppose i 6= n − 1. By

definition (7), we have

χ(Φ)σ = χσ(Φν◦σ) = ξi(Φν◦σ)

=
∑

j

Φi,j([v]) · Φ0,j ⊗ · · · ⊗ Φi−1,j ⊗ α(Φi+1,j)⊗ Φi+2,j ⊗ · · · ⊗ Φn,j

and the right-hand side of (10) is equal to

evalN (χ(Φ))(σ) =
∑

j

Φ0,j([c∆
j0 ]) · · ·Φi−1,j([c∆

ji ]) · Φi,j([v]) ·

α(Φi+1,j)([c∆
ji ]⊗ [c∆ji+1 ]) · · ·Φn,j([∆

jn ]).

We determine now the left-hand side of (10),

(N∗(ν) ◦ evalN (Φ))(σ) = evalN (Φ)(ν ◦ σ)

=
∑

j

Φ0,j([c∆
j0 ]) · · ·Φi−1,j([c∆

ji−1 ]) · Φi,j([v]) ·

Φi+1,j([c∆
ji+ji+1+1]) · · ·Φn,j([c∆(jn]).

Thus, the left-hand and the right-hand sides coincide by definition of α. A similar
argument gives the result when i = n− 1.

We have established above that the two horizontal lines of the commutative square
(9) are quasi-isomorphisms. The right-hand vertical map is a quasi-isomorphism also

(cf. [15]). Thus, χ : Ñ∗
p (X

∗) → Ñ∗
p (X) is a quasi-isomorphism. �

Proof of Lemma 7.2. We consider first the map α and its behavior with restriction maps.
Let ∇a and ∇b be faces of ∆

a and ∆b, respectively, including the cases ∇a = ∅ or ∇b = ∅.
Then the following diagram commutes,

N∗(c∆a+b+1)
α //

Res

��

N∗(c∆a)⊗N∗(c∆b)

Res

��
N∗(c∇a+b+1)

α // N∗(c∇a)⊗N∗(c∇b),

where the two vertical maps are given by the restriction map. To verify this assertion,
we consider two faces, Fa of ∇a and Fb of ∇b, and check the commutativity for the
cochain 1c(Fa∗Fb), the other cases being similar,

Res(α(1c(Fa∗Fb))) = Res(1cFa ⊗ 1cFb
) = 1cFa ⊗ 1cFb

= α(1c(Fa∗Fb)) = α(Res(1c(Fa∗Fb))).

Now, comes the differential. Let L be a finite simplicial complex, endowed with a
partial order of its vertices such that the vertices of any simplex are simply ordered. In
the cone, cL, the cone point is the greatest element. In the sequel, we adopt (see [22,
Page 292]) the
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Steenrod’s convention: A symbol, as F , G, ∇ will denote, ambiguously, either (1)
a simplex of L or (2) the array of vertices of the simplex ordered as in L, or (3) the
orientation of the simplex determined by this order, or (4) the elementary cochain which
attaches +1 to this oriented simplex and 0 to all others. The ambiguity can usually be
resolved by examining the context in which the symbol is used.

With this convention, the definition of α : N∗(c∆a+b+1) → N∗(c∆a) ⊗ N∗(c∆b) can
be written as



α(c(Fa ∗ Fb)) = cFa ⊗ cFb, the cases Fa = ∅, Fb = ∅ being included,
α(Fa ∗ Fb) = cFa ⊗ Fb, if Fb 6= ∅, the case Fa = ∅ being included,
α(Fa) = Fa ⊗ vb + Fa ⊗ Vb,

where Vb denotes the sum of the vertices of ∆b. The definition of the coboundary with
this convention is also specified in [22, Page 296]. Let Fa = (a0, . . . , ak) be a nonempty
face of a simplex ∆a, we denote by cFa = (a0, . . . , ak, va) the face obtained from the
adjunction of the cone point va. It is important to observe that, in this setting, the
differential of a face F (view as a cochain) depends on the simplicial complex in which
we do the computation. For instance, the differentials δa in ∆a and δca in c∆a are linked
by 




δca(cFa) = c(δaFa),
δcaFa = δaFa + cFa,
δcava = cVa,

where Va is the sum of the vertices of ∆a. If Fb is a nonempty face in ∆b, the differential
δa∗b in ∆a ∗∆b is defined by:





δa∗b(Fa ∗ Fb) = (δaFa) ∗ Fb + Fa ∗ (δ
bFb),

δa∗bFa = δaFa + Fa ∗ Vb,
δa∗bFb = Va ∗ Fb + δbFb.

The differential on c(∆a ∗∆b) = (c∆a) ∗∆b can be deduced from the combination of the

previous equalities; we denote it by δc(a∗b). We make uniform the notations by setting
δca⊗cb and δca⊗b for the product differentials on N∗(c∆a) ⊗ N∗(c∆b) and N∗(c∆a) ⊗
N∗(∆b), respectively. We verify now the compatibility of α with the differentials, by
considering the various cases.

• Suppose Fa 6= ∅ and Fb 6= ∅.

(δca⊗cb)(α(c(Fa ∗ Fb))) = (δca⊗cb)(cFa ⊗ cFb) = δca(cFa)⊗ cFb + cFa ⊗ δcb(cFb)

= cδaFa ⊗ cFb + cFa ⊗ cδbFb

= α(c((δaFa) ∗ Fb)) + α(c(Fa ∗ (δ
bFb))) = α(c(δa∗b(Fa ∗ Fb)))

= α(δc(a∗b)c(Fa ∗ Fb)).

(δca⊗cb)α(Fa ∗ Fb) = (δca⊗cb)(cFa ⊗ Fb) = (δcacFa)⊗ Fb + cFa ⊗ (δcbFb)

= (cδaFa)⊗ Fb + cFa ⊗ (δbFb) + cFa ⊗ cFb

= α((δaFa) ∗ Fb) + α(Fa ∗ (δ
bFb)) + α(c(Fa ∗ Fb))

= α(δa∗b(Fa ∗ Fb) + c(Fa ∗ Fb))

= α(δc(a∗b)(Fa ∗ Fb)).
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• Suppose Fa 6= ∅ and Fb = ∅.

(δca⊗cb)α(cFa) = (δca⊗cb)(cFa ⊗ vb) = (δcacFa)⊗ vb + cFa ⊗ δcbvb

= (cδaFa)⊗ vb + (cFa)⊗ cVb = α(c(δaFa + Fa ∗ Vb))

= α(c(δa∗bFa)) = α(δc(a∗b)cFa).

(δca⊗cb)α(Fa) = (δca⊗cb)(Fa ⊗ vb + Fa ⊗ Vb) = δcaFa ⊗ (vb + Vb) + Fa ⊗ δcb(vb + Vb)

= (δaFa)⊗ (vb + Vb) + cFa ⊗ vb + cFa ⊗ Vb + 0

= α(δaFa) + α(cFa) + α(Fa ∗ Vb) = α(δcaFa + cFa)

= α(δc(a∗b)Fa).

(We have used δcaFa = δaFa+cFa and δ
cb(vb+Vb) = 0. For the last one, observe

that vb + Vb is the non trivial cocycle in degree 0.)
• Suppose Fa = ∅ and Fb 6= ∅.

(δca⊗cb)α(cFb) = (δca⊗cb)(va ⊗ cFb) = cVa ⊗ cFb + va ⊗ cδbFb

= α(c(Va ∗ Fb)) + α(cδbFb) = α(cδa∗bFb)

= α(δc(a∗b)cFb).

(δca⊗cb)α(Fb) = (δca⊗cb)(va ⊗ Fb) = cVa ⊗ Fb + va ⊗ δcbFb

= cVa ⊗ Fb + va ⊗ δbFb + va ⊗ cFb

= α(Va ∗ Fb) + α(δbFb) + α(cFb)

= α(δc(a∗b)Fb).

• Suppose Fa = Fb = ∅.

(δca⊗cb)α(c∅) = (δca⊗cb)(va ⊗ vb) = cVa ⊗ vb + va ⊗ cVb
= α(cVa + cVb) = α(cVa+b+1)

= α(δc(a∗b)c∅).

As for the map β : N∗(∆a+b+1) → N∗(c∆a) ⊗ N∗(∆b), its description with Steenrod’s
convention writes,

{
β(Fa ∗ Fb) = cFa ⊗ Fb, if Fb 6= ∅, the case Fa = ∅ being included,
β(Fa) = Fa ⊗ Vb.

The proof of its compatibility with restriction maps is totally similar to the proof done
for α. Therefore we are reduced to check the compatibility of β with the differentials.
As before, we list the different cases.

• Suppose Fa 6= ∅ and Fb 6= ∅.

(δca⊗b)(β(Fa ∗ Fb)) = (δca⊗b)(cFa ⊗ Fb) = (δcacFa)⊗ Fb + cFa ⊗ (δbFb)

= (cδaFa)⊗ Fb + cFa ⊗ (δbFb)

= β((δaFa) ∗ Fb) + β(Fa ∗ (δ
bFb))

= β(δa∗b(Fa ∗ Fb)).
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• Suppose Fa 6= ∅ and Fb = ∅.

(δca⊗b)(β(Fa)) = (δca⊗b)(Fa ⊗ Vb) = (δcaFa)⊗Vb + Fa ⊗ (δbVb)

= (δaFa)⊗ Vb + (cFa)⊗ Vb + 0 = β(δaFa + cFa)

= β(δa∗bFa).

• Suppose Fa = ∅ and Fb 6= ∅.

(δca⊗b)(β(Fb)) = (δca⊗b)(va ⊗ Fb) = (cVa)⊗ Fb + va ⊗ (δbFb)

= β(Va ∗ Fb) + β(δbFb) = β(δa∗bFb).

�

Proof of Lemma 7.3. The compatibilities with restriction maps and differentials being
local, they are direct consequences of Lemma 7.2. We study now the behavior of ξi with
the perverse degrees.

We continue with the Steenrod’s convention and begin with the expression of the
perverse degree in this context. Let F = F0 ⊗ · · · ⊗Fn be a tensor product of nonempty

faces in ∆̃ = c∆j0 × · · · × c∆jn−1 ×∆jn . In Steenrod’s convention, we do not distinguish
between F and the tensor product of cochains, 1F0 ⊗· · ·⊗1Fn . We observe that, if a face
Fk of c∆jk is not included in ∆jk , then the cochain 1Fk

restricts to 0 on the subcomplex
∆jk × {1} of c∆jk . Therefore, by Definition 1.2, the perverse degree of F is given by

‖F0 ⊗ · · · ⊗ Fn‖ℓ =

{
−∞ if Fn−ℓ 6⊂ ∆jn−ℓ ,

|Fn−ℓ+1|+ · · · + |Fn| if Fn−ℓ ⊂ ∆jn−ℓ,

for any ℓ ∈ {1, . . . , n}. A similar definition occurs for the blow-up ∆̃(i) of ∆(i).
As ξi is compatible with the differentials, it is sufficient to prove that the image of

a p-admissible cochain is p-admissible. Let ∇ = ∇0 ⊗ · · · ⊗ ∇n be a tensor product of

faces of ∆̃(i) such that

‖∇0 ⊗ · · · ⊗ ∇n‖ℓ ≤ p(ℓ), for any ℓ ∈ {1, . . . , n}.

As we are dealing with ∆(i) (cf. (6)), we have ∇i = c∅ and, with the notations of (7),
Φij([v]) = 1. Thus,

ξi(∇0 ⊗ · · · ⊗ ∇n) =

{
∇0 ⊗ · · · ⊗ ∇i−1 ⊗ α(∇i+1)⊗∇i+2 ⊗ · · · ⊗ ∇n, if i 6= n− 1,

∇0 ⊗ · · · ⊗ ∇n−2 ⊗ β(∇n), if i = n− 1.

The morphisms α and β preserving the dimension of faces, it is sufficient to consider the
following cases.

• Suppose i 6= n− 1 and n− ℓ = i. Then ℓ 6= 1 and we have,

‖ξi(∇0 ⊗ · · · ⊗ ∇n)‖ℓ =





−∞, if ∇i+1 = ∇a ∗ ∇b with ∇b 6= ∅,
or if ∇i+1 = c(∇a ∗ ∇b),

max(|v|, |V|) + |∇n−ℓ+2|+ · · ·+ |∇n|, if ∇i+1 = ∇a,
≤ ‖∇0 ⊗ · · · ⊗ ∇n‖ℓ−1 ≤ p(ℓ− 1) ≤ p(ℓ).

We have used here that the perversity p is order-preserving and |v| = |V| = 0 in
c∆jn−ℓ+1 .
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• Suppose i 6= n− 1 and n− ℓ = i+ 1. We have,

‖ξi(∇0 ⊗ · · · ⊗ ∇n)‖ℓ =

{
−∞ if ∇i+1 = c(∇a ∗ ∇b),

|∇n−ℓ+1|+ · · ·+ |∇n| if ∇i+1 = ∇a ∗ ∇b or ∇i+1 = ∇a,

≤ ‖∇0 ⊗ · · · ⊗ ∇n‖ℓ ≤ p(ℓ).

• Suppose i = n− 1 and ℓ = 1. We have,

‖ξi(∇0 ⊗ · · · ⊗ ∇n)‖1 =

{
−∞ if ∇n = ∇a ∗ ∇b with ∇b 6= ∅,
|V| if ∇n = ∇a,

≤ 0 = p(1).

�

Steenrod’s definition of cupi-products in [22]. Let L be a finite simplicial complex,
endowed with a partial order of its vertices such that the vertices of any simplex are
simply ordered. Let F = (a0, . . . , ak) and G = (b0, . . . , bℓ) be two (ordered) simplices of
L and let i ≥ 0 be an integer. The ordered pair, (F,G), is called i-regular if F and G
have exactly (i+ 1) vertices in common, (c0, . . . , ci), such that

• c0 = b0,
• c0 and c1 are adjacent vertices in F ,
• . . .,
• cj and cj+1 are adjacent in F if j is even and adjacent in G if j is odd,
• . . .,
• ci is the last vertex of F if i is even and the last vertex of G if i is odd.

Denote by F0 the face of F spanned by its vertices lower than or equal to c0 and by
F2j the face of F spanned by its vertices greater than or equal to c2j−1 and lower than
or equal to c2j , (0 < 2j ≤ i). If i is odd, let Fi+1 be the face of F spanned by its vertices
greater than or equal to ci. We do a similar decomposition for G, denoting by G2j+1

(1 ≤ 2j+1 < i+1) the face of G spanned by its vertices greater than or equal to c2j and
lower than or equal to c2j+1. If i is even, let Gi+1 be the face spanned by the vertices
greater than or equal to ci. This gives the decompositions

F = F0 ∗ F2 ∗ · · · ∗ F2s and G = G1 ∗G3 ∗ · · · ∗G2s+(−1)i ,

with 2s = i if i even and 2s = i+ 1 if i is odd.
Now, we denote by G′

2j+1 the face of G2j+1 obtained by deleting the vertices c2j and

c2j+1. Moreover, if i is even, let G′
i+1 be the face of Gi+1 obtained by deleting ci.

Definition 7.4. We define F ∪iG = 0 in the group of (k+ ℓ− i)-cochains, if the couple
(F,G) is not i-regular and, otherwise, by

F ∪i G = F0 ∗G
′
1 ∗ F2 ∗G

′
3 ∗ · · · ∗

{
G′
i+1 if i even,

Fi+1 if i odd.

Example 7.5. We give an illustration of the cases i even and i odd in low dimensions.
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1) The pair (F = (a0, . . . , ak), G = (b0, . . . , bℓ)) is 0-regular, if ak = b0. We write their
vertices as follows,

F : a0 ❴❴❴ ak

G : b0 ❴❴❴ bℓ

By definition, F ∪0 G = (a0, . . . , ak, b1, . . . , bℓ) is the (classical) cup-product.
2) The pair (F,G) is 1-regular, if they have two common vertices (c0, c1) such that

the vertices of F and G can be put in two lines, as follows

F : a0 ❴❴❴ ak0 = c0 ak0+1 = c1 ❴❴❴ ak

G : b0 = c0 ❴❴❴❴ bℓ = c1

By definition, F ∪1 G = (a0, . . . , ak0 , b1, . . . , bℓ−1, ak0+1, . . . , ak).
3) The pair (F,G) is 2-regular, if they have three common vertices (c0, c1, c2) such

that the vertices of F and G can be put in two lines as,

F : a0 ❴❴❴ ak0 = c0 ak0+1 = c1 ❴❴❴❴ ak = c2

G : b0 = c0 ❴❴❴❴ bℓ1 = c1 bℓ1+1 = c2 ❴❴❴ bℓ

By definition, F ∪2 G = (a0, . . . , ak0 , b1, . . . , bℓ1−1, ak0+1, . . . , ak, bℓ1+2, . . . , bℓ).

For the convenience of the reader, we recall the next statement of Steenrod, written
with the notations of this paper.

Proposition 7.6 ([22, Theorem Page 295]). The Steenrod squares verify the next prop-
erties,

(1) F ∪i (cG) =

{
c(F ∪i G), if i even,
0, if i odd,

(2) (cF ) ∪i G =

{
0, if i even,
c(F ∪i G), if i odd,

(3) (cF ) ∪i (cG) = c(F ∪i−1 G).

The domains of the applications α and β are the euclidean simplices ∆a+b+1 = ∆a∗∆b

and c(∆a ∗ ∆b). Therefore, we need to study the cupi-products in these complexes.
The case of the cone, c(∆a ∗ ∆b), can be deduced from the first one, ∆a+b+1, with
Proposition 7.6. We order the vertices of ∆a+b+1 such that any vertex of ∆a is lower to
any vertex of ∆b. Also, the cone point, v, is the greatest element of the set of vertices.
Recall from (3) the notation,

F ∪ji G =

{
F ∪i G if j is even,
G ∪i F if j is odd.



38 DAVID CHATAUR, MARTINTXO SARALEGI-ARANGUREN, AND DANIEL TANRÉ

Lemma 7.7. Let Fa, Ga be (nonempty) faces of ∆a, Fb, Gb be (nonempty) faces of ∆b.
For any i > 0, we have, in ∆a ∗∆b,

(11) (Fa ∗ Fb) ∪i (Ga ∗Gb) =
∑

i1+i2=i−1

(Fa ∪i1 Ga) ∗ (Fb ∪
i1+1
i2

Gb).

Note that the right-hand side of the equality (11) has at most one non-zero term.

If we set −∪−1− = 0, the right hand side of (11) is equal to zero in the case i = 0. Note
also that Fa and Gb cannot have a common vertex, neither Fb and Ga. Therefore, with
the hypotheses of Lemma 7.7, the simplices Fa ∗ Fb and Ga ∗ Gb cannot have exactly
one vertex in common and respect the convention on the order of the vertices. As a
consequence, the equality (11) is also true for i = 0, with the two sides equal to zero.

Proof. The cupi-product of F = Fa ∗ Fb and G = Ga ∗ Gb is not zero only if F and G
have (i + 1) vertices in common. Denote by (x + 1), with 0 ≤ x ≤ i, the number of
vertices in common for Fa and Ga. Thus Fb and Gb have (i − x) vertices in common.
We observe also that the only non-zero term of the right-hand side of (11) corresponds
to i1 = x.

Suppose i even and x odd. With the previous notations, we decompose,

Fa = Fa,0 ∗ · · · ∗ Fa,x+1 and Ga = Ga,1 ∗ · · · ∗Ga,x,

Fb = Fb,0 ∗ · · · ∗ Fb,i−x−1 and Gb = Gb,1 ∗ · · · ∗Gb,i−x.

Thus, we have

(Fa ∗ Fb) ∪i (Ga ∗Gb) = Fa,0 ∗G
′
a,1 ∗ · · · ∗G

′
a,x ∗ Fa,x+1 ∗ Fb,0 ∗G

′
b,1 ∗ · · · ∗G

′
b,i−x

= (Fa ∪x Ga) ∗ (Fb ∪i−x−1 Gb)

= (Fa ∪x Ga) ∗ (Fb ∪
x+1
i−x−1 Gb).

Suppose now i even and x even. We decompose

Fa = Fa,0 ∗ · · · ∗ Fa,x and Ga = Ga,1 ∗ · · · ∗Ga,x+1.

Thus, we have
Fa ∪x Ga = Fa,0 ∗G

′
a,1 ∗ · · · ∗ Fa,x ∗G

′
a,x+1.

Note that Fa ∪xGa contains all the vertices of F ∪iG belonging to ∆a. The first vertex
in common between Fa and Ga is the first vertex of Ga. The number of common points
in ∆a being the odd number x + 1, the last vertex of ∆a in common must be the last
vertex of Fa. Therefore, the first vertex of ∆b in common is the first vertex of Fb. (See
Example 7.8 for an illustration of this argument.) Thus, for writing this final part of
vertices in F ∪i G as a cupi−x−1-product, we have to decompose Fb and Gb as follows,

Gb = Gb,0 ∗ · · · ∗Gb,i−x and Fb = Fb,1 ∗ · · · ∗ Fb,i−x−1.

We deduce

(Fa ∗ Fb) ∪i (Ga ∗Gb) = Fa,0 ∗G
′
a,1 ∗ · · · ∗G

′
a,x+1 ∗Gb,0 ∗ F

′
b,1 ∗ · · · ∗ F

′
b,i−x−1 ∗Gb,i−x

= (Fa ∪x Ga) ∗ (Gb ∪i−x−1 Fb)

= (Fa ∪x Ga) ∗ (Fb ∪
x+1
i−x−1 Gb).

In the case i odd, the conclusion is obtained with totally similar arguments. �
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Example 7.8. We particularize with x = 2 the argument done in the previous proof.
Let Fa ∗ Fb = (fa0 , . . . , f

a
ℓ ) ∗ (f

b
0 , . . . , f

b
k) and Ga ∗ Gb = (ga0 , . . . , g

a
u) ∗ (gb0, . . . , g

b
v). The

following diagram represents (Fa ∗ Fb) ∪i (Ga ∗ Gb) = (Fa ∪2 Ga) ∗ (Fb ∪
3
i−3 Gb) =

(Fa ∪2 Ga) ∗ (Gb ∪i−3 Fb).

Fa ∗ Fb : fa0
❴❴❴ ❴❴❴ faℓ f b0

❴❴❴

Ga ∗Gb : ❴❴❴ ❴❴❴ gau g
b
0

❴❴❴ ❴❴❴

Proposition 7.9. Let X be an n-dimensional PL-pseudomanifold, p and q be GM-

perversities. Then, the quasi-isomorphism, χ : Ñ∗
• (X

∗) → Ñ∗
• (X), induced by ν : X →

X∗ is compatible with the cupi-products, i.e.,

χ(Φ ∪i Ψ) = χ(Φ) ∪i χ(Ψ),

for any i ≥ 0, Φ ∈ Ñ r
p (X

∗), Ψ ∈ Ñ s
q (X

∗) and Φ ∪i Ψ ∈ Ñ r+s−i
p⊕q (X∗) .

As cupi-products on Ñ
∗(−) are defined locally, it is sufficient to do the proof for an

elementary amalgamation. Thus Proposition 7.9 is a direct consequence of the next
lemma.

Lemma 7.10. The two morphisms, α : N∗(c∆a+b+1) → N∗(c∆a) ⊗ N∗(c∆b) and
β : N∗(∆a+b+1) → N∗(c∆a)⊗N∗(∆b), are compatible with the cupi-products.

Proof. Consider the faces F = Fa ∗ Fb and G = Ga ∗Gb of ∆
a+b+1.

• Suppose first Fa 6= ∅, Fb 6= ∅, Ga 6= ∅, Gb 6= ∅ and begin with the map β. We have
to prove,

(12) β((Fa ∗ Fb) ∪i (Ga ∗Gb)) = β(Fa ∗ Fb) ∪i β(Ga ∗Gb).

From Lemma 7.7 and the definition of β, we get

β((Fa ∗ Fb) ∪i (Ga ∗Gb)) =
∑

i1+i2=i−1

(c(Fa ∪i1 Ga)⊗ (Fb ∪
i1+1
i2

Gb).

On the other side, we have

β(Fa ∗ Fb) ∪i β(Ga ∗Gb) =(1) (cFa ⊗ Fb) ∪i (cGa ⊗Gb)

=(2)

i∑

k=0

(cFa ∪k cGa)⊗ (Fb ∪
k
i−k Gb)

=(3)

i∑

k=1

c(Fa ∪k−1 Ga)⊗ (Fb ∪
k
i−k Gb)

=
∑

i1+i2=i−1

(c(Fa ∪i1 Ga))⊗ (Fb ∪
i1+1
i2

Gb),

where =(1) is the definition of β, =(2) comes from the structure of E(2)-algebra on a
tensor product of E(2)-algebras, recalled in Section 2, and =(3) is [22, Formula (4.3)],
recalled in Proposition 7.6.
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• With the same restriction, Fa 6= ∅, Fb 6= ∅, Ga 6= ∅, Gb 6= ∅, we study now the
map α. The arguments are coming from Lemma 7.7, from the structure of E(2)-algebra
on a tensor product and from Proposition 7.6, as before. In the sequel, we use them
without an explicit recall. We have only to study the cases where one of the faces
contains the cone point, the other cases being already verified when we have considered
the map β.

(i) Let c(Fa ∗ Fb) and c(Ga ∗Gb) be faces of c∆a+b+1. Then we have,

α(c(Fa ∗ Fb) ∪i c(Ga ∗Gb)) = α(c((Fa ∗ Fb) ∪i−1 (Ga ∗Gb)))

= α

(
c

(
∑

i1+i2=i−2

(Fa ∪i1 Ga) ∗ (Fb ∪
i1+1
i2

Gb)

))

=
∑

i1+i2=i−2

c(Fa ∪i1 Ga)⊗ c(Fb ∪
i1+1
i2

Gb),

and

α(c(Fa ∗ Fb)) ∪i α(c(Ga ∗Gb)) = (cFa ⊗ cFb) ∪i (cGa ⊗ cGb)

=

i∑

k=0

(cFa ∪k cGa)⊗ (cFb ∪
k
i−k cGb)

=

i−1∑

k=1

c(Fa ∪k−1 Ga)⊗ c(Fb ∪
k
i−k−1 Gb)

=
∑

i1+i2=i−2

c(Fa ∪i1 Ga)⊗ c(Fb ∪
i1+1
i2

Gb).

The compatibility with cupi-products is proved for these faces.
(ii) Let c(Fa ∗ Fb) and (Ga ∗Gb) be faces of c∆a+b+1. We have to prove that,

(13) α(c(Fa ∗ Fb) ∪i (Ga ∗Gb)) = α(c(Fa ∗ Fb)) ∪i α(Ga ∗Gb).

Observe first, α(c(Fa ∗Fb)∪i (Ga ∗Gb)) = 0 if i even, cf. Proposition 7.6. We study
now the cupi-product of the images by α.

α(c(Fa ∗ Fb)) ∪i α(Ga ∗Gb) = (cFa ⊗ cFb) ∪i (cGa ⊗Gb)

=

i∑

k=0

(cFa ∪k cGa)⊗ (cFb ∪
k
i−k Gb).

We study the last right-hand side term in the case i even.
- If k is even, then (cFb ∪

k
i−k Gb) = cFb ∪i−k Gb = 0, since i− k is even.

- If k is odd, then (cFb ∪
k
i−k Gb) = Gb ∪i−k cFb = 0, since i− k is odd.

Thus the equation (13) is satisfied for i even.
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Suppose now that i is odd. The left-hand side of (13) can be developed as,

α(c(Fa ∗ Fb) ∪i (Ga ∗Gb)) = α(c((Fa ∗ Fb) ∪i (Ga ∗Gb)))

= α

(
c

(
∑

i1+i2=i−1

(Fa ∪i1 Ga) ∗ (Fb ∪
i1+1
i2

Gb)

))

=
∑

i1+i2=i−1

c(Fa ∪i1 Ga)⊗ c(Fb ∪
i1+1
i2

Gb).

We consider now the expression of the right-hand side of (13) already obtained,

i∑

k=0

(cFa ∪k cGa)⊗ (cFb ∪
k
i−k Gb).

- If k is even, then (cFb ∪
k
i−k Gb) = cFb ∪i−k Gb = c(Fb ∪i−k Gb), since i − k is

odd.
- If k is odd, then (cFb ∪

k
i−k Gb) = Gb ∪i−k cFb = c(Gb ∪i−k Fb), since i − k is

even.
In conclusion, we have proved, cFb ∪

k
i−k Gb = c(Fb ∪

k
i−k Gb) and

α(c(Fa ∗ Fb)) ∪i α(Ga ∗Gb) =
i∑

k=1

c(Fa ∪k−1 Ga)⊗ c(Fb ∪
k
i−k Gb)

=
∑

i1+i2=i−1

c(Fa ∪i1 Ga)⊗ c(Fb ∪
i1+1
i2

Gb).

We have established the compatibility with cupi-products in this case.
(iii) Let (Fa ∗ Fb) and c(Ga ∗ Gb) be faces of c∆a+b+1. This situation is similar to the

previous one.

• We consider now the case where at least one of the subsets, Fa, Fb, Ga, Gb, is
the empty set and begin with the map β. The verification follows the same routine
than above but we cannot apply Lemma 7.7 in this situation. Therefore, we prove the
compatibility with a direct computation of the two sides of the equality (12). We list the
different possibilities with the values of the left-hand side (LHS) and of the right-hand
side (RHS). If Fa = Fb = ∅ or Ga = Gb = ∅, the expressions become trivial and we may
focus on the cases below.

Before doing these verifications, we note that Va is a chain of vertices and, if Fa ⊂ ∆a

is given, one (and only one) of theses vertices, say at, is the first vertex of Fa. This
implies Va ∪0 Fa = (at) ∪0 Fa = Fa. Similarly, we have Fa ∪0 Va = Fa and Va acts as a
neutral element for − ∪0 −. Also, as va /∈ Fa, we have va ∪0 Fa = Fa ∪0 va = 0.

(1) Fa = ∅, Fb 6= ∅, Ga = ∅, Gb 6= ∅.
LHS = β(Fb ∪i Gb) = va ⊗ (Fb ∪i Gb).
RHS = (va ⊗ Fb) ∪i (va ⊗Gb) = (va ∪0 va)⊗ (Fb ∪

0
i Gb) = va ⊗ (Fb ∪i Gb).

(2) Fa 6= ∅, Fb = ∅, Ga 6= ∅, Gb = ∅.
LHS = β(Fa ∪i Ga) = (Fa ∪i Ga)⊗ (vb + Vb).
RHS = (Fa ⊗ (vb +Vb)) ∪i (Ga ⊗ (vb +Vb) = (Fa ∪i Ga)⊗ ((vb +Vb) ∪i0 (vb +Vb)) =
(Fa ∪i Ga)⊗ (vb + Vb).
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(3) Fa 6= ∅, Fb = ∅, Ga = ∅, Gb 6= ∅.
LHS = β(Fa ∪i Gb) = 0.
RHS = (Fa ⊗ (vb + Vb)) ∪i (va ⊗Gb) = 0, because Fa ∪k va = 0 for any k.

(4) Fa = ∅, Fb 6= ∅, Ga 6= ∅, Gb = ∅.
LHS = β(Fb ∪i Ga) = 0.
RHS = β(Fb) ∪i β(Ga) = (va ⊗ Fb) ∪i (Ga ⊗ (vb +Vb)) = 0, because va ∪k Ga = 0 for
any k.

(5) Fa = ∅, Fb 6= ∅, Ga 6= ∅, Gb 6= ∅.
LHS = β(Fb ∪i (Ga ∗Gb)) = 0, because Fb ∩Ga = ∅ and Ga 6= ∅.
RHS = β(Fb) ∪i β(Ga ∗ Gb) = (va ⊗ Fb) ∪i (cGa ⊗Gb) = (va ∪0 cGa)⊗ (Fb ∪i Gb) =
0, because the cone point, va, is the greatest vertex.

(6) Fa 6= ∅, Fb = ∅, Ga 6= ∅, Gb 6= ∅.

LHS = β(Fa ∪i (Ga ∗Gb)) =

{
β((Fa ∪i Ga) ∗Gb) = c(Fa ∪i Ga)⊗Gb, if i even,
0, if i odd.

RHS = β(Fa)∪iβ(Ga∗Gb) = (Fa⊗(vb+Vb))∪i(cGa⊗Gb) = (Fa∪icGa)⊗(Vb∪i0Gb) ={
c(Fa ∪i Ga)⊗Gb, if i even,
0, if i odd.

The nullity when i is odd comes from Proposition 7.6.
(7) Fa 6= ∅, Fb 6= ∅, Ga = ∅, Gb 6= ∅.

LHS = β((Fa ∗ Fb) ∪i Gb) = β(Fa ∗ (Fb ∪i Gb)) = cFa ⊗ (Fb ∪i Gb).
RHS = β(Fa ∗ Fb) ∪i β(Gb) = (cFa ⊗ Fb) ∪i (va ⊗ Gb) = (cFa ∪0 va) ⊗ (Fb ∪i Gb) =
cFa ⊗ (Fb ∪i Gb).

(8) Fa 6= ∅, Fb 6= ∅, Ga 6= ∅, Gb = ∅.

LHS = β((Fa ∗ Fb) ∪i Ga) =

{
0, if i even,
β((Fa ∪i Ga) ∗ Fb) = c(Fa ∪i Ga)⊗ Fb, if i odd.

RHS = β(Fa∗Fb)∪iβ(Ga) = (cFa⊗Fb)∪i (Ga⊗(vb+Vb)) = (cFa∪iGa)⊗(Fb∪
i
0Vb) ={

0, if i even,
c(Fa ∪i Ga)⊗ Fb, if i odd,

with the argument already used in the case (6).

• The end of the proof is concerned with the map α when at least one of the subsets,
Fa, Fb, Ga, Gb is the empty set. Computations are similar to the previous ones. �

References

1. Clemens Berger and Benoit Fresse, Combinatorial operad actions on cochains, Math. Proc. Cam-
bridge Philos. Soc. 137 (2004), no. 1, 135–174. MR 2075046 (2005e:18013)

2. Armand Borel and al., Intersection cohomology, Modern Birkhäuser Classics, Birkhäuser Boston
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cial blow-up and Rational Homotopy, ArXiv Mathematics e-prints (2012).

5. Greg Friedman, Intersection homology of stratified fibrations and neighborhoods, Adv. Math. 215
(2007), no. 1, 24–65. MR 2354985 (2008g:55010)

6. , On the chain-level intersection pairing for PL pseudomanifolds, Homology, Homotopy Appl.
11 (2009), no. 1, 261–314. MR 2529162 (2010m:55004)

7. , An introduction to intersection homology (without sheaves), book-in-progress, 2013.



INTERSECTION COHOMOLOGY AND STEENROD SQUARES 43

8. Greg Friedman and James E. McClure, Cup and cap products in intersection (co)homology, Adv.
Math. 240 (2013), 383–426. MR 3046315
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Département de Mathématiques, UMR 8524 et Fédération CNRS Nord-Pas-de-Calais FR
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