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We prove that for every compact set K ⊆ ∂D of logarithmic capacity Cap K = 0, there exists a Schur function ϕ both in the disk algebra A(D) and in the Dirichlet space D * such that the composition operator C ϕ is in all Schatten classes S p (D * ), p > 0, and for which K = {e it ; |ϕ(e it )| = 1} = {e it ; ϕ(e it ) = 1}. We show that for every bounded composition operator C ϕ on D * and every ξ ∈ ∂D, the logarithmic capacity of {e it ; ϕ(e it ) = ξ} is 0. We show that every compact composition operator C ϕ on D * is compact on the Bergman-Orlicz space B Ψ2 and on the Hardy-Orlicz space H Ψ2 ; in particular, C ϕ is in every Schatten class S p , p > 0, both on the Hardy space H 2 and on the Bergman space B 2 . On the other hand, there exists a Schur function ϕ such that C ϕ is compact on H Ψ2 , but which is not even bounded on D * . We prove that for every p > 0, there exists a symbol ϕ such that C ϕ ∈ S p (D * ), but C ϕ / ∈ S q (D * ) for any q < p, that there exists another symbol ϕ such that C ϕ ∈ S q (D * ) for every q < p, but C ϕ / ∈ S p (D * ). Also, there exists a Schur function ϕ such that C ϕ is compact on D * , but in no Schatten class S p (D * ).

1 Introduction, notation and background

Introduction

Recall that a Schur function is an analytic self-map of the open unit disk D. Every Schur function ϕ generates a bounded composition operator C ϕ on the Hardy space H 2 , given by C ϕ (f ) = f • ϕ. Let us also introduce the set E ϕ of contact points of the symbol with the unit circle (equipped with its normalized Haar measure m), namely:

(1.1)

E ϕ = {e it ; |ϕ * (e it )| = 1}.

In terms of E ϕ , a well-known necessary condition for compactness of C ϕ on H 2 is that m(E ϕ ) = 0. This set E ϕ is otherwise more or less arbitrary. Indeed, it was proved in [START_REF] Gallardo-Gutiérrez | Hausdorff measures, capacities and compact composition operators[END_REF] that there exist compact composition operators C ϕ on H 2 such that the Hausdorff dimension of E ϕ is 1. This was generalized in [START_REF] El-Fallah | Level sets and composition operators on the Dirichlet space[END_REF]: for every Lebesgue-negligible compact set K of the unit circle T, there is a Hilbert-Schmidt composition operator C ϕ on H 2 such that E ϕ = K, and in [START_REF] Li | Estimates for approximation numbers of some classes of composition operators[END_REF]: Theorem 1.1 ( [START_REF] Li | Estimates for approximation numbers of some classes of composition operators[END_REF]) For every Lebesgue-negligible compact set K of the unitcircle T and every vanishing sequence (ε n ) of positive numbers, there is a composition operator C ϕ on H 2 such that E ϕ = K and such that its approximation numbers satisfy a n (C ϕ ) ≤ C e -n εn .

We are interested here in a different Hilbert space of analytic functions, on which not every Schur function defines a bounded composition operator, namely the Dirichlet space D. Recall its definition: the Dirichlet space D is the space of analytic functions f : D → C such that:

(1.2) f 2 D := |f (0)| 2 + D |f ′ (z)| 2 dA(z) < +∞ .
If f (z) = ∞ n=0 c n z n , one has:

(1.3)

f 2 D = |c 0 | 2 + ∞ n=1 n |c n | 2 .
Then D is a norm on D, making D a Hilbert space. Whereas every Schur function ϕ generates a bounded composition operator C ϕ on the Hardy space H 2 , it is no longer the case for the Dirichlet space (see [START_REF] Mccluer | Angular derivatives and compact composition operators on the Hardy and Bergman spaces[END_REF], Proposition 3.12, for instance).

In [START_REF] Gallardo-Gutiérrez | Exceptional sets and Hilbert-Schmidt composition operators[END_REF], the study of compact composition operators on the Dirichlet space D associated with a Schur function ϕ in connection with the set E ϕ was initiated. In particular, it is proved there that if the composition operator C ϕ is Hilbert-Schmidt on D, then the logarithmic capacity Cap E ϕ of E ϕ is 0, but, on the other hand, there are compact composition operators on D for which this capacity is positive. The optimality of this theorem was later proved in [START_REF] El-Fallah | Level sets and composition operators on the Dirichlet space[END_REF] under the following form: Theorem 1.2 (O. El-Fallah, K. Kellay, M. Shabankhah, H. Youssfi) For every compact set K of the unit circle T with logarithmic capacity Cap K equal to 0, there exits a Hilbert-Schmidt composition operator C ϕ on D such that E ϕ = K.

In this paper, we shall improve on this last result. We prove in Section 4 (Theorem 4.1) that for every compact set K ⊆ ∂D of logarithmic capacity Cap K = 0, there exists a Schur function ϕ ∈ A(D) ∩ D * such that the composition operator C ϕ is in all Schatten classes S p (D * ), p > 0, and for which E ϕ = K (and moreover E ϕ = {e it ; ϕ(e it ) = 1}). On the other hand, in Section 2, we show (Theorem 2.1) that for every bounded composition operator C ϕ on D * and every ξ ∈ ∂D, the logarithmic capacity of E ϕ (ξ) = {e it ; ϕ(e it ) = ξ} is 0.

In link with Hardy and Bergman spaces, we prove, in Section 2 yet, that every compact composition operator C ϕ on D * is compact on the Bergman-Orlicz space B Ψ2 and on the Hardy-Orlicz space H Ψ2 . In particular, C ϕ is in every Schatten class S p , p > 0, both on the Hardy space H 2 and on the Bergman space B 2 (Theorem 2.5). However, there exists a Schur function ϕ such that C ϕ is compact on H Ψ2 , but which is not even bounded on D * (Theorem 2.6).

In Section 3, we give a characterization of the membership of composition operators in the Schatten classes S p (D * ), p > 0 (actually in S p (D α, * ), where D α, * is the weighted Dirichlet space). We deduce that for every p > 0, there exists a symbol ϕ such that C ϕ ∈ S p (D * ), but C ϕ / ∈ S q (D * ) for any q < p, and that there exists another symbol ϕ such that C ϕ ∈ S q (D * ) for every q < p, but C ϕ / ∈ S p (D * ) (Theorem 3.3). We also show that there exists a Schur function ϕ such that C ϕ is compact on D * , but in no Schatten class S p (D * ) (Theorem 3.4).

Notation and background.

We denote by D the unit open disk of the complex plane and by T = ∂D the unit circle. A is the normalized area measure dx dy/π of D and m the normalized Lebesgue measure dt/2π on T.

As said before, a Schur function is an analytic self-map of D and the associated composition operator is defined, formally, by

C ϕ (f ) = f • ϕ. The function ϕ is called the symbol of C ϕ .
The Dirichlet space D is defined above. We shall actually work, for convenience, with its subspace D * of functions f ∈ D such that f (0) = 0. In this paper, we call D * the Dirichlet space.

An orthonormal basis of D * is formed by e n (z) = z n / √ n, n ≥ 1. The reproducing kernel on D * , defined by f (a) = f, K a for every f ∈ D * , is given by K a (z) = ∞ n=1 e n (a) e n (z), so that:

(1.4) K a (z) = log 1 1 -az •
Compactness of composition operators on D was characterized in terms of Carleson measure by D. Stegenga ([24]) and by B. McCluer and J. Shapiro in terms of angular derivative ( [START_REF] Mccluer | Angular derivatives and compact composition operators on the Hardy and Bergman spaces[END_REF]). Another characterization, more useful for us here, was given by N. Zorboska ([29], page 2020): for ϕ ∈ D, C ϕ is bounded on D if and only:

(1.5) sup h∈(0,2) sup |ξ|=1 1 A[W (ξ, h)] W (ξ,h) n ϕ (w) dA(w) < ∞ ,
where W (ξ, h) = {w ∈ D ; 1 -|w| ≤ h and | arg(w ξ)| ≤ πh} is the Carleson window of size h ∈ (0, 2) center at ξ ∈ T and n ϕ is the counting function of ϕ:

(1.6) n ϕ (w) = ϕ(z)=w 1 , w ∈ ϕ(D) ,
(we set n ϕ (w) = 0 for w ∈ D \ ϕ(D)). In particular, every Schur function with bounded valence defines a bounded composition operator on D. Moreover, C ϕ is compact if and only if:

(1.7) sup |ξ|=1 1 A[W (ξ, h)] W (ξ,h) n ϕ (w) dA(w) -→ h→0 0 .
For further informations on the Dirichlet space, one may consult the two surveys [START_REF] Arcozzi | The Dirichlet space: a survey[END_REF] and [START_REF] Ross | The classical Dirichlet space, Recent advances in operatorrelated function theory[END_REF], for example.

Logarithmic capacity

The notion of logarithmic capacity is tied to the study of the Dirichlet space by the following seminal and sharp result of Beurling ( [START_REF] Beurling | Sur les ensembles exceptionnels[END_REF]; see also [START_REF] Kahane | Ensembles parfaits et séries trigonométriques[END_REF]).

Theorem 1.3 (Beurling) For every function f (z) = ∞ n=0 c n z n ∈ D,
there exists a set E ⊆ ∂D, with logarithmic capacity 0, such that, if t ∈ T \ E, then the radial limit f * (e it ) := lim r→1 -f (re it ) exists (in C). Moreover, the result is optimal: if a compact set E ⊆ T has zero logarithmic capacity, there exists

f (z) = ∞ n=0 c n z n ∈ D such that f * (e it ) does not exist on E.
Let us recall some definitions (see [START_REF] Kahane | Ensembles parfaits et séries trigonométriques[END_REF], Chapitre III, [START_REF] Conway | Functions of One Complex Variable II[END_REF], Chapter 21, § 7, or [START_REF] Ross | The classical Dirichlet space, Recent advances in operatorrelated function theory[END_REF], Section 4, for example).

Let µ be a probability measure supported by a compact subset K of T. The potential U µ of µ is defined, for every z ∈ C, by:

U µ (z) = K log e |z -w| dµ(w) .
The energy I µ of µ is defined by:

I µ = K U µ (z) dµ(z) = K×K log e |z -w| dµ(w) dµ(z) .
The logarithmic capacity of a Borel set E ⊆ T is: If µ is the equilibrium measure of the compact set K, we have Frostman's Theorem ( [START_REF] Conway | Functions of One Complex Variable II[END_REF], Theorem 21.7.12, or [START_REF] Kahane | Ensembles parfaits et séries trigonométriques[END_REF], Chapitre III, Proposition 5 and Proposition 6): U µ (z) ≤ I µ for every z ∈ C and

Cap E = sup µ e -Iµ ,
(1.8) U µ (z) = I µ for almost all z ∈ K .
Suppose that the compact set K has zero logarithmic capacity. For ε > 0, let K ε = {z ∈ T ; dist (z, K) ≤ ε}, µ ε its equilibrium measure, and I µε its energy. Then ( [START_REF] Conway | Functions of One Complex Variable II[END_REF], Proposition 21.7.15):

(1.9)

lim ε→0 I µε = ∞ .

Bounded and compact composition operators

In [START_REF] Gallardo-Gutiérrez | Exceptional sets and Hilbert-Schmidt composition operators[END_REF], E. A. Gallardo-Gutiérrez and M. J. González showed that for every Hilbert-Schmidt composition operator C ϕ on D * , the logarithmic capacity of the set E ϕ = {e iθ ∈ ∂D ; |ϕ(e iθ )| = 1} is zero. On the other hand, they showed that there are compact composition operators on D * for which E ϕ has positive logarithmic capacity. We shall see that if we replace |ϕ| by ϕ in the definition of E ϕ , the result is very different.

Theorem 2.1 For every bounded composition operator C ϕ on D * and every ξ ∈ ∂D, the logarithmic capacity of E ϕ (ξ) = {e it ; ϕ(e it ) = ξ} is 0.

We first state the following characterization of Hilbert-Schmidt composition operators on D * . This result is stated in [START_REF] Gallardo-Gutiérrez | Exceptional sets and Hilbert-Schmidt composition operators[END_REF], but not entirely proved. 

(2.1) D |ϕ ′ (z)| 2 (1 -|ϕ(z)| 2 ) 2 dA(z) < ∞ . Proof. Let e n (z) = z n / √ n; then (e n ) n≥1 is an orthonormal basis of D * and ∞ n=1 C ϕ (e n ) 2 = ∞ n=1 ϕ n 2 n = D |ϕ ′ (z)| 2 (1 -|ϕ(z)| 2 ) 2 dA(z) . Hence (2.1) is satisfied if C ϕ is Hilbert-Schmidt. To get the converse, we need to show that (2.1) implies that C ϕ is bounded on D * . Let f ∈ D * and write f (z) = ∞ n=1 c n z n . Then C ϕ f = ∞ n=1 c n ϕ n and C ϕ f ≤ ∞ n=1 |c n | ϕ n ≤ ∞ n=1 n |c n | 2 1/2 ∞ n=1 ϕ n 2 n 1/2 = D |ϕ ′ (z)| 2 (1 -|ϕ(z)| 2 ) 2 dA(z) 1/2 f .
Then (2.1) implies that C ϕ is Hilbert-Schmidt. Now Theorem 2.1 will follow from the next proposition. Taking this proposition for granted for a while, we can prove the theorem.

Proof of Theorem 2.1. Making a rotation, we may, and do, assume that ξ = 1.

Then, if σ is the map of Proposition 2.3, C ϕ C σ = C σ•ϕ is Hilbert-Schmidt. By [6], the set E σ•ϕ has zero logarithmic capacity. But σ has modulus 1 only at 1; hence e iθ ∈ E σ•ϕ if and only if e iθ ∈ E ϕ (1).
To prove Proposition 2.3, it will be convenient to use the following criteria, where

ϕ a (z) = z-a 1-āz • Lemma 2.4 Let f ∈ D such that Re f ≥ 1. Then if σ = ϕ a • e -1/f
, where a = e -1/f (0) , the composition operator C σ is Hilbert-Schmidt on D * .

Proof. Let σ 0 = e -1/f . If u = Re f and v = Im f , one has:

|σ 0 | 2 = exp - 2u u 2 + v 2 and |σ ′ 0 | 2 = u ′ 2 + v ′ 2 (u 2 + v 2 ) 2 exp - 2u u 2 + v 2 • Then |σ 0 | < 1 and so σ 0 is a self-map of D. Since u ≥ 1 > 0, one has |σ ′ 0 | 2 ≤ (u ′ 2 + v ′ 2 )/(u 2 + v 2 ) 2 ≤ u ′ 2 + v ′ 2 = |f ′ | 2 ; hence σ 0 ∈ D. For 0 ≤ x ≤ 2, one has 1 -e -x ≥ x/4. Therefore, since u ≥ 1 implies 2u/(u 2 + v 2 ) ≤ 2/u ≤ 2, one has: 1 -|σ 0 | 2 ≥ u 2(u 2 + v 2 ) •
It follows that:

|σ ′ 0 | 2 (1 -|σ 0 | 2 ) 2 ≤ u ′ 2 + v ′ 2 (u 2 + v 2 ) 2 4(u 2 + v 2 ) 2 u 2 ≤ 4(u ′ 2 + v ′ 2 ) = 4|f ′ | 2 . Since f ∈ D, |f ′ | 2 has a finite integral and therefore (2.1) is satisfied. It follows that C σ0 is Hilbert-Schmidt on D and hence C σ = C σ0 • C ϕa is Hilbert-Schmidt on D * , since σ(0) = 0.
Proof of Proposition 2.3. Let Ω be the domain defined by:

Ω = {z ∈ C ; Re z > 1 and |Im z| < 1/(Re z) 2 } . Let f be a conformal map from D onto Ω such that f (1) = ∞. Since A(Ω) < ∞,
we have f ∈ D. By Lemma 2.4, the function σ = e -1/f has the required properties.

For the next result, recall that an Orlicz function Ψ is a nondecreasing convex function such that Ψ(0) = 0 and Ψ(x)/x → ∞ as x goes to infinity. We refer to [START_REF] Lefèvre | Composition operators on Hardy-Orlicz spaces[END_REF] for the definition of Hardy-Orlicz and Bergman-Orlicz spaces. In the following result, one set Ψ 2 (x) = exp(x 2 ) -1.

Theorem 2.5 Every compact composition operator C ϕ on D * is compact on the Bergman-Orlicz space B Ψ2 and on the Hardy-Orlicz space H Ψ2 . In particular, C ϕ is in every Schatten class S p , p > 0, both on the Hardy space H 2 and on the Bergman space B 2 .

Proof. Consider the normalized reproducing kernels Ka = K a / K a , a ∈ D. When |a| goes to 1, they tends to 0 uniformly on compact sets of D; hence C * ϕ ( Ka ) tends to 0, by compactness of the adjoint operator

C * ϕ . But C * ϕ (K a ) = K ϕ(a) and K a 2 = K a , K a = log 1 1-|a| 2 , so we get: (2.2) lim |a|→1 log 1 1-|ϕ(a)| 2 log 1 1-|a| 2 = 0 .
This condition means that C ϕ is compact on the Bergman-Orlicz space B Ψ2 ( [START_REF] Lefèvre | Composition operators on Hardy-Orlicz spaces[END_REF], page 69) and implies that C ϕ is in all Schatten classes S p (B 2 ), p > 0 ( [START_REF] Lefèvre | Compact composition operators on Bergman-Orlicz spaces[END_REF]).

In the same way, it suffices to show that C ϕ is compact on H Ψ2 , because that implies that C ϕ is in all Schatten classes S p (H 2 ) ([11], Theorem 5.2).

Compactness of C ϕ on H Ψ is equivalent to say ( [START_REF] Lefèvre | Composition operators on Hardy-Orlicz spaces[END_REF], Theorem 4.18) that:

ρ ϕ (h) := sup |ξ|=1 m {e it ; ϕ(e it ) ∈ W (ξ, h)} = o h→0 1 Ψ AΨ -1 (1/h)
for every A > 0 .

When Ψ = Ψ 2 , this means that ρ ϕ (h) = o (h A ) for every A > 0. Now, by [START_REF] Lefèvre | Nevanlinna counting function and Carleson function of analytic maps[END_REF], Theorem 4.2, this is also equivalent to say that:

(2.3) sup |ξ|=1 1 A[W (ξ, h)] W (ξ,h) N ϕ (w) dA(w) = o (h A ) for every A > 0 ,
where N ϕ is the Nevanlinna counting function of ϕ:

(2.4) N ϕ (w) = ϕ(z)=w (1 -|z| 2 ) , w ∈ ϕ(D) ,
and N ϕ (w) = 0 otherwise. But (2.2) is equivalent to the fact that for every ε > 0 there exists δ ε > 0 such that:

(2.5) 1 -|ϕ(z)| ≥ δ ε (1 -|z|) ε , ∀z ∈ D .
Since ϕ(0) = 0, we have |ϕ(z)| ≤ |z|, by Schwarz's lemma; hence one has

N ϕ (w) ≤ 2δ -1 ε (1 -|w|) 1/ε n ϕ (w). It follows that (since 1 -|w| ≤ h for w ∈ W (ξ, h)): 1 A[W (ξ, h)] W (ξ,h) N ϕ (w) dA(w) ≤ 2δ -1 ε h 1/ε 1 A[W (ξ, h)] W (ξ,h) n ϕ (w) dA(w) ,
which is o (h 1/ε ), uniformly for |ξ| = 1, by (1.7).

Remarks. 1) One may argue that compactness of C ϕ on H Ψ2 implies its compactness on B Ψ2 ([15], Proposition 4.1, or [START_REF] Li | Compact composition operators on Hardy-Orlicz and Bergman-Orlicz spaces[END_REF], Theorem 9). One may also use the forthcoming Corollary 3.2 saying that

C ϕ ∈ S p (H 2 ) implies that C ϕ ∈ S p (B 2 ).
2) To show the compactness of C ϕ on H Ψ2 , we used its compactness on D * twice. However, due to the fact that ε > 0 is arbitrary, we may replace o (h 1/ε ) by O (h 1/ε ); hence to end the proof, we only have to use (1.5), i.e. the boundedness of C ϕ on D * , instead of (1.7).

Note that (2.2) does not suffice to have compactness on H Ψ2 (in [START_REF] Lefèvre | Composition operators on Hardy-Orlicz spaces[END_REF], Proposition 5.5, we construct a Blaschke product satisfying (2.2)).

In the opposite direction, we have the following result.

Theorem 2.6 There exists a Schur function ϕ such that C ϕ is compact on H Ψ2 , but which is not even bounded on D * .

To prove this theorem, we first begin with the following key lemma. Lemma 2.7 There exists a constant κ 1 > 0 such that for any f ∈ H(D) having radial limits f * a.e. and which satisfies, for some α ∈ R:

(2.6) Im f (0) < α and f (D) ⊆ {z ∈ C ; 0 < Re z < π} ∪ {z ∈ C ; Im z < α},
we have, for all y ≥ α:

m {z ∈ T ; Im [f * (z)] ≥ y} ≤ κ 1 e α-y .
Proof. Suppose that f satisfies (2.6), and define

f 1 (z) = -if (z) + π 2 i -α. Then either Re [f 1 (z)] < 0, or -π 2 < Im [f 1 (z)] < π 2 for every z ∈ D. Therefore, defining h(z) = 1 + exp[f 1 (z)], we have h : D → H, that is Re [h(z)] > 0 for every z ∈ D. Finally define h 1 (z) = h(z) -i Im [h(0)].
Then h 1 : D → H and h 1 (0) ∈ R (and so h 1 (0) > 0). Kolmogorov's inequality yields that, for some absolute constant C 1 , one has, for every λ > 0:

(2.7) m {z ∈ T ; |h * 1 (z)| ≥ λ} ≤ C 1 h 1 (0) λ •
Observe that, since Im [f (0)] < α, we have Re [f 1 (0)] < 0, and then:

(2.8) |Im [h(0)]| < 1 and h 1 (0) = Re [h(0)] < 2.
Suppose now that, for y > α and z ∈ D, we have

Im [f (z)] > y; then exp[f 1 (z)] ∈ H, and |h(z)| ≥ | exp[f 1 (z)]| > e y-α
. Taking radial limits we get, up to a set of null Lebesgue-measure:

{z ∈ T ; Im [f * (z)] ≥ y} ⊆ {z ∈ T ; |h * (z)| ≥ e y-α }.
We consider two cases: e y-α ≥ 2 and e y-α < 2. When e y-α ≥ 2, then |h * (z)| ≥ e y-α yields:

|h * 1 (z)| ≥ e y-α -|Im [h(0)]| > e y-α -1 ≥ 1 2 e y-α ,
by the first part of (2.8). Then, using (2.7) and the second part of (2.8), we have:

m {z ∈ T ; Im [f * (z)] ≥ y} ≤ m {z ∈ T ; |h * 1 (z)| > (1/2) e y-α } ≤ 2 C 1 h 1 (0) e y-α ≤ 4C 1 e y-α ,
and, in this case, the lemma is proved, if one takes κ 1 ≥ 4C 1 . When e y-α < 2, then e α-y > 1/2, and, because:

m {z ∈ T ; Im [f * (z)] ≥ y} ≤ 1 < κ 1 e α-y ,
since κ 1 > 2, the lemma is proved. Now, we give a general construction of Schur functions with suitable properties.

Proposition 2.8 Let g : (0, ∞) → (0, ∞) be a continuous non-increasing function such that:

lim t→0 + g(t) = +∞,
and lim t→+∞ g(t) = 0.

Let h : (0, ∞) → (0, ∞] be a lower semicontinuous function such that M := sup{h(t) ; t ≥ π} < +∞ and consider the simply connected domain:

Ω = {x + iy ; x ∈ (0, ∞) and g(x) < y < g(x) + h(x)} . Let f : D → Ω ∪ {∞} be a conformal mapping from D onto Ω such that f(0) = π + i(g(π) + h(π)/2).
Then the symbol ϕ : D → D defined by ϕ(z) = exp[-f(z)], for every z ∈ D, satisfies, for some ε 0 ,k 0 > 0:

1) For all h ∈ (0, ε 0 ):

(2.9) m({z ∈ T ; |ϕ * (z)| > 1 -h}) ≤ k 0 exp -g(2h)
.

2) Assume that, for some r ∈ (0, ∞] and integers 0 ≤ n < N ≤ ∞, one has {h(t) ; t ≤ r} ⊆ (2 nπ, 2N π]. Then, for all z ∈ D, such that |z| > e -r , we have n ≤ n ϕ (z) ≤ N .

In particular, {z ∈ D ; |z| > e -r } ⊆ ϕ(D) ⊆ D \ {0}, when n ≥ 1.

Remarks.

1. When N = 1, the map ϕ is univalent. 2. When r = ∞ and n ≥ 1, we have ϕ(D) = D \ {0}.
3. With g(t) = 1/t, the operator C ϕ is compact on H Ψ2 , therefore belongs to all Schatten classes S p (H 2 ), p > 0.

4. When N < ∞, the operator C ϕ is bounded on the Dirichlet space. 5. When n ≥ 1, the operator C ϕ is not compact on the Dirichlet space (since the averages on the windows of the function n ϕ cannot uniformly vanish).

Proof of Proposition 2.8. We shall apply Lemma 2.7 with α = M + g(π).

Suppose that, for z ∈ T and 0 < h < 1, we have |ϕ

* (z)| > 1 -h. Then, if h is small enough, e -2h < 1 -h < |ϕ * (z)| = exp -Re [f * (z)] ,
and therefore 2h > Re [f * (z)]. But observe that f * (z) ∈ Ω ∪ {∞}, and so, if 2h > Re [f * (z)], we necessarily have Im [f * (z)] ≥ g(2h). Again, if h is small enough, we have y = g(2h) > α, and may apply the lemma to obtain:

m {z ∈ T ; |ϕ * (z)| > 1 -h} ≤ m {z ∈ T ; Im [f * (z)] ≥ g(2h)} ≤ κ 1 e α-g(2h) .
We get (2.9).

On the other hand, let Z ∈ D such that |Z| > e -r , we can write Z = e -x e iθ with x < r. We can find θ ′ i s such that g(x) < θ 1 < . . . < θ s < g(x) + h(x) and θ j ≡ θ[2π] with n ≤ s ≤ N . For each j, there exists a unique z j ∈ D, such that Re f(z j ) = x and Im f(z j ) = θ j ; hence ϕ(z j ) = Z. Moreover no other z ∈ D can satisfy ϕ(z) = Z. Hence n ϕ (Z) = s.

Proof of Theorem 2.6. As said before, if one takes g(t) = 1/t in Proposition 2.8, then C ϕ is compact on H Ψ2 and hence is in all Schatten classes S p (H 2 ), p > 0. On the other hand, if one choose also h(t) = 1/t, then, for every r > 0, {h(t) ; t ≤ r} = [1/r, ∞) and for |z| > e -r , we get that n ϕ (z) ≥ [1/(2πr)] (the integer part of 1/(2πr)). It follows that, for some constant c > 0, one has, with e -r = 1h:

1 A[W (ξ, h)] W (ξ,h) n ϕ (z) dA(z) ≥ c 1 log[1/(1 -h)] -→ h→0 ∞ .
Therefore, C ϕ is not bounded on D * , by (1.5).

Remarks. 1. Actually, as we may take g growing as we wish, the proof shows, using [START_REF] Lefèvre | Composition operators on Hardy-Orlicz spaces[END_REF], Theorem 4.18, that for every Orlicz function Ψ, one can find a Schur function ϕ such that C ϕ is not bounded on D * , though compact on the Hardy-Orlicz space H Ψ . 2. This construction also allows to produce a univalent map ϕ, with an arbitrary small Carleson function ρ ϕ (h) = sup |ξ|=1 m {e it ; ϕ * (e it ) ∈ W (ξ, h)} , and such that C ϕ is not compact on the Dirichlet space (note we cannot replace "compact" by "bounded" since any Schur function with a bounded valence is bounded on the Dirichlet space).

Indeed, take h(t) = 2π and g be C 1 : g(t) = 1/t for instance. We have N = 1 and so ϕ is univalent. Now it suffices to notice that the range of the curve Γ = e -x-ig(x) ; x ∈ (0, ∞) = t cos(1/ ln(t)), t sin(1/ ln(t)) ; t ∈ (0, 1) ⊆ D has a null area measure. The range of ϕ is D \ (Γ ∪ {0}) and for each w / ∈ Γ, we have n ϕ (w) = 1 Then, for h ∈ (0, 1), we have:

1 h 2 W (1,h) n ϕ (w) dA(w) = 1 h 2 W (1,h)\Γ dA(w) = 1 h 2 A[W (1, h) \ Γ] = 1 h 2 A[W (1, h)] ≈ 1 ,
and so C ϕ in not compact on D * , by (1.7).

Composition operators in Schatten classes

Characterization

In this section, we give a characterization of the membership in the Schatten classes of composition operators on D * . This characterization will be deduced from Luecking's one for composition operators on the Bergman space. Actually, we shall give it for weighted Dirichlet spaces D α, * . Boundedness and compactness has been characterized by B. McCluer and J. Shapiro in [START_REF] Mccluer | Angular derivatives and compact composition operators on the Hardy and Bergman spaces[END_REF] and, in other terms, by N. Zorboska in [START_REF] Zorboska | Composition operators on weighted Dirichlet spaces[END_REF].

Recall that for α > -1, the weighted Dirichlet space D α is the space of analytic functions f : D → C such that (3.1)

D |f ′ (z)| 2 (1 -|z| 2 ) α dA(z) < ∞ .
This is a Hilbert space for the norm given by:

(3.2) f 2 α = |f (0)| 2 + (α + 1) D |f ′ (z)| 2 (1 -|z| 2 ) α dA(z) < ∞ .
The standard Dirichlet space D corresponds to α = 0; the Hardy space H 2 to α = 1 and the standard Bergman space to α = 2. For more general weights, see [START_REF] Kellay | Compact composition operators on weighted Hilbert spaces of analytic functions[END_REF]. We denote by D α, * the subspace of the f ∈ D α such that f (0) = 0.

If ϕ is a Schur function, one defines its weighted Nevanlinna counting function N ϕ,α at w ∈ Ω := ϕ(D) as the number of pre-images of w with the weight (1 -|z|) α :

(3.3) N ϕ,α (w) = ϕ(z)=w (1 -|z| 2 ) α . For w ∈ D \ ϕ(D), we set N ϕ,α (w) = 0. One has N ϕ,1 = N ϕ and N ϕ,0 = n ϕ .
With this notation, recall the change of variable formula:

(3.4) D F [ϕ(z)] |ϕ ′ (z)| 2 (1 -|z| 2 ) α dA(z) = Ω F (w) N ϕ,α (w) dA(w) .
Denote by R n,j , n ≥ 0, 0 ≤ j ≤ 2 n -1, the Hastings-Luecking windows:

R n,j = z ∈ D ; 1 -2 -n ≤ |z| < 1 -2 -n-1 and 2jπ 2 n ≤ arg z < 2(j + 1)π 2 n .
We can now state.

Theorem 3.1 Let α > -1. Let ϕ be a Schur function and p > 0. Then C ϕ ∈ S p (D α, * ) if and only if:

(3.5) ∞ n=0 2 n -1 j=0 2 n(α+2) Rn,j N ϕ,α (w) dA(w) p/2 < ∞ .
If ϕ is univalent, (3.5) can be replaced by the purely geometric condition:

(3.6) ∞ n=0 2 n -1 j=0 2 n(α+2) A α (R n,j ∩ Ω) p/2 < ∞ ,
where A α is the weighted measure dA α (w) = (α + 1) (1 -|w| 2 ) α dA(w).

Remark. Of course, every operator in a Schatten class is compact, but we may note that condition (3.5) implies the compactness of C ϕ , by [START_REF] Zorboska | Composition operators on weighted Dirichlet spaces[END_REF], Theorem 1 (and [START_REF] Lefèvre | Some examples of compact composition operators on H 2[END_REF], Proposition 3.3).

Proof of Theorem 3.1. First, we compute C * ϕ C ϕ . Let us fix f and g in the Dirichlet space D α, * . We have:

(α + 1) D (C * ϕ C ϕ )(f ) ′ (z) g ′ (z) (1 -|z| 2 ) α dA(z) = f • ϕ, g • ϕ Dα, * = (α + 1) D (f ′ • ϕ)(z)(g ′ • ϕ)(z) |ϕ ′ (z)| 2 (1 -|z| 2 ) α dA(z).
By the change of variable formula, we get:

D (C * ϕ C ϕ )(f ) ′ (z)g ′ (z) (1 -|z| 2 ) α dA = D f ′ (w) g ′ w) N ϕ,α (w) dA(w) ,
which is equivalent to:

D (C * ϕ C ϕ )(f ) ′ (z) G(z) (1 -|z| 2 ) α dA(z) = D f ′ (w) G(w) N ϕ,α (w) dA(w)
for every function G belonging to the weighted Bergman space [START_REF] Zhu | Operator Theory in Function Spaces[END_REF], § 6.4.1), we obtain that for every z ∈ D:

B 2 α . That means that (C * ϕ C ϕ )(f ) ′ -f ′ .N ϕ,α /(1 -|w| 2 ) α is orthogonal to the weighted Bergman space B 2 α . But (C * ϕ C ϕ )(f ) ′ ∈ B 2 α . Hence (C * ϕ C ϕ )(f ) ′ is the orthogonal projection onto B 2 α of the function f ′ .N ϕ,α /(1 -|w| 2 ) α . Thus (see
(C * ϕ C ϕ )(f ) ′ (z) = (α + 1) D f ′ (w) (1 -wz) α+2 N ϕ,α (w) (1 -|w| 2 ) α (1 -|w| 2 ) α dA(w) = (α + 1) D f ′ (w) (1 -wz) α+2 dµ(w) = (α + 1) T µ (f ′ )(z) ,
where µ is the positive measure A with weight N ϕ,α and T µ is the Toeplitz operator on B 2 α is introduced in [START_REF] Luecking | Trace ideal criteria for Toeplitz operators[END_REF] (let us point out that α in [START_REF] Luecking | Trace ideal criteria for Toeplitz operators[END_REF] corresponds to -(α + 1) in our work).

In other words, introducing the map

∆(h) = h ′ , which is an isometry from D α, * onto B 2 α , we have ∆ • (C * ϕ C ϕ ) = T µ • ∆.
We have the following diagram:

D α, * ∆ C * ϕ Cϕ / / D α, * ∆ B 2 α Tµ / / B 2 α
Hence the approximation numbers of T µ (viewed as an operator on B 2 α ) and the ones of C * ϕ C ϕ (viewed as an operator on D α, * ) are the same. In particular, the membership in the Schatten classes are the same and the final result follows from the main theorem in [START_REF] Luecking | Trace ideal criteria for Toeplitz operators[END_REF]:

C ϕ ∈ S p (D α, * ) if and only if C * ϕ C ϕ ∈ S p/2 (D α, *
) and that holds if and only if:

∞ n=0 2 n -1 j=0 2 n(α+2) µ(R n,j ) p/2 < ∞ .
Hence C ϕ ∈ S p (D α, * ) if and only if:

∞ n=0 2 n -1 j=0 2 n(α+2) Rn,j N ϕ,α (w) dA(w) p/2 < ∞ ,
and that ends the proof of Theorem 3.1.

Remark. In the same way, we can obtain other characterizations for D α, * by using the ones for B 2 α given in [START_REF] Luecking | Composition operators belonging to the Schatten ideals[END_REF] and [START_REF] Zhu | Schatten class composition operators on weighted Bergman spaces of the disk[END_REF]:

C ϕ ∈ S p (B 2 α ) if and only if N ϕ,α+2 (z)/ log(1/|z|) α+2 ∈ L p/2 (λ), where dλ(z) = (1 -|z| 2 ) -2 dA(z) is the
Möbius invariant measure on D, and, when ϕ has bounded valence and p ≥ 2, if and only if

(1 -|z| 2 )/ 1 -|ϕ(z)| 2 ∈ L p(α+2)/2 (λ)
. Such a result can be found in [START_REF] Xu | Schatten-class composition operators on weighted Dirichlet spaces[END_REF].

Applications

We give several applications of the previous theorem.

Corollary 3.2 Let -1 < α ≤ β, p > 0, and ϕ be a Schur function. Then

C ϕ ∈ S p (D α, * ) implies that C ϕ ∈ S p (D β, * ). In particular, C ϕ ∈ S p (D * ) implies that C ϕ ∈ S p (H 2 ), which in turn implies that C ϕ ∈ S p (B 2 ). Proof. Assume that C ϕ ∈ S p (D α, * ). Then ∞ n=0 2 n -1 j=0 2 n(α+2) Rn,j N ϕ,α (w) dA(w) p/2 < ∞. Since, thanks to Schwarz's lemma, N ϕ,β (w) ≤ N ϕ,α (w)(1 -|w| 2 ) β-α , we have N ϕ,β (w) ≤ (2.2 -n ) β-α N ϕ,α (w) for w ∈ R n,j . It follows that ∞ n=0 2 n -1 j=0 2 n(β+2) Rn,j N ϕ,β (w) dA(w) p/2 < ∞ ,
and that proves Corollary 3.2.

It is known ( [START_REF] Lefèvre | Some examples of compact composition operators on H 2[END_REF]) that composition operators on H 2 separate Schatten classes, but the difficulty is that we must not only control the shape of ϕ(∂D), but also the parametrization t → ϕ(e it ), even if ϕ is univalent. In the case of the Dirichlet space, this difficulty disappears, because only the areas come into play, and we can easily prove the following result.

Theorem 3.3 The composition operators on D * separate Schatten classes, in the following sense. Let 0 < p 1 < ∞. Then, there exists a symbol ϕ such that:

C ϕ ∈ p>p1 S p (D * ) \ S p1 (D * ) .
Similarly, there exists a symbol ϕ such that:

C ϕ ∈ S p1 (D * ) \ p<p1 S p (D * ) .
In particular, for every 0 < p 1 < p 2 < ∞, there exists ϕ such that

C ϕ ∈ S p2 (D * ) \ S p1 (D * ).
Proof. Let (h n ) n≥1 , with 0 < h n < 1, be a sequence of real numbers with limit 0 to be adjusted, and J the Jordan curve formed by the segment [0, 1] and the north and (truncated) north-east sides of the curvilinear rectangles

{1 -2 -n ≤ |z| < 1 -2 -n-1 } × {0 ≤ arg z < 2 -n h n }.
Let Ω 0 be the interior of J and Ω = Ω 0 ∪ D(0, 1/8). Let ϕ : D → Ω be a Riemann map such that ϕ(0) = 0. Since ϕ is univalent and bounded, it defines a symbol on D * , and the necessary and sufficient condition (3.6) for membership in S p (D * ) reads:

(3.7) ∞ n=0 [4 n 4 -n h n ] p/2 = ∞ n=0 h n p/2 < ∞.
Indeed, it is clear that, for fixed n, the Hastings-Luecking windows R n,j satisfy:

R n,0 ∩ Ω = ∅; R n,j ∩ Ω = ∅ for 1 ≤ j < 2 n .
Therefore, only the Hastings-Luecking windows R n,0 matter. Since:

A(R n,0 ∩ Ω) = 1-2 -n ≤r<1-2 -n-1 , 0≤θ<2 -n hn r dr dθ ≈ 4 -n h n ,
we can test the criterion (3.7). Now, it is enough to take h n = (n + 1) -2/p1 to get:

C ϕ ∈ p>p1 S p (D * ) \ S p1 (D * ) .
Similarly, the choice h n = (n + 1) -2/p1 [log(n + 2)] -4/p1 , gives a symbol ϕ such that:

C ϕ ∈ S p1 (D * ) \ p<p1 S p (D * ) .
This ends the proof.

T. Carroll and C. Cowen ([3] proved, but only for α > 0, that there exist compact composition operators on D α which are in no Schatten class (see also [START_REF] Jones | Compact composition operators not in the Schatten classes[END_REF]). In the next result, we shall see that this still true for α = 0. Proof. It suffices to use the proof of Theorem 3.3 and to take, instead of the above h n , h n = 1/ ln(n + 2).

For the next application, which will be used in Section 4, we need to recall the definition of the cusp map χ, introduced in [START_REF] Lefèvre | Compact composition operators on Bergman-Orlicz spaces[END_REF], and later used, with a slightly different definition in [START_REF] Li | Estimates for approximation numbers of some classes of composition operators[END_REF]. Actually, we have to modify it slightly again in order to have χ(0) = 0. We first define:

χ 0 (z) = z -i iz -1 1/2 -i -i z -i iz -1 1/2 + 1
, then:

χ 1 (z) = log χ 0 (z), χ 2 (z) = - 2 π χ 1 (z) + 1, χ 3 (z) = a χ 2 (z)
, and finally:

χ(z) = 1 -χ 3 (z) ,
where a = 1 -2 π log( √ 2 -1) ∈ (1, 2) is chosen in order that χ(0) = 0. The image Ω of the (univalent) cusp map is formed by the intersection of the inside of the disk D a 2 , a 2 and the outside of the two disks D ia 2 , a 2 and D -ia 2 , a 2 .

Corollary 3.5 If χ is the cusp map, then C χ belongs to all Schatten classes S p (D * ), p > 0.

Proof. Since χ is univalent, χ(0) = 0, and Ω = χ(D) has finite area, we have χ ∈ D * . A little elementary geometry shows that, for some constant C, we have:

(3.8) w ∈ Ω, 0 < h < 1 and |w| ≥ 1 -h =⇒ |Im w| ≤ Ch 2 .
It follows (changing C if necessary) that R n,j ∩ Ω is contained in a rectangle of sizes 2 -n and C 4 -n and with area C 8 -n . Hence, for a given n, at most C of the Hastings-Luecking windows R n,j can intersect Ω. Therefore, the series in Theorem 3.1 reduces, up to constants, to the series:

∞ n=0 (4 n 8 -n ) p/2 = ∞ n=0 2 -np ,
which converges for every p > 0.

Logarithmic capacity and set of contact points

In view of the result of [START_REF] Gallardo-Gutiérrez | Exceptional sets and Hilbert-Schmidt composition operators[END_REF] mentioned in the introduction, if Cap K > 0, there is no hope to find a symbol ϕ such that E ϕ = K and C ϕ is Hilbert-Schmidt on D * . But as was later proved in [START_REF] El-Fallah | Level sets and composition operators on the Dirichlet space[END_REF], Cap K > 0 is the only obstruction. We can improve on the results from [START_REF] El-Fallah | Level sets and composition operators on the Dirichlet space[END_REF] as follows: our composition operator is not only Hilbert-Schmidt, but in any Schatten class; moreover, we can replace E ϕ = K by E ϕ = E ϕ (1) = K. Theorem 4.1 For every compact set K of the unit circle T with logarithmic capacity Cap K = 0, there exists a Schur function ϕ with the following properties:

1) ϕ ∈ A(D) ∩ D * := A, the "Dirichlet algebra";

2)

E ϕ = E ϕ (1) = K; 3) C ϕ ∈ p>0 S p (D * ).
In fact, the approximation numbers of

C ϕ satisfy a n (C ϕ ) ≤ a exp(-b √ n).
This theorem actually results of the particular following case and the properties of the cusp map seen in Section 3.2. Theorem 4.2 For every compact set K ⊆ ∂D of logarithmic capacity Cap K = 0, there exists a Schur function q ∈ A(D) ∩ D * which peaks on K and such that the composition operator C q : D * → D * is bounded (and even Hilbert-Schmidt).

Recall that a function q ∈ A(D), the disk algebra, is said to peak on a compact subset K ⊆ ∂D (and is called a peaking function ) if:

q(z) = 1 if z ∈ K ; |q(z)| < 1 if z ∈ D \ K .
Proof of Theorem 4.1. We simply take for ϕ the composed map ϕ = χ • q, where χ is the cusp map and q our peaking function. Recall that χ ∈ A(D) and that χ peaks on {1}. We take advantage of this fact by composing with q, for which C q : D * → D * is bounded as well as C χ (since χ is univalent). We clearly have ϕ ∈ A(D), ϕ(z) = χ(1) = 1 for z ∈ K, and |ϕ(z)| < 1 for z / ∈ K, since then |q(z)| < 1. Therefore E ϕ (1) = K. Moreover, C ϕ being bounded on D * , we have in particular ϕ = C ϕ (z) ∈ D * . Since C ϕ = C q • C χ , we get 3), by Corollary 3.5.

In [START_REF] Lefèvre | Approximation numbers of composition operators on the Dirichlet space[END_REF], we prove that a n (C χ ) ≤ a exp(-b √ n). Since a n (C ϕ ) ≤ C q a n (C χ ), by the ideal property of approximation numbers, this ends the proof of Theorem 4.1.

In turn, the proof of Theorem 4.2 relies on the following crucial lemma. Lemma 4.3 Let K ⊆ ∂D be a compact set such that Cap K = 0. Then, there exists a function U : D → R + ∪ {∞}, such that:

1) U (z) = ∞ if and only if z ∈ K; 2) U ≥ 1 on D; 3) U is continuous on D \ K, harmonic in D and D |∇U | 2 dA < ∞; 4) lim z→K, z∈D U (z) = ∞; 5) the conjugate function V = Ũ is continuous on D \ K.
Proof of Theorem 4.2. Taking this lemma for granted, let us end the proof of the theorem. We set f = U + iV , a = e -1/f (0) and q = ϕ a • e -1/f , where ϕ a (z) = z-a 1-āz . In view of the third and fourth items of the lemma, we have q ∈ A(D). Since U ≥ 1, Lemma 2.4 shows that C q is Hilbert-Schmidt on D * . Moreover, for z ∈ K, one has f (z) = ∞ and hence q(z) = 1 since ϕ a (1) = 1 because a ∈ R (since f (0) = U (0)). On the other hand, when z / ∈ K, one has |f (z)| < ∞ and hence |q(z)| < 1. Therefore q peaks on K.

Proof of Lemma 4.3. This proof is strongly influenced by that of Theorem III, page 47, in [START_REF] Kahane | Ensembles parfaits et séries trigonométriques[END_REF]. Let: For 0 < ε < 1/2, let K ε = {z ∈ T ; dist (z, K) ≤ ε}, µ ε its equilibrium measure, and U ε the logarithmic potential of µ ε , that is:

(4.1) L(z) = log e 1 -z = P (z) + i Q(z), with 
P (z) = log e |1 -z| and Q(z) = -arg(1 -z), |Q(z)| ≤ π 2 , z ∈ D \ {1} ,
U ε (z) = Kε log e |z -w| dµ ε (w) ,
that we could as well write (since K ε ⊆ T):

U ε (z) = Kε P (z w) dµ ε (w) .
Let us set:

(4.2) f ε (z) = Kε L(z w) dµ ε (w) = U ε (z) + iV ε (z) , with V ε (z) = Kε Q(z w) dµ ε (w) .
Then, if I ε is the energy of µ ε , one has (see [START_REF] Ross | The classical Dirichlet space, Recent advances in operatorrelated function theory[END_REF], Section 4)

I ε = 1+ ∞ n=1 | µε(n)| 2 n
, where µ ε (n) = T w n dµ ε (w) is the n-th Fourier coefficient of µ ε , and:

(4.3) f ε ∈ D and f ε 2 D = I ε . Note that f ε D ≥ 1.
We claim that there exist δ > 0 and 0 < r < 1 such that:

(4.4) z ∈ D and dist (z, K) ≤ δ =⇒ U ε (rz) ≥ I ε /2
Indeed, let P a (t) = 

(4.5) U ε (z) = π -π U ε (e it ) P z (t) dt 2π .
Let now δ ≤ ε/4, to be adjusted later, and take 1δ ≤ r < 1. Suppose that dist(z, K) ≤ δ, with z ∈ D, and let u ∈ K such that |z -u| ≤ ε/4. Note that then |rz -u| ≤ (1r) + |z -u| ≤ ε/2. It follows from (4.5) that:

I ε -U ε (r z) = π -π [I ε -U ε (e it )] P rz (t) dt 2π
(it is useful to recall that U ε (z) ≤ I ε for every z ∈ C). Set:

J 1 =
|e it -rz|≤ε/2 For the integral J 1 , we have:

|e it -u| ≤ |e it -rz| + |rz -u| ≤ ε ;
therefore e it ∈ K ε . Since U ε = I ε Lebesgue-almost everywhere on K ε , by Frostman's Theorem, we get J 1 = 0.

For the integral J 2 , we have:

P rz (t) ≤ 2(1 -r |z|) (ε/2) 2 ≤ 2 (1 -r) + r(1 -|z|) (ε/2) 2 ≤ 4δ (ε/2) 2 = 16δ ε 2 ;
hence (since U ε (e it ) ≥ 0):

J 2 ≤ 16δ ε 2 I ε .
Therefore, if we choose 0 < δ ≤ ε 2 /32, we get:

0 ≤ I ε -U ε (r z) ≤ I ε /2 ,
which gives (4.4). Now, as Cap K = 0, we know from (1.9) that lim ε→0 + I ε = ∞, and we can adjust a sequence ε j → 0 + so that: (4.6)

I εj ≥ 4 j 6 .

Using (4.4), we find two sequences (δ j ) j and (r j ) j , with 0 < δ j → 0 and 1 > r j → 1, such that, for every j ≥ 1, (4.7)

z ∈ D and dist (z, K) ≤ δ j =⇒ U εj (r j z) ≥ I εj /2.

Finally, let us set:

(4.8) f j (z) = f εj (r j z) and (4.9)

f = U + iV = 1 + ∞ j=1 j -2 f j f j D •
The series defining f is absolutely convergent in D. Note that f (0) is real. We now have: 1) f is continuous on D \ K. Indeed, let z ∈ D\K. Then, dist (z, K) > 0 and there exists a neighbourhood ω of z in D, an integer j 0 = j 0 (z) and a positive number δ > 0 such that: w ∈ ω and j ≥ j 0 =⇒ dist (r j w, K εj ) ≥ δ.

We then have, for w ∈ ω and j ≥ j 0 : 3) lim z→K,z∈D U (z) = ∞. Indeed, let A > 0. Take an integer j ≥ A and suppose that dist (z, K) ≤ δ j . Then, using the positivity of the U ε k 's as well as (4.3), (4.6) and (4.7), we have:

U (z) ≥ j -2 U εj (r j z) f εj D ≥ j -2 I εj /2 I εj ≥ j ≥ A.
This ends the proof of our claims, and of Lemma 4.3.

To end this paper, let us mention the following version of the classical Rudin-Carleson Theorem. Though it is not the main subject of this paper, it has the same flavor as Theorem 4.2. We do not give a proof, but only mention that it can be obtained by mixing the proofs of Theorems III.E.2 and III.E.6 in [START_REF] Wojtaszczyk | Banach spaces for analysts[END_REF] (see pages 181-187).

Theorem 4.4 Let K be a compact subset of T with Cap K = 0. Given any continuous strictly positive function s ∈ C(T) equal to 1 on K, we can find, for every h ∈ C(K) and every ε > 0, a function f ∈ A(D) ∩ D such that f |K = h and:

|f (θ)| ≤ (1 + ε) h ∞ s(θ) , ∀θ ∈ T ; f D ≤ (1 + ε) h ∞ .

Lemma 2 . 2

 22 Let ϕ ∈ D * be an analytic self-map of D. Then C ϕ is Hilbert-Schmidt on D * if and only if

Proposition 2 . 3

 23 There exists an analytic self-map σ of D, belonging to D * and to the disk algebra A(D), such that σ(1) = 1 and |σ(ξ)| < 1 for ξ ∈ ∂D \ {1} and such that the associated composition operator C σ is Hilbert-Schmidt on D * .

Theorem 3 . 4

 34 There exists a Schur function ϕ such that C ϕ is compact on D * , but in no Schatten class S p (D * ).

γ n z n , with γ n = 1 /

 1 (2 |n|) if n = 0 , and γ 0 = 1 .

  |f εj (w)| = Kε j log e r j wu dµ εj (u)since µ εj is a probability measure supported by K εj . Therefore, the series defining f is normally convergent on ω since its general term is dominated by j -2 C on ω. Since the functions f j are continuous on D, this shows that f is continuous at z.2) U (z) := Re f (z) ≥ 1.This is obvious since, for every z ∈ D,U ε (z) := Re f ε (z) =Kε log e |z -u| dµ ε (u) ≥ 0 .

  1-|a| 2 |e it -a| 2 be the Poisson kernel at a ∈ D. Since U ε is harmonic in D and integrable on T ([4], Proposition 19.5.2), one has, for every z ∈ D:
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