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We give examples of results on composition operators connected with lens maps. The first two concern the approximation numbers of those operators acting on the usual Hardy space H 2 . The last ones are connected with Hardy-Orlicz and Bergman-Orlicz spaces H ψ and B ψ , and provide a negative answer to the question of knowing if all composition operators which are weakly compact on a non-reflexive space are norm-compact.

Introduction

We first recall the context of this work, which appears as a continuation of [START_REF] Lefèvre | Some examples of compact composition operators on H 2[END_REF], [START_REF] Lefèvre | Compact composition operators on H 2 and Hardy-Orlicz spaces[END_REF], [START_REF] Lefèvre | Composition operators on Hardy-Orlicz spaces[END_REF], [START_REF] Lefèvre | Compact composition operators on Bergman-Orlicz spaces[END_REF] and [START_REF] Li | On approximation numbers of composition operators[END_REF].

Let D be the open unit disk of the complex plane and H(D) be the space of holomorphic functions on D. To every analytic self-map ϕ : D → D (also called Schur function), a linear map C ϕ : H(D) → H(D) can be associated by C ϕ (f ) = f • ϕ. This map is called the composition operator of symbol ϕ. A basic fact of the theory ( [START_REF] Shapiro | Composition Operators and Classical Function Theory, Universitext[END_REF], page 13, or [START_REF] Duren | Theory of H p -spaces[END_REF], Theorem 1.7) is Littlewood's subordination principle which allows to show that every composition operator induces a bounded linear map from the Hardy space H p into itself, 1 ≤ p < ∞.

In this work, we are specifically interested in a one-parameter family (a semigroup) of Schur functions: lens maps ϕ θ , 0 < θ < 1, whose definition is given below. They turn out to be very useful in the general theory of composition operators because they provide non trivial examples (for example, they generate compact and even Hilbert-Schmidt operators on the Hardy space H 2 [START_REF] Shapiro | Composition Operators and Classical Function Theory, Universitext[END_REF], page 27). The aim of this work is to illustrate that fact by new examples.

We show in Section 2 that, as operators on H 2 , the approximation numbers of C ϕ θ behave as e -c θ √ n . In particular, the composition operator C ϕ θ is in all Schatten classes S p , p > 0. In Section 3, we show that, when one "spreads" these lens maps, their approximation numbers become greater, and the associated composition operator C φθ is in S p if and only if p > 2θ. In Section 4, we answer to the negative a question of H.-O. Tylli: is it true that every weakly compact composition operator on a non-reflexive Banach function space is actually compact ? We show that there are composition operators on a (non-reflexive) Hardy-Orlicz spaces, which are weakly compact and Dunford-Pettis, though not compact and that there are composition operators on a non-reflexive Bergman-Orlicz space which are weakly compact but not compact. We also show that there are composition operators on a non-reflexive Hardy-Orlicz space which are weakly compact but not Dunford-Pettis.

We give now the definition of lens maps (see [START_REF] Shapiro | Composition Operators and Classical Function Theory, Universitext[END_REF], page 27).

Definition 1.1 (Lens maps) The lens map ϕ θ : D → D with parameter θ, 0 < θ < 1, is defined by:

(1.1) ϕ θ (z) = (1 + z) θ -(1 -z) θ (1 + z) θ + (1 -z) θ , z ∈ D.
In a more explicit way, ϕ θ is defined as follows. Let H be the open right half-plane, and T : D → H be the (involutive) conformal mapping given by (1.2)

T (z) = 1 -z 1 + z •
We denote by γ θ the self-map of H defined by (1.3) γ θ (w) = w θ = e θ log w , where log is the principal value of the logarithm and finally ϕ θ : D → D is defined by (1.4)

ϕ θ = T -1 • γ θ • T.
Those lens maps form a continuous curve of analytic self-maps from D into itself, and an abelian semi-group for the composition of maps since we obviously have from (1.4) and the rules on powers that ϕ θ (0) = 0 and:

(1.5) ϕ θ • ϕ θ ′ = ϕ θ ′ • ϕ θ = ϕ θθ ′ .

Approximation numbers of lens maps

For every operator A : H 2 → H 2 , we denote by

a n (A) = inf rank R<n A -R , n = 1, 2, . . .
its n-th approximation number. We refer to [START_REF] Carl | Entropy, Compactness and the Approximation of Operators[END_REF] for more details on those approximation numbers.

Recall ( [START_REF] Zhu | Operator Theory in Function Spaces[END_REF], page 18) that the Schatten class S p on H 2 is defined by

S p = {A : H 2 → H 2 ; (a n (A)) n ∈ ℓ p }, p > 0.
S 2 is the Hilbert-Schmidt class and the quantity

A p = ∞ n=1 (a n (A)) p 1/p is a Banach norm on S p for p ≥ 1.
We can now state the following theorem: Theorem 2.1 Let 0 < θ < 1 and ϕ θ be the lens map defined in (1.1). There are positive constants a, b, a ′ , b ′ depending only on θ such that

(2.1) a ′ e -b ′ √ n ≤ a n (C ϕ θ ) ≤ a e -b √ n .
In particular, C ϕ θ lies in all Schatten classes S p , p > 0.

The lower bound in (2.1) was proved in [START_REF] Li | On approximation numbers of composition operators[END_REF], Proposition 6.3. The fact that C ϕ θ lies in all Schatten classes was first proved in [START_REF] Shapiro | Compact, nuclear, and Hilbert-Schmidt composition operators on H 2[END_REF] under a qualitative form (see the very end of that paper).

The upper bound will be obtained below as a consequence of a result of O. G. Parfenov ([19]). However, an idea of infinite divisibility, which may be used in other contexts, leads to a simpler proof, though it gives a worse estimate in (2.1):

√ n is replaced by n 1/3 . We shall begin by giving this proof, because it is quite short. It relies on the semi-group property (1.5) and on an estimate of the Hilbert-Schmidt norm C ϕα 2 in terms of α, as follows: Lemma 2.2 There exist numerical constants K 1 , K 2 such that:

(2.2) K 1 1 -α ≤ C ϕα 2 ≤ K 2 1 -α , for all 0 < α < 1.
In particular, we have

(2.3) a n (C ϕα ) ≤ K 2 √ n(1 -α) • Proof. The relation (2.3) is an obvious consequence of (2.2) since n a n (C ϕα ) 2 ≤ n j=1 a j (C ϕα ) 2 ≤ ∞ j=1 a j (C ϕα ) 2 = C ϕα 2 2 ≤ K 2 2 (1 -α) 2 •
For the first part, let a = cos(απ/2) = sin((1 -α)π/2) ≥ 1 -α and let σ = T (m) (m is the normalized Lebesgue measure dm(t) = dt/2π on the unit circle) be the probability measure carried by the imaginary axis which satisfies:

H f dσ = ∞ -∞ f (iy) dy π(1 + y 2 )
• By definition, T , defined in (1.2), is a unitary operator from H 2 (D, m) into H 2 (H, σ), and we easily obtain, setting γ(y) = γ α (iy) = e i(π/2)α sign (y) |y| α (where sign is the sign of y and γ α is defined in (1.3)), that (see [START_REF] Shapiro | Composition Operators and Classical Function Theory, Universitext[END_REF], section 2.3):

C ϕα 2 2 = T dm 1 -|ϕ α | 2 = H dσ 1 -1-γ 1+γ 2 = H |1 + γ| 2 4 Re γ dσ = +∞ -∞ |1 + γ(y)| 2 4a |y| α dy π(1 + y 2 ) ≤ K 1 -α +∞ 0 1 + y 2α y α dy 1 + y 2 = 2K 1 -α +∞ 0 y α 1 + y 2 dy ≤ 4K (1 -α) 2 ,
where K is a numerical constant. This gives the upper bound in (2.2) and the lower one is obtained similarly.

We can now finish the first proof of Theorem 2.1. Let k be a positive integer and let α k = θ 1/k , so that α k k = θ. Now use the well-known sub-multiplicativity a p+q-1 (vu) ≤ a p (v) a q (u) of approximation numbers ( [START_REF] Pisier | The volume of convex bodies and Banach space geometry[END_REF], page 61), as well as the semi-group property (1.5) (which implies

C ϕ θ = C k ϕα k
), and (2.3). We see that:

a kn (C ϕ θ ) = a kn (C k ϕα k ) ≤ a n (C ϕα k ) k ≤ K 2 (1 -α k ) √ n k .
Observe that

1 -α k ≥ 1 -α k k k = 1 -θ k •
We then get, c = c θ denoting a constant which only depends on θ:

a kn (C ϕ θ ) ≤ k c √ n k .
Set d = c/e and take k = d √ n, ignoring the questions of integer part. We obtain:

a dn 3/2 (C ϕ θ ) ≤ e -k = e -d √ n .
Setting N = dn 3/2 , we get

(2.4) a N (C ϕ θ ) ≤ a e -bN 1/3
for an appropriate value of a and b and for any integer N ≥ 1. This ends our first proof, with an exponent slightly smaller that the right one (1/3 instead of 1/2), yet more than sufficient to prove that C ϕ θ ∈ ∩ p>0 S p .

Remark. Since the estimate (2.3) is rather crude, it might be expected that, using (2.4), and iterating the process, we could obtain a better one. This is not the case, and this iteration leads to (2.4) and the exponent 1/3 again (with different constants a and b).

Proof of Theorem 2.1. This proof will give the correct exponent 1/2 in the upper bound. Moreover, it works more generally for Schur functions whose image lies in polygon inscribed in the unit disk. This upper bound appears, in a different context and under a very cryptic form, in [START_REF] Parfenov | Estimates of the singular numbers of the Carleson embedding operator[END_REF]. First note the following simple lemma.

Lemma 2.3 Suppose that a, b ∈ D satisfy |a-b| ≤ M min(1 -|a|, 1 -|b|)
, where M is a constant. Then:

d(a, b) ≤ M √ M 2 + 1 := χ < 1.
Here d is the pseudo-hyperbolic distance defined by:

d(a, b) = a -b 1 -ab a, b ∈ D.
Proof. Set δ = min(1 -|a|, 1 -|b|). We have the identity

1 d 2 (a, b) -1 = (1 -|a| 2 )(1 -|b| 2 ) |a -b| 2 ≥ (1 -|a|)(1 -|b|) |a -b| 2 ≥ δ 2 M 2 δ 2 = 1 M 2 ,
hence the lemma.

The second lemma gives an upper bound for a N (C ϕ ). In this lemma, κ is a numerical constant, S(ξ, h) the usual pseudo-Carleson window centered at ξ ∈ T (where T = ∂D is the unit circle) and of radius h (0 < h < 1), defined by:

(2.5) S(ξ, h) = {z ∈ D ; |z -ξ| ≤ h},
and m ϕ is the pull-back measure of m, the normalized Lebesgue measure on T, by ϕ * . Recall that if f ∈ H(D), one sets f r (e it ) = f (re it ) for 0 < r < 1 and, if the limit exists m-almost everywhere, one sets:

(2.6) f * (e it ) = lim r→1 -f (re it ). Actually, we shall do write f instead of f * . Recall that a measure µ on D is called a Carleson measure if there is a constant c > 0 such that µ S(ξ, h) ≤ c h for all ξ ∈ T. Carleson's embedding theorem says that µ is a Carleson measure if and only if the inclusion map from H 2 into L 2 (µ) is bounded (see [START_REF] Duren | Theory of H p -spaces[END_REF], Theorem 9.3, for example).

Lemma 2.4 Let B be a Blaschke product with less than N zeroes (each zero being counted with its multiplicity). Then, for every Schur function ϕ, one has:

(2.7) a 2 N := a N (C ϕ ) 2 ≤ κ 2 sup 0<h<1,ξ∈T 1 h S(ξ,h) |B| 2 dm ϕ ,
for some universal constant κ > 0.

Proof. The subspace

BH 2 is of codimension ≤ N -1. Therefore, a N = c N (C ϕ ) ≤ C ϕ |BH 2 ,
where the c N 's are the Gelfand numbers (see [START_REF] Carl | Entropy, Compactness and the Approximation of Operators[END_REF]), and where we used the equality a N = c N occurring in the Hilbertian case (see [START_REF] Carl | Entropy, Compactness and the Approximation of Operators[END_REF]). Now, since Bf H 2 = f H 2 for any f ∈ H 2 , we have:

C ϕ |BH 2 2 = sup f H 2 ≤1 T |B • ϕ| 2 |f • ϕ| 2 dm = sup f H 2 ≤1 D |B| 2 |f | 2 dm ϕ = R µ 2 ,
where µ = |B| 2 m ϕ and where R µ :

H 2 → L 2 (µ) is the restriction map. Of course, µ is a Carleson measure for H 2 since µ ≤ m ϕ . Now, Carleson's em- bedding theorem says us that R µ 2 ≤ κ 2 sup 0<h<1,ξ∈T µ[S(ξ,h)] h
(see [START_REF] Duren | Theory of H p -spaces[END_REF], Remark after the proof of Theorem 9.3, at the top of page 163; actually, in that book, Carleson's windows W (ξ, h) are used instead of pseudo-Carleson's windows S(ξ, h), but that does not matter, since

W (ξ, h) ⊆ S(ξ, 2h): if r ≥ 1 -h and |t -t 0 | ≤ h, then |re it -e it0 | ≤ |re it -e it | + |e it -e it0 | ≤ 2h). That ends the proof of Lemma 2.4.
The following lemma takes into account the behaviour of ϕ θ (e it ), and will be useful to us in Section 3 as well. The notation u(t) ≈ v(t) means that a u(t) ≤ v(t) ≤ b u(t), for some positive constants a, b. t) , with -π ≤ t ≤ π, and -π ≤ A(t) ≤ π. Then, for 0 ≤ |t|, |t ′ | ≤ π/2, one has:

Lemma 2.5 Set γ(t) = ϕ θ (e it ) = |γ(t)| e iA(
(2.8) |1 -γ(t)| ≈ 1 -|γ(t)| ≈ |t| θ and |γ(t) -γ(t ′ )| ≤ K |t -t ′ | θ .
Moreover, we have for |t| ≤ π/2:

(2.9)

A(t) ≈ |t| θ and A ′ (t) ≈ |t| θ-1 .
Proof. First, recall that

ϕ θ (z) = (1 + z) θ -(1 -z) θ (1 + z) θ + (1 -z) θ , so that ϕ θ (z) = ϕ θ (z) and ϕ θ (-z) = -ϕ θ (z). It follows that γ(-t) = γ(t) and γ(t + π) = -γ(t)
, so that we may assume 0 ≤ t, t ′ ≤ π/2. Then, we have more precisely, setting c = e -iθπ/2 , s = sin(θπ/2) and τ = tan(t/2) θ :

γ(t) = (cos t/2) θ -e -iθπ/2 (sin t/2) θ (cos t/2) θ + e -iθπ/2 (sin t/2) θ = 1 -cτ 1 + cτ = 1 -τ 2 |1 + cτ | 2 + 2isτ |1 + cτ | 2 ,
after a simple computation, since (1 + e it ) θ = e itθ/2 (2 cos t/2) θ and (1 -e it ) θ = e -iθπ/2 e itθ/2 (2 sin t/2) θ . Note by the way that

ϕ θ (1) = 1 ; ϕ θ (i) = i tan(θπ/4) ; ϕ θ (-1) = -1 ; ϕ θ (-i) = -i tan(θπ/4). Now, observe that 2 ≥ |1 + cτ | ≥ Re (1 + cτ ) ≥ 1 and therefore that |1 -γ(t)| = 2cτ 1 + cτ ≈ τ ≈ t θ ,
and similarly for

1 -|γ(t)| since 1 -|γ(t)| 2 = 4(Re c) τ |1+cτ | 2 .
The relation (2.8) clearly follows. To prove (2.9), we just have to note that, for 0 ≤ t ≤ π/2, we have

A(t) = arctan 2sτ 1-τ 2 •
Now, we prove Theorem 2.1 in the following form (in which q = q θ denotes a positive constant smaller than one), which is clearly sufficient.

(2.10)

a 4N 2 +1 ≤ Kq N .
The proof will come from an adequate choice of a Blaschke product of length 4N 2 , with zeroes on the curve

γ(t) = ϕ θ (e it ), -π ≤ t ≤ π. Let t k = π2 -k and p k = γ(t k ), with 1 ≤ k ≤ N ,
so that the points p k are all in the first quadrant. We reflect them through the coordinate axes, setting:

q k = p k , r k = -p k , s k = -q k , 1 ≤ k ≤ N.
Let now B be the Blaschke product having a zero of order N at each of the points p k , q k , r k , s k , namely:

B(z) = N k=1 z -p k 1 -p k z • z -q k 1 -q k z • z -r k 1 -r k z • z -s k 1 -s k z N .
This Blaschke product satisfies, by construction, the symmetry relations:

(2.11)

B(z) = B(z) , B(-z) = B(z).
Of course, |B| = 1 on the boundary of D, but |B| is small on a large portion of the curve γ, as expressed by the following lemma.

Lemma 2.6 For some constant χ = χ θ < 1, the following estimate holds:

(2.12)

t N ≤ t ≤ t 1 =⇒ |B(γ(t))| ≤ χ N . Proof. Let t N ≤ t ≤ t 1 and k such that t k+1 ≤ t ≤ t k . Let B k (z) = z-p k 1-p k z .
Then, with help of Lemma 2.5, we see that the assumptions of Lemma 2.3 are satisfied with a = γ(t)

and b = γ(t k ), since |t -t k | ≤ t k -t k+1 = π2 -k-1 , so that min(1 -|a|, 1 -|b|) ≈ t θ k ≈ 2 -kθ
and hence, for some constant M :

|a -b| ≤ K |t -t k | θ ≤ K2 -kθ ≤ M min(1 -|a|, 1 -|b|) .
We therefore have, by definition, and by Lemma 2.3, where we set χ = M/ √ M 2 + 1:

|B k (γ(t))| = d(γ(t), p k ) ≤ χ < 1.
It then follows from the definition of B that:

|B(γ(t))| ≤ |B k (γ(t))| N ≤ χ N ,
and that ends the proof of Lemma 2.6. Now fix ξ ∈ T and 0 < h ≤ 1. By interpolation, we may assume that h = 2 -nθ . By symmetry, we may assume that Re ξ ≥ 0 and Re γ(t) ≥ 0, i.e. |t| ≤ π/2. Then, since ϕ θ (D) is contained in the symmetric angular sector of vertex 1 and opening θπ < π, there is a constant

K > 0 such that |1 - γ(t)| ≤ K(1 -|γ(t)|).
The only pseudo-windows S(ξ, h) giving an integral not equal to zero in the estimation (2.7) of Lemma 2.4 satisfy |ξ -1| ≤ (K + 1)h.

Indeed, suppose that |γ(t) -ξ| ≤ h. Then 1 -|γ(t)| ≤ |γ(t) -ξ| ≤ h and |1 -γ(t)| ≤ K(1 -|γ(t)|) ≤ Kh. If |ξ -1| > (K + 1)h, we should have |γ(t) -ξ| ≥ |ξ -1| -|γ(t) -1| > (K + 1)h -Kh = h, which is impossible. Now,
for such a window, we have by definition of m ϕ : To finish the discussion, we separate two cases. 1) If n ≥ N , we simply majorize |B| by 1. We set q 1 = 2 θ-1 < 1 and get:

S(ξ,h) |B| 2 dm ϕ θ = |γ(t)-ξ|≤h |B(γ(t))| 2 dt 2π ≤ |γ(t)-1|≤(K+2)h |B(γ(t))| 2 dt 2π ≤ |t|≤Dtn |B(γ(t))| 2 dt 2π def = I h , since |γ(t) -1| ≤ |γ(t) -ξ| + |ξ -1| ≤ h + (K + 1)
1 h I h ≤ 1 h Dtn -Dtn |B(γ(t))| 2 dt 2π ≤ 2Dt n 2πh = Dq n 1 ≤ D q N 1 .
2) If n ≤ N -1, we write:

1 h I h = 2 h DtN 0 |B(γ(t))| 2 dt 2π + 2 h Dtn DtN |B(γ(t))| 2 dt 2π := J N + K N .
The term J N is estimated above:

J N ≤ D q N 1 .
The term K N is estimated through Lemma 2.6, which gives us:

K N ≤ 2 nθ 2Dt n 2π χ 2N ≤ D χ 2N ,
since t n 2 nθ ≤ π, due to the fact that θ < 1.

If we now apply Lemma 2.4 with q = max(q 1 , χ 2 ) and with N changed into 4N 2 + 1, we obtain (2.10), by changing the value of the constant K once more. This ends the proof of Theorem 2.1. Theorem 2.1 has the following consequence (as in [START_REF] Shapiro | Composition Operators and Classical Function Theory, Universitext[END_REF], page 29).

Proposition 2.7 Let ϕ be a univalent Schur function and assume that ϕ(D) contains an angular sector centered on the unit circle and with opening θπ,

0 < θ < 1. Then a n (C ϕ ) ≥ a e -b
√ n , n = 1, 2, . . ., for some positive constants a and b, depending only on θ.

Proof. We may assume that this angular sector is centered at 1. By hypothesis, ϕ(D) contains the image of the "reduced" lens map defined by φθ (z) = ϕ θ ((1 + z)/2). Since ϕ is univalent, there is a Schur function u such that φθ = ϕ • u.

Hence C φθ = C ϕ • C u and a n (C φθ ) ≤ C u a n (C ϕ ). Theorem 2.
1 gives the result, since the calculations for φθ are exactly the same as for ϕ θ (because they are equivalent as z tends to 1).

The same is true if ϕ is univalent and ϕ(D) contains a polygon with vertices on ∂D.

Spreading the lens map

In [START_REF] Lefèvre | Some examples of compact composition operators on H 2[END_REF], we studied the effect of the multiplication of a Schur function ϕ by the singular inner function M (z) = e -1+z 1-z , and observed that this multiplication spreads the values of the radial limits of the symbol and lessens the maximal occupation time for Carleson windows. In some cases this improves the compactness or membership to Schatten classes of C ϕ . More precisely, we proved the following result. 

2 = ϕ 1 M such that |ϕ * 1 | = |ϕ * 2 | and C ϕ1 : H 2 → H 2 is not compact, but C ϕ2 : H 2 → H 2 is in the Schatten class S p .
Here, we will meet the opposite phenomenon: the symbol ϕ 1 will have a fairly big associated maximal function ρ ϕ1 , but will belong to all Schatten classes since it "visits" a bounded number of windows (meaning that there exists an integer J such that, for fixed n, at most J of the W n,j are visited by ϕ * (e it )). The spread symbol will have an improved maximal function, but will visit all windows, so that its membership in Schatten classes will be degraded. More precisely, we will prove that Theorem 3.2 Fix 0 < θ < 1. Then there exist two Schur functions ϕ 1 and ϕ 2 such that:

1) C ϕ1 : H 2 → H 2 is in all Schatten classes S p , p > 0, and even

a n (C ϕ1 ) ≤ a e -b √ n ; 2) |ϕ * 1 | = |ϕ * 2 |; 3) C ϕ2 ∈ S p if and only if p > 2θ; 4) a n (C ϕ2 ) ≤ K (log n/n) 1/2θ , n = 2, 3, . . ..
Of course, it would be better to have a good lower bound for a n (C ϕ2 ), but we do not succeed in finding it yet.

Proof. First observe that C ϕ1 ∈ S 2 , so that C ϕ2 ∈ S 2 too, since |ϕ * 1 | = |ϕ * 2 |
and since the membership of C ϕ in S 2 only depends on the modulus of ϕ * because it amounts to ( [START_REF] Shapiro | Composition Operators and Classical Function Theory, Universitext[END_REF], page 26):

π -π dt 1 -|ϕ * (e it )| < ∞.
Theorem 3.2 says that we can hardly have more. We first prove a lemma. Recall (see [START_REF] Lefèvre | Some examples of compact composition operators on H 2[END_REF], for example) that the maximal Carleson function ρ ϕ of a Schur function ϕ is defined, for 0 < h < 1, by:

(3.1) ρ ϕ (h) = sup |ξ|=1 m ϕ [S(ξ, h)]. Lemma 3.3 Let 0 < θ < 1. Then, the maximal function ρ ϕ θ of ϕ θ satisfies ρ ϕ θ (h) ≤ K 1/θ (1 -θ) -1/θ h 1/θ and, moreover, (3.2) 
ρ ϕ θ (h) ≈ h 1/θ .
Proof of the lemma. Let 0 < h < 1 and γ(t) = ϕ θ (e it ). K and δ will denote constants which can change from a formula to another. We have, for |t| ≤ π/2:

1 -|γ(t)| 2 = 4(Re c)τ |1 + cτ | 2 ≥ δ cos(θπ/2) τ |1 + cτ | 2 ≥ δ(1 -θ) τ |1 + cτ | 2 ≥ δ(1 -θ)|t| θ .
Hence, we get, from Lemma 2.5:

ρ ϕ θ (h) ≤ 2 m({1 -|γ(t)| ≤ h and |t| ≤ π/2}) ≤ 2 m({(1 -θ)δ|t| θ ≤ Kh}) ≤ K 1/θ (1 -θ) -1/θ h 1/θ .
Similarly, we have:

ρ ϕ θ (h) ≥ m ϕ θ [S(1, h)] ≥ m({|1 -γ(t)| ≤ h}) ≥ m({|t| θ ≤ Kh}) ≥ Kh 1/θ ,
and that ends the proof of the lemma.

Going back to the proof of Theorem 3.2, we take ϕ 1 = ϕ θ and ϕ 2 (z) = ϕ 1 (z)M (z 2 ). We use M (z 2 ) instead of M (z) in order to treat the points -1 and 1 together.

The first two assertions are clear. For the third one, we define the dyadic Carleson windows, for n = 1, 2, . . . , j = 0, 1, . . . , 2 n -1, by:

W n,j = {z ∈ D ; 1 -2 -n ≤ |z| < 1 and (2jπ)2 -n ≤ arg(z) < (2(j + 1))π)2 -n }.
Recall (see [START_REF] Lefèvre | Some examples of compact composition operators on H 2[END_REF], Proposition 3.3) the following proposition, which is a variant of Luecking's criterion ( [START_REF] Luecking | Trace ideal criteria for Toeplitz operators[END_REF]) for membership in a Schatten class, and which might also be used to give a third proof of the membership of C ϕ θ in all Schatten classes S p , p > 0, although the first proof turns out to be more elementary. Proposition 3.4 ([16], [START_REF] Lefèvre | Some examples of compact composition operators on H 2[END_REF]) Let ϕ be a Schur function and p > 0 a positive real number. Then C ϕ ∈ S p if and only if

∞ n=1 2 n -1 j=0 2 n m ϕ (W n,j ) p/2 < ∞.
We apply this proposition with ϕ = ϕ 2 , which satisfies, for 0 < |t| ≤ π/2, the following relation:

ϕ(e it ) = |γ(t)|e i[A(t)-cot(t)] def = |γ(t)|e iB(t) ,
where γ(t) = ϕ 1 (e it ) and (using Lemma 2.5):

(3.3) 0 < |t| ≤ π/2 =⇒ B(t) = Γ(t)- 1 t , with Γ(t) ≈ |t| θ and Γ ′ (t) ≈ |t| θ-1 .
It clearly follows from (3.3) that the function B is increasing on some interval [-δ, 0[ where δ is a positive numerical constant. Let us fix a positive integer q 0 such that -π/2 ≤ t < 0 and

B(t) ≥ 2q 0 π =⇒ t ≥ -δ.
Fix a Carleson window W n,j and let us analyze the set E n,j of those t's such that ϕ(e it ) belongs to W n,j . Recall that m ϕ (W n,j ) = m(E n,j ). The membership in E n,j gives two constraints.

1) Modulus constraint. We must have |γ(t)| ≥ 1 -2 -n , and therefore |t| ≤ K2 -n/θ .

2) Argument constraint. Let us set θ n,j = (2j + 1)π2 -n , h = π2 -n and I n,j = (θ n,j -h, θ n,j + h). The angular constraint arg ϕ(e it ) ∈ I n,j will be satisfied if t < 0 and

B(t) ∈ q≥q0 θ n,j -h + 2qπ, θ n,j + h + 2qπ := q≥q0 J q (h) := F.
We have F ⊂ [2q 0 π, ∞[, and so B(t) ∈ F and t < 0 imply t ≥ -δ. Set:

E = q≥q0 B -1 (θ n,j -h + 2qπ), B -1 (θ n,j + h + 2qπ) := q≥q0 I q (h) ⊂ [-δ, 0[.
The intervals I q 's are disjoint, since θ n,j + 2(q + 1)π -h > θ n,j + 2qπ + h and since B increases on [-δ, 0[. Moreover, t ∈ E implies that B(t) ∈ F , which in turn implies that arg ϕ(e it ) ∈ I n,j . Using Lemma 2.5, we can find positive constants c 1 , c 2 such that: q ≥ q 0 =⇒ -c 1 /q ≤ min I q (h) ≤ max I q (h) ≤ -c 2 /q. Now, by the mean-value theorem, I q (h) has length 2h/|B ′ (t q )| for some t q ∈ I q (h). But, using (3.3), we get:

B(t) ≈ 1 t and |B ′ (t)| ≈ 1 t 2 ,
so that I q (h) has length approximately ht 2 q ≈ h/q 2 since |t q | ≈ 1/q. Because of the modulus constraint, the only involved q's are those for which q ≥ q 1 , where q 1 ≈ 2 n/θ . Taking n numerically large enough, we may assume that q 1 > q 0 . We finally see that, for any 0 ≤ j ≤ 2 n -1, we have the lower bound:

m ϕ (W n,j ) = m(E n,j ) q≥q1 m(I q (h)) q≥q1 h q 2 h q 1 2 -n(1+1/θ) .
It follows that:

∞ n=1 2 n -1 j=0 2 n m ϕ (W n,j ) p/2 ∞ n=1 2 n -1 j=0 2 n 2 -n(1+1/θ) p/2 = ∞ n=1 2 n -1 j=0 2 -np/2θ = ∞ n=1 2 n(1-p/2θ) = ∞, if p ≤ 2θ.
Hence C ϕ2 / ∈ S p for p ≤ 2θ by Proposition 3.4. A similar upper bound, and the membership of C ϕ2 in S p for p > 2θ, would easily be proved along the same lines (and we will make use of that fact in Section 4). But this will also follow from the more precise result on approximation numbers. To that effect, we shall borrow the following result from [START_REF] Li | On approximation numbers of composition operators[END_REF]. Theorem 3.5 ([15]) Let ϕ be a Schur function. Then the approximation numbers of C ϕ : H 2 → H 2 have the upper bound:

(3.4) a n (C ϕ ) ≤ K inf 0<h<1 (1 -h) n + ρ ϕ (h) h , n = 1, 2, . . . .
Applying this theorem to ϕ 2 , which satisfies ρ ϕ2 (h) ≤ Kh 1+1/θ as is clear from the preceding computations, would provide upper bounds for m ϕ (W n,j ) of the same order as the lower bounds obtained. Then choosing h = H log n/n, where H is a large constant (H = 1/2θ will do) and using 1 -h ≤ e -h , we get from (3.4):

a n (C ϕ2 ) ≤ K n -H + log n n 1/2θ ≤ K log n n 1/2θ
. This ends the proof of Theorem 3.2.

Remark: Theorem 3.5 of [START_REF] Li | On approximation numbers of composition operators[END_REF] gives a very imprecise estimate on the approximation numbers of lens maps, as we noticed in that paper. On the other hand, when we apply it to a lens map spread by multiplication by the inner function M , we obtain an estimate which is close to being optimal, up to a logarithmic factor. This indicates that many phenomena have still to be understood concerning approximation numbers of composition operators.

Lens maps as counterexamples

Recall that an operator T : X → Y between Banach spaces is said to be Dunford-Pettis (in short DP) or completely continuous, if for any sequence (x n ) which is weakly convergent to 0, the sequence (T x n ) is norm-convergent to 0. It is called weakly compact (in short w-compact) if the image T (B X ) of the unit ball in X is (relatively) weakly compact in Y . The identity map i 1 : ℓ 1 → ℓ 1 is DP and not w-compact, by the Schur property of ℓ 1 and its non-reflexivity. If 1 < p < ∞, the identity map i p : ℓ p → ℓ p is w-compact and not DP by the reflexivity of ℓ p and the fact that the canonical basis (e n ) of ℓ p converges weakly to 0, whereas e n p = 1. Therefore, the two notions, clearly weaker than that of compactness, are not comparable in general. Moreover, when X is reflexive, any operator T : X → Y is w-compact and any Dunford-Pettis operator T : X → Y is compact.

Yet, in the context of composition operators T = C ϕ : X → X, with X a non-reflexive Banach space of analytic functions, several results say that weak compactness of C ϕ implies its compactness. Let us quote some examples:

-X = H 1 ; this was proved by D. Sarason in 1990 ([20]); -X = H ∞ and the disk algebra X = A(D) (A. Ülger [START_REF] Ülger | Some results about the spectrum of commutative Banach algebras under the weak topology and applications[END_REF] and R. Aron, P. Galindo and M. Lindström [START_REF] Aron | Compact homomorphisms between algebras of analytic functions[END_REF], independently; the first-named of us also gave another proof in [START_REF] Lefèvre | Some characterizations of weakly compact operators in H ∞ and on the disk algebra. Application to composition operators[END_REF]); -X is the little Bloch space B 0 (K. Madigan and A. Matheson [START_REF] Madigan | Compact composition operators on the Bloch space[END_REF]); -X is the Hardy-Orlicz spaces X = H ψ , when the Orlicz function ψ grows more rapidly than power functions, namely when it satisfies the condition ∆ 0 ( [START_REF] Lefèvre | Composition operators on Hardy-Orlicz spaces[END_REF], Theorem 4.21, page 55); -X = BM OA and X = V M OA (J. Laitila, P. J. Nieminen, E. Saksman and H.-O. Tylli [START_REF] Laitila | Compact and Weakly Compact Composition Operators on BMOA, to appear in Complex Anal[END_REF]).

Moreover, in some cases, C ϕ is compact whenever it is Dunford-Pettis ( [START_REF] Lefèvre | Some characterizations of weakly compact operators in H ∞ and on the disk algebra. Application to composition operators[END_REF] for X = H ∞ and [START_REF] Lefèvre | Composition operators on Hardy-Orlicz spaces[END_REF], Theorem 4.21, page 55, for X = H ψ , when the conjugate function of ψ satisfies the condition ∆ 2 ).

The question naturally comes whether for any non-reflexive Banach space X of analytic functions on D, every weakly compact (resp. Dunford-Pettis) composition operator C ϕ : X → X is actually compact. The forthcoming theorems show that the answer is negative in general. Our spaces X will be Hardy-Orlicz and Bergman-Orlicz spaces, so we first recall some definitions and facts about Orlicz spaces ([11], Chapters 2 and 3).

An Orlicz function is a nondecreasing convex function ψ : R + → R + such that ψ(0) = 0 and ψ(∞) = ∞. Such a function is automatically continuous on R + . If ψ(x) is not equivalent to an affine function, we must have ψ(

x)/x -→ x→∞ ∞.
The Orlicz function ψ is said to satisfy the ∆ 2 -condition if ψ(2x)/ψ(x) remains bounded. The conjugate function ψ of an Orlicz function ψ is the Orlicz function defined by: ψ(x) = sup y≥0 xy -ψ(y) .

For the conjugate function, one has the following characterization of ∆ 2 (see [START_REF] Lefèvre | Composition operators on Hardy-Orlicz spaces[END_REF], page 7): ψ has ∆ 2 if and only if , for some β > 1 and x 0 > 0,

(4.1) ψ(βx) ≥ 2βψ(x) , for all x ≥ x 0 .
Let (Ω, A, P) be a probability space, and L 0 the space of measurable functions f : Ω → C. The Orlicz space L ψ = L ψ (Ω, A, P) is defined by

L ψ (Ω, A, P) = f ∈ L 0 ; Ω ψ(|f |/K) d P < ∞ for some K > 0 .
This is a Banach space for the Luxemburg norm:

f ψ = inf K > 0 ; Ω ψ(|f |/K) d P ≤ 1 .
The Morse-Transue space M ψ (see [START_REF] Lefèvre | Composition operators on Hardy-Orlicz spaces[END_REF], page 9) is the subspace of functions

f in L ψ for which Ω ψ(|f |/K) d P < ∞ for every K > 0. It is the closure of L ∞ .
One always has (M ψ ) * = L ψ and L ψ = M ψ if and only if ψ has ∆ 2 . When the conjugate function ψ of ψ has ∆ 2 , the bidual of M ψ is then (isometrically isomorphic to) L ψ . Now, we can define the Hardy-Orlicz space H ψ attached to ψ as follows. Take the probability space (T, B, m) and recalling that f r (e it ) = f (re it ):

H ψ = {f ∈ H(D) ; sup 0<r<1 f r L ψ (m) := f H ψ < ∞}.
We refer to [START_REF] Lefèvre | Composition operators on Hardy-Orlicz spaces[END_REF] for more information on H ψ . Similarly, we define (see [START_REF] Lefèvre | Composition operators on Hardy-Orlicz spaces[END_REF]) the Bergman-Orlicz space B ψ , using this time the normalized area measure A, by: We can now state our first theorem. Theorem 4.1 There exists a Schur function ϕ and an Orlicz function ψ such that H ψ is not reflexive and the composition operator C ϕ : H ψ → H ψ is weaklycompact and Dunford-Pettis, but is not compact.

B ψ = {f ∈ H(D) ; f L ψ (A) := f L ψ < ∞}. If ψ(x) = x p , p ≥ 1,
Proof. First take for ϕ the lens map ϕ 1/2 which in view of (3.2) of Lemma 3.3 satisfies, for some constant K > 1:

(4.2) ρ ϕ (h) ≥ K -1 h 2 , 0 < h < 1.
We now recall the construction of an Orlicz function made in [START_REF] Lefèvre | The canonical injection of the Hardy-Orlicz space H ψ into the Bergman-Orlicz space B ψ[END_REF]. Let (x n ) be a the sequence of positive numbers defined as follows: x 1 = 4 and then, for every integer n ≥ 1, x n+1 > 2x n is the abscissa of the second intersection point of the parabola y = x 2 with the straight line containing (x n , x 2 n ) and (2x n , x 4 n ); equivalently x n+1 = x 3 n -2x n . We now define our Orlicz function ψ by ψ(x) = 4x for 0 ≤ x ≤ 4 and, for n ≥ 1, by:

ψ(x n ) = x 2
n , ψ affine between x n and x n+1 , so that ψ(2x n ) = x 4 n .

(4.3)

Observe that ψ does not satisfy the ∆ 2 -condition, since ψ(2x n ) = [ψ(x n )] 2 . It clearly satisfies (since ψ -1 is concave):

x 2 ≤ ψ(x) ≤ x 4 for x ≥ 4, ψ -1 (Kx) ≤ Kψ -1 (x) for any x > 0, K > 1. (4.4)
Therefore, it has a moderate growth, but a highly irregular behaviour, which will imply the results we have in view. Indeed, let y n = ψ(x n ) and h n = 1/y n . We see from (4.2), (4.3) and (4.4) that:

(4.5) D(h n ) def = ψ -1 (1/h n ) ψ -1 (1/ρ ϕ (h n )) ≥ ψ -1 (1/h n ) ψ -1 (K/h 2 n ) = ψ -1 (y n ) ψ -1 (Ky 2 n ) ≥ x n 2Kx n = 1 2K
.

Thus, we have lim sup h→0 + D(h) > 0. By [START_REF] Lefèvre | Composition operators on Hardy-Orlicz spaces[END_REF], Theorem 4.11 (see also [START_REF] Lefèvre | Nevanlinna counting function and Carleson function of analytic maps[END_REF], comment before Theorem 5.2), C ϕ is not compact.

On the other hand, let j ψ,2 : H ψ → H 2 and j 4,ψ : H 4 → H ψ be the natural injections, which are continuous, thanks to (4.4). We have the following diagram:

H ψ j ψ,2 -→ H 2 Cϕ -→ H 4 j 4,ψ -→ H ψ .
The second map is continuous as a consequence of (3.2) and of a result of P. Duren ( [START_REF] Duren | Extension of a theorem of Carleson[END_REF]; see also [START_REF] Duren | Theory of H p -spaces[END_REF], Theorem 9.4, page 163), which extends Carleson's embedding theorem (see also [START_REF] Lefèvre | Composition operators on Hardy-Orlicz spaces[END_REF], Theorem 4.18). Hence

C ϕ = j 4,ψ • C ϕ • j ψ,2
factorizes through a reflexive space (H 2 or H 4 ) and is therefore w-compact.

To prove that C ϕ is Dunford-Pettis, we use the following result of [START_REF] Lefèvre | Compact composition operators on Bergman-Orlicz spaces[END_REF] (Theorem 2.1): Theorem 4.2 ([14]) Let ϕ be a Schur function and Φ be an Orlicz function. Assume that, for some A > 0, one has:

(4.6) sup 0<t≤h ρ ϕ (t) t 2 ≤ 1/h 2 Φ AΦ -1 (1/h 2 ) , 0 < h < 1.
Then, the canonical inclusion j Φ,ϕ :

B Φ → L Φ (m ϕ ) is continuous.
In particular, it is continuous for any Orlicz function

Φ if ρ ϕ (h) = O (h 2 ).
Now, let J ψ : H ψ → B ψ be the canonical inclusion, and consider the following diagram:

H ψ J ψ -→ B ψ j ψ,ϕ -→ L ψ (m ϕ ).
The first map is Dunford-Pettis, by [START_REF] Lefèvre | The canonical injection of the Hardy-Orlicz space H ψ into the Bergman-Orlicz space B ψ[END_REF] Proof . We use the same Schur function ϕ = ϕ 1/2 , but we replace ψ by the function χ defined by χ(x) = ψ(x 2 ). Let A > 1. Observe that, in view of (4.4),

χ(Ax) [χ(x)] 2 = ψ(A 2 x 2 ) [ψ(x 2 )] 2 ≤ A 8 x 8 x 8 = A 8 .
By [START_REF] Lefèvre | The canonical injection of the Hardy-Orlicz space H ψ into the Bergman-Orlicz space B ψ[END_REF], Proposition 4.4, J χ : H χ → B χ is w-compact, and we can see C ϕ : H χ → H χ as the canonical inclusion j : H χ → L χ (m ϕ ). Hence Theorem 4.2 and the diagram:

j = j χ,ϕ • J χ : H χ Jχ -→ B χ jχ,ϕ -→ L χ (m ϕ )
show that C ϕ : H χ → H χ is w-compact as well. Now, to prove that C ϕ is not Dunford-Pettis, we cannot use [START_REF] Lefèvre | The canonical injection of the Hardy-Orlicz space H ψ into the Bergman-Orlicz space B ψ[END_REF], as in the proof of Theorem 4.1, but we follow the lines of Proposition 3.1 of [START_REF] Lefèvre | The canonical injection of the Hardy-Orlicz space H ψ into the Bergman-Orlicz space B ψ[END_REF]. Remark first that, by definition, the function χ satisfies, for β = 2, the following inequality:

χ(βx) = ψ(4x 2 ) ≥ 4ψ(x 2 ) = 2βχ(x);
hence, by (4.1), this implies that the conjugate function of χ verifies the ∆ 2condition.

Let x n be as in (4.3), and set:

u n = √ x n and A = √ 2 so that (4.7) χ(Au n ) = χ(u n ) 2 = x 4 n .
Finally, let:

r n = 1 - 1 χ(u n ) and f n (z) = u n 1 -r n 1 -r n z 2 .
By ( [START_REF] Lefèvre | Composition operators on Hardy-Orlicz spaces[END_REF], Corollary 3.10), f n H χ ≤ 1 and f n tends to 0 uniformly on compact subsets of D; that implies that f n → 0 weakly in H χ since the conjugate function of χ has ∆ 2 ([11], Proposition 3.7). On the other hand, if K n = f n L χ (mϕ) , mimicking the computation of ([13], Proposition 3.1), we get:

(4.8) 1 = D χ(|f n |/K n ) dm ϕ ≥ (1 -r n ) 2 χ(αu n /4K n )
for some 0 < α < 1 independent of n, where we used the convexity of χ and the fact that the lens map ϕ satisfies, by(4.2):

m ϕ ({z ∈ D ; |1 -z| ≤ 1 -r n }) ≥ α(1 -r n ) 2 .
In view of (4.7), (4.8) reads as well:

χ(αu n /4K n ) ≤ χ 2 (u n ) = χ(Au n ), so that: (4.9) j(f n ) L χ (mϕ) = K n ≥ α/4A.
This shows that j : H χ → L χ (m ϕ ) and therefore also C ϕ : H χ → H χ are not Dunford-Pettis. It remains to show that H χ is not reflexive. We shall prove below a more general result, but here, the conjugate function χ of χ satisfies the ∆ 2 condition, as we saw. Hence H χ is the bidual of HM χ . Since χ fails to satisfy the ∆ 2condition, we know that L χ = M χ . Let u ∈ L χ \ M χ ,with u ≥ 1. Let f be the associated outer function, namely:

f (z) = exp 1 2π 2π 0 e it + z e it -z log u(t) dt .
One has |f * | = u almost everywhere, with the notations of (2.6), and hence f ∈ H χ \ HM χ . It follows that H χ = HM χ . Hence HM χ is not reflexive, and therefore H χ is not reflexive either.

As promised, we give the general result on non-reflexivity.

Proposition 4.4 Let ψ be an Orlicz function which does not satisfy the ∆ 2condition. Then neither H ψ nor B ψ is reflexive.

Proof. We only give the proof for B ψ because it is the same for H ψ . Since ψ does not satisfy ∆ 2 there is a sequence (x n ) of positive numbers, tending to infinity, such that ψ(2x n )/ψ(x n ) tends to infinity. Let r n ∈ (0, 1) such that (1 -r n ) 2 = 1/ψ(2x n ) and set:

q n (z) = (1 -r n ) 4
(1 -r n z) 4 • One has q n ∞ = 1 and q n 1 = (1-rn) 2 (1+rn) 2 ≤ (1 -r n ) 2 . On the other hand, on the pseudo-Carleson window S(1, 1 -r n ), one has |1 -

r n z| ≤ (1 -r n ) + r n |1 -z| ≤ (1 -r n ) + r n (1 -r n ) = 1 -r 2
n ≤ 2(1 -r n ); hence |q n (z)| ≥ 1/16. It follows that:

1 = D ψ |q n | q n ψ dA ≥ S(1,1-rn) ψ |q n | q n ψ dA ≥ A[S(1, 1 -r n )] ψ 1 16 q n ψ ≥ 1 3 (1 -r n ) 2 ψ 1 16 q n ψ ≥ (1 -r n ) 2 ψ 1 48 q n ψ = 1 ψ(2x n ) ψ 1 48 q n ψ ;
hence ψ(1/[48 q n ψ ]) ≤ ψ(2x n ), so 1/(48 q n ψ ) ≤ 2x n and 96 x n q n ψ ≥ 1.

Set now f n = q n / q n ψ ; one has f n ψ = 1 and (using that ψ( 

≤ ψ(x n ) (1 -r n ) 2 = ψ(x n ) ψ(2x n ) -→ n→∞ 0.
By [START_REF] Lefèvre | A criterion of weak compactness for operators on subspaces of Orlicz spaces[END_REF], Lemma 11, that implies that the sequence (f n ) has a subsequence equivalent to the canonical basis of c 0 and hence B ψ is not reflexive.

We finish by giving a counterexample using Bergman-Orlicz spaces instead of Hardy-Orlicz spaces. Theorem 4.5 There exists a Schur function ϕ and an Orlicz function ψ such that the space B ψ is not reflexive and the composition operator C ϕ : B ψ → B ψ is weakly-compact but not compact.

Proof. We use again the Orlicz function ψ defined by (4.3) and the Schur function ϕ = ϕ 1/2 . The space B ψ is not reflexive since ψ does not satisfy the condition ∆ 2 .

We now need an estimate similar to (3.2) for ϕ θ , namely: The proof of (4.10) is best seen by passing to the right half-plane with the measure A γ θ which is locally equivalent to the Lebesgue planar measure A; we get ρ ϕ,2 (h) ≥ A({|z| θ ≤ h} ∩ H) ≥ Kh 2/θ and the upper bound in (4.10) is proved similarly. We now see that C ϕ : B ψ → B ψ is not compact as follows. We use the same x n as in (4.3) and set y n = ψ(x n ), k n = 1/ √ y n . We notice that, since ρ ϕ,2 (h) ≥ K -1 h 4 (with K > 1) in view of (4.10), we have:

E(k n ) def = ψ -1 (1/k 2 n ) ψ -1 (1/ρ ϕ,2 (k n )) ≥ ψ -1 (1/k 2 n ) ψ -1 (K/k 4 n ) = ψ -1 (y n ) ψ -1 (Ky 2 n ) ≥ x n 2Kx n = 1 2K , so that lim sup k→0 + E(k) > 0,
and this implies that C ϕ : B ψ → B ψ is not compact ([14], Theorem 3.2). To see that C ϕ : B ψ → B ψ is w-compact, we use the diagram:

B ψ j ψ,2 -→ B 2 Cϕ -→ B 4 j 4,ψ -→ B ψ
as well as (4.10), which gives ρ ϕ,2 (h) ≤ Kh 4 . A result of W. Hastings ([5]) now implies the continuity of the second map. This diagram shows that C ϕ factors through a reflexive space (B 2 or B 4 ), and is therefore w-compact.

  h and since |γ(t) -1| ≥ a|t| θ and |γ(t) -1| ≤ (K + 2)h together imply |t| ≤ Dt n , where D > 1 is another constant (recall that h = 2 -nθ = (t n /π) θ ).

Theorem 3 . 1 (

 31 [START_REF] Lefèvre | Some examples of compact composition operators on H 2[END_REF], Theorem 4.2) For every p > 2, there exist two Schur functions ϕ 1 and ϕ

  we get the usual Hardy and Bergman spaces H p and B p . Those spaces are Banach spaces for any ψ, and Hilbert spaces for ψ(x) = x 2 . The Hardy-Morse-Transue space HM ψ and Bergman-Morse-Transue space BM ψ are defined by HM ψ = H ψ ∩ M ψ and BM ψ = B ψ ∩ M ψ . When the conjugate function of ψ has ∆ 2 , the bidual of HM ψ is (isometrically isomorphic to) H ψ ([11], page 10).

  x n |q n (z)|) ≤ |q n (z)| ψ(x n ), by convexity, since |q n (z)| ≤ 1): n | 96 x n q n ψ dA ≤ D ψ(x n |q n |) dA ≤ ψ(x n ) D |q n | dA ,

(4. 10 )

 10 ρ ϕ,2 (h) := sup |ξ|=1 A[{z ∈ D ; ϕ(z) ∈ S(ξ, h)}] ≈ h 2/θ .

  , Theorem 4.1. The second map is continuous by (3.2) and (4.6). Clearly, being Dunford-Pettis is an ideal property (if either u or v is Dunford-Pettis, so is vu). Therefore, j ψ,ϕ • J ψ is Dunford-Pettis, and this amounts to say that C ϕ : H ψ → H ψ is Dunford-Pettis. Now, the non-reflexivity of H ψ follows automatically, since C ϕ is Dunford-Pettis but not compact. There exist a Schur function ϕ and an Orlicz function χ such that H χ is not reflexive and the composition operator C ϕ : H χ → H χ is weakly compact and not Dunford-Pettis; in particular it is not compact.
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