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Abstract

Circle actions on pseudomanifolds have been studied in [10] by using intersection cohomology

(see also [4]). In this paper, we continue that study using a more powerful tool, the equivariant

intersection cohomology [1, 6].

In this paper, we prove that the orbit space B and the Euler class of the action Φ : S
1

× X → X

determine both the equivariant intersection cohomology of the pseudomanifold X and its localization.

We also construct a spectral sequence converging to the equivariant intersection cohomology of

X whose third term is described in terms of the intersection cohomology of B.

We consider an action Φ : S
1

× X → X of the circle on a pseudomanifold X whose orbit space B

is again a pseudomanifold (cf. (1.1)). We have seen in [10] that the intersection cohomology of X is

determined by B and the Euler class e ∈ IH
2

e
(B). In this paper we prove that those two data determine

some other structures. The main results of this work are the following:

 The equivariant intersection cohomology1 IH
S

1
(X) of X has a Λe-perverse algebra structure2. We

prove that this structure is determined by B and the Euler class e ∈ IH
2

e
(B) (cf. Proposition 3.2).

 The localization1 IL
S

1
(X) of IH

S
1
(X) has a perverse superalgebra structure. We prove that this

structure is determined by B and the Euler class e ∈ IH
2

e
(B) (cf. Proposition 5.2).

 For each perversity p we construct a spectral sequence converging to IH
∗

p,S
1
(X) whose third term

is described in terms of B (cf. Proposition 4.2)4.
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In the last section, we illustrate the results of this work with some particular examples. In the sequel,

any manifold will be considered connected, second countable, Haussdorff, without boundary and smooth

(of class C∞).

The authors wish to thank the referee for the indications given in order to improve this paper.

1 Modelled actions

We recall in this section some fundamental notions about the objects we deal with. Namely, modelled

actions on unfolded pseudomanifolds, the intersection cohomology and the Gysin sequence.

1.1 Unfolded pseudomanifolds ([9], [12])

Let X be a Hausdorff, paracompact and 2nd countable topological space. We say that X is a stratified

space if it is provided with a stratification S, that is, a finite partition by connected sets called strata,

which satisfy the following condition: for any two strata S , S ′ ∈ S, then S ∩ S ′ , ∅ implies S ⊂ S ′ (in

this case, we will write S ≤ S ′).

Notice that (S,≤) is a partially ordered set, and that a stratum is maximal if and only if it is open.

Such a stratum will be said to be regular. Every other strata is said to be singular. The union Σ of every

singular strata is called the singular part of the stratified space X. Its complement X\Σ is called the

regular part.

Stratified pseudomanifolds were introduced by Goresky and MacPherson in order to extend the

Poincaré duality to stratified spaces. A stratified space X is a stratified pseudomanifold if for every

stratum S of X there exists a family of charts, i.e., embeddings α : Uα × c(LS )→ X such that:

• c(LS ) is the cone of a compact stratified space LS called the link of S ;

• {Uα}α is an open cover of S ;

• α(u, ∗) = u for every u ∈ Uα, being ∗ the apex of the cone c(LS ).

Now, we recall the notion of an unfolding, which we use in order to define the intersection co-

homology of a stratified pseudomanifold by means of differential forms. We will say that a stratified

pseudomanifold X is an unfolded pseudomanifold if it admits an unfolding, which consists of a manifold

X̃, a surjective, proper continuous function L : X̃ → X and a family of unfoldings LL : L̃ → L of the

links of the strata of X satisfying:

1. the restriction L : L −1(X\Σ) −→ X\Σ is a smooth trivial finite covermap;

2. L −1(Σ) is covered by unfoldable charts α, i.e., we have a commutative diagram

U × L̃ × R
α̃

//

c

��

X̃

L

��

U × c(L)
α

// X

where α̃ is a diffeomorphism onto L −1(Im(α)) and the left vertical map is given by c(u, x, t) =

(u, [LL(x), |t|]).
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1.2 Perversities and intersection cohomology ([12, sec. 3])

Recall that if π : M → B is a surjective submersion, the perverse degree ‖ω‖B of a differential form

ω ∈ Ω∗(M) is the smallest integer m such that iξ0 . . . iξmω = 0 for every collection of vector fields

ξ0, . . . , ξm tangent to the fibers of π. By convention, ‖0‖B = −∞.

Denote by Ssing the set of singular strata of the stratified pseudomanifold X. Recall that a perversity

p in X is a map p : Ssing → Z. We denote by PX the set of all perversities of X. Fix an unfolding

L : X̃ → X. We say that a form ω ∈ Ω∗(X\Σ) is liftable if there exists a form ω̃ ∈ Ω∗(X̃) such that

L ∗(ω) = ω̃. The algebra of liftable forms of X is denoted by Π∗(X). Given a perversity p in X, recall

that the cohomology of the complex

Ω∗
p
(X) = {ω ∈ Π∗(X) : ‖ω‖S ≤ p(S ) and ‖dω‖S ≤ p(S ), ∀S ∈ Ssing}

is the p-intersection cohomology of X, and is denoted by IH∗
p
(X).

1.3 Modelled action ([9, sec. 4], [10, sec. 1.1])

Under some assumptions, the orbit space of an action of the circle on a stratified pseudomanifold is

also a stratified pseudomanifold, which is called S
1

-pseudomanifold in [11, sec. 4]. In this work we shall

use a variant of this concept: modelled actions of S
1

on unfolded pseudomanifolds. We list below the

main properties of a modelled action Φ : S
1

× X −→ X of the circle S
1

on an unfolded pseudomanifold

X. We denote by π : X → B the canonical projection onto the orbit space B = X/S
1

.

(MA.i) The isotropy subgroup S
1

x is the same for each x ∈ S . It will be denoted by S
1

S .

(MA.ii) For each regular stratum R we have S
1

R
= {1}.

(MA.iii) For each singular stratum S with S
1

S
= S

1

, the actionΦ induces a modelled actionΦLS
: S

1

×

LS → LS , where LS is the link of S .

(MA.iv) The orbit space B is an unfolded pseudomanifold, relatively to the stratification SB =

{π(S ) / S ∈ SX}, and the projection π : X → B is an unfolded morphism.

(MA.v) The assignment S 7→ π(S ) induces the bijection πS : SX → SB.

The action Φ may induce two kind of strata of X:

• a stratum S is mobile when S
1

S
, the isotropy subgroup of any point of S , is finite and

• a stratum S is is fixed when S
1

S
, the isotropy subgroup of any point of S , is S

1

.

Recall that the regular stratum R is mobile with S
1

R
= {1}. In this work, we need the refinement of fixed

strata introduced in [9, sec. 5.6]

• a fixed stratum S is perverse5 when the Euler class of the action ΦL
S

: S
1

× L
S
→ L

S
does not

vanish, where L
S

is the link of S .

1.4 Gysin sequence ([9, sec. 6], [10, sec. 1.3])6

5See [10, sec. 1.2] for some examples. Notice that, as G. Friedman pointed out in [3] , there is a misprint in [10, sec. 1.1]

in the definition of perverse stratum: it should be H
∗(

LS \ΣLS

)
, H

∗
(
(LS \ΣLS

)/S
1
)
⊗ H

∗
(
S

1
)
, where ΣLS

is the singular part of

the link LS . That definition is equivalent to the one we give above.
6The Gysin sequence for intersection cohomology has been constructed in [9, sec. 6]. In this article we use the notations

of [10, sec. 1.3]. Notice that, as G. Friedman pointed out in [3], in the definition of G
∗

p
(B) given in [10, sec. 1.3], the degree

should be shifted by 1, so that G
∗

p
(B) ⊂ Ω

∗

p−x
(B).
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Fix a modelled action of S
1

on X. Recall that the complex of invariant p-forms computes the p-

intersection cohomology of X. This complex can be described in terms of basic data as follows: consider

the graded complex

(1) Ω
∗

p
(X) =

(α, β) ∈ Π
∗

(B) ⊕ Ω
∗−1

p−x
(B)
/

||α||π(S ) ≤ p(S )

||dα + (−1)|β|β ∧ ǫ ||π(S ) ≤ p(S )

 if S ∈ S
sing

X



endowed with the differential D(α, β) = (dα + (−1)|β|β ∧ ǫ, dβ). Here | − | stands for the degree of the

form, ǫ ∈ Π2(B) is an Euler form (i.e., ǫ = dχ for a characteristic form χ of the action) and x is the

characteristic perversity defined by x(π(S )) =

{
1 if S is a fixed stratum

0 if S is a mobile stratum.

The assignment (α, β) 7→ π∗α + π∗β ∧ χ establishes a differential graded isomorphism between Ω
∗

p
(X)

and
(
Ω
∗

p
(X)
)S1

. This gives rise to the long exact Gysin sequence:

· · · −→ IH
i+1

p
(X)

∮
p

−→ H
i
(
G
∗

p
(B)
) e

p

−→ IH
i+2

p
(B)

π
p

−→ IH
i+2

p
(X) −→ . . . ,

where the Gysin term G
∗

p
(B) is the differential complex

β ∈ Ω
∗−1

p−x
(B)
/
∃α ∈ Π

∗

(B) with


||α||π(S ) ≤ p(S ) and

||dα + (−1)|β|β ∧ ǫ ||π(S ) ≤ p(S )

 if S ∈ S
sing

X

 .

Recall that the Euler perversity e is defined by e(S ) =



0 when S mobile stratum,

1 when S not perverse fixed stratum

2 when S perverse stratum.

So, the Euler class e = [ǫ] belongs to IH
2

e
(B).

1.5 Perverse algebras ([10, subsection 2.2])

A perverse set is a triple (P,+,≤) where (P,+) is an abelian semi-group with unit element 0 and

(P,≤) is a partially ordered set such that ≤ and + are compatible. Notice that the set of all perversities

of an unfolded pseudomanifold PX is a perverse set.

Recall that a differential graded commutative (dgc, for short) perverse algebra (or simply a perverse

algebra) is a quadruple E = (E, ι,∧, d) where

- E =
⊕

p∈P

E
p

where each E
p

is a graded (over Z) vector space,

- ι =
{
ι

p,q
: E

p
→ E

q
/ p ≤ q

}
is a family of graded linear morphisms, and

- (E, d,∧) is a dgc algebra,

verifying

i) ι
p,p
= Identity ii) ι

q,r
◦ι

p,q
= ι

p,r
iii) ∧

(
E

p
× E

p′

)
⊂ E

p+p′

iv) d
(
E

p

)
⊂ E

p
v) ι

p+p′,q+q′
(a ∧ a′) = ι

p,q
(a) ∧ ι

p′ ,q′
(a′) vi) d◦ι

p,q
= ι

p,q
◦d

Here, p ≤ q ≤ r, p
′
≤ q

′
, a ∈ E

p
and a′ ∈ E

p′
.

For example, associated to a modelled action, the following dgc algebras have the structure of per-

verse algebras: Ω(X) =
⊕

p∈PX

Ω
p
(X) and IH(X) = IH (X) =

⊕

p∈PX

IH
p
(X).
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Remark 1.6. Notice that the intersection cohomology relatively to a fixed perversity p is not an algebra,

due to property iii), that is,
∧

: IH
i

p
(B) × IH

j

q
(B) −→ IH

i+ j

p+q
(B). With perverse algebras, we recover the

algebra structure, as we consider all perversities together. The category of these objects has been studied

recently in [5]. The perverse algebra structure has been used, too, in [2] to extend the theory of minimal

models to the context of intersection cohomology. We expect to obtain analogous results in the context

of the present article.

Remark 1.7. For some specific contexts such as pseudomanifolds arising from complex algebraic vari-

eties, it would be more natural to work just with the middle perversity m. Nevertheless, as follows from

the previous remark, multiplication by the Euler class e ∈ IH
2

e
(B) does not define an endomorphism of

IH
∗

m
(B) unless all strata are mobile, but a homomorphism IH

∗

m
(B) → IH

∗+2

m+e
(B) instead. So, to work with

this homomorphism in a suitable category, we need to work with all possible perversities together, which

leads us to perverse algebras.

2 Equivariant intersection cohomology

We introduce in this section the equivariant intersection cohomology [1, 6] of a modelled action [9]. For

the rest of this work, we fix a modelled action Φ : S
1

× X → X. We denote by B the orbit space X/S
1

.

2.1 Equivariant intersection cohomology. We fix p a perversity of X. As S
1

is connected and com-

pact, the cohomology of the subcomplex of S
1

-invariant forms Ω
∗

p
(X) is IH

∗

p
(X).

Recall that the classifying space of S
1

is just CP∞ whose cohomology is the free dgc algebra Λe

where |e| = 2 and de = 0. The equivariant intersection cohomology IH
∗

p,S
1
(X), relatively to the perversity

p, is the cohomology of the complex
(
Ω
∗

p
(X) ⊗ Λe,∇

)
, where ∇ is defined linearly from

∇((α, β) ⊗ en) = D(α, β) ⊗ en + (−1)|β|(β, 0) ⊗ en+1.

The equivariant intersection cohomology generalizes the usual equivariant cohomology since IH
∗

0,S
1
(X) =

H
∗

S
1
(X) when X is normal.

2.2 Λe-perverse algebras. We have introduced in [10, sec. 2] the notion of perverse algebra, perverse

morphism and perverse isomorphism. The coefficient ring of these objects is R. When we replace

this ring by Λe, we get the notions of Λe-perverse algebra, Λe-perverse morphism and Λe-perverse

isomorphism. In this work, we deal with the following examples:

+ The quadruple Ω
S

1
(X) =


⊕

p∈PX

Ω
p
(X) ⊗ Λe, ι,∧,∇

 is a Λe-perverse algebra. Here, the Λe-

structure is given by: e · ((α, β) ⊗ en) = (α, β) ⊗ en+1.

+ Its cohomology IH
S

1
(X) =


⊕

p∈PX

IH
p,S

1
(X), ι,∧, 0

 is the the equivariant intersection cohomology

algebra which is a Λe-perverse algebra.

+ The operator π′ : IH (B)⊗Λe→ IH
S

1
(X), defined by π′

p
([α] ⊗ en) = [(α, 0)⊗ en], is a Λe-perverse

morphism.
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Remark 2.3. The Λe-perverse morphism π′ suggests that the equivariant perverse minimal model of

X (see Remark 1.6) may be computed by the mimimal model of B, as it happens in the case without

perversities.

2.4 Equivariant Gysin sequence. The main tool we use for the classification of modelled actions is

the Gysin sequence we construct now. Fix p a perversity of X. Consider the short exact sequence

0→
(
Ω
∗

p
(B) ⊗ Λe, d ⊗ 1

) π′
p

−→
(
Ω
∗

p
(X) ⊗ Λe,∇

)
∮ ′

p

−→
(
G
∗−1

p
(B) ⊗ Λe, d ⊗ 1

)
→ 0,

where π′
p
(α ⊗ en) = (α, 0) ⊗ en and

∮ ′
p
(α, β) ⊗ en = β ⊗ en. Each term is a differential complex and

a Λe-module with the natural structure. Moreover, the maps π′
p

and
∮ ′

p
preserve these structures. The

equivariant Gysin sequence is the induced long exact sequence

· · · →
[
IH
∗

p
(B) ⊗ Λe

]i π′ p
−→ IH

i

p,S
1
(X)

∮ ′
p

−→
[
H
∗
(
G
·

p
(B)
)
⊗ Λe

]i−1 δ
p

−→
[
IH
∗

p
(B) ⊗ Λe

]i+1
→ · · ·

Here, δ
p

([β] ⊗ en) = [dα+(−1)|β|β∧ǫ]⊗en+(−1)|β|ι
B

p−x,p
[β]⊗en+1. For short, we shall write (−1)|β|ι

B

p−x,p
= I

p
.

The connecting morphism becomes δ
p
= e

p
⊗1+I

p
⊗e.Notice that the equivariant Gysin sequence permits

us to obtain the equivariant intersection cohomology of X in terms of basic7 data.

3 Classification of modelled actions

In this section, we prove that B and the Euler class determine the equivariant intersection cohomology

of X.

3.1 Fixing the orbit space8. Consider Φ1 : S
1

× X1 → X1 and Φ2 : S
1

× X2 → X2 two modelled actions

and write B1 and B2 the corresponding orbit spaces.

An unfolded isomorphism f : B1 → B2 is optimal when it preserves the nature of the strata. In this

case, the two Euler perversities are equal: e1(π1(S )) = e2( f (π1(S ))) for each singular stratum S of X1.

We shall write e for this Euler perversity. Now we can compare the two Euler classes e1 ∈ IH
2

e
(B1) and

e2 ∈ IH
2

e
(B2). We shall say that e1 and e2 are f -related if f

∗

e
e2 = e1.

Proposition 3.2. Let X1, X2 be two connected normal unfolded pseudomanifolds. Consider two mod-

elled actions Φ1 : S
1

× X1 → X1 and Φ2 : S
1

× X2 → X2. Let us suppose that there exists an unfolded

isomorphism f : B1 → B2 between the associated orbit spaces. Then, the two following statements are

equivalent:

(a) The isomorphism f is optimal and the Euler classes e1 and e2 are f -related.

(b) There exists a Λe-perverse isomorphism G : IH
S

1
(X2)→ IH

S
1
(X1) verifying G◦π′

2
= π′

1
◦( f ⊗ 1).

Proof. We proceed in two steps.

(a)⇒ (b) Since [ f
∗

e
ǫ2] = f

∗

e
e2 = e1 = [ǫ1] then there exists γ ∈ Ω

1

e
(B2) with f

∗

e
ǫ2 = ǫ1 − d( f

∗

e
γ).

Using this map γ, we construct for each perversity p the map G
p
= F

p
⊗ 1: Ω

∗

p,S
1
(X2) −→ Ω

∗

p,S
1
(X1) (cf.

7Of the orbit space B.
8See (cf. [10, sec. 3.1]) for details.
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[10, Proposition 3.2]). Since F = {F
p
} is a perverse isomorphism, then G = {G

p
} : Ω

S
1
(X2)→ Ω

S
1
(X1) is

a Λe-perverse isomorphism. The equality G◦π′
2
= π′

1
◦( f × 1) comes from:

G
p

(
π′

2,p
(α ⊗ en)

)
= F

p
(α, 0) ⊗ en = ( f

p
(α), 0) ⊗ en = π′

1,p

(
f

p
(α) ⊗ en

)
,

where α ∈ Ω
∗

p
(B2).

(b)⇒ (a) Consider now the equivariant Gysin sequences associated to the actions Φ1 and Φ2. The

two Gysin terms are written
1
G and

2
G respectively. Since G

e2
◦π′

2,e2
= π′

1,e2
◦( f

e2
× 1) we can construct

the commutative diagram

IH
1

e2
(B2)

π′
2,e2

−−−−−→ IH
1

e2 ,S
1
(X2)

∮ ′
2,e2

−−−−−→ H
0
(

1
G
∗

e2

(B2)

) δ′
2,e2

−−−−−→
[
IH
∗

e2
(B2) ⊗ Λe

]2 π′
2,e2

−−−−−→ IH
2

e2 ,S
1
(X2)

y f
e2

G
e2

y ℓ

y
y f

e2
⊗1 G

e2

y

IH
1

e2
(B1)

π′
1,e2

−−−−−→ IH
1

e2 ,S
1
(X1)

∮ ′
1,e2

−−−−−→ H
0
(

2
G
∗

e2

(B1)

) δ′
1,e2

−−−−−→
[
IH
∗

e2
(B1) ⊗ Λe

]2 π′
1,e2

−−−−−→ IH
2

e2 ,S
1
(X1),

where ℓ : H
0
(

1
G
∗

e1

(B)

)
→ H

0
(

2
G
∗

e1

(B)

)
is an isomorphism. Following the proof of [10, Proposition 3.2]

we conclude that the isomorphism f is optimal, the operator ℓ is the multiplication by a number λ ∈ R\{0}

and f
e
e2 = λ · e1. Finally, the commutativity

(
f

e
⊗ 1
)
◦δ′

2,e2
= δ′

1,e2
◦ℓ gives that λ = 1 and therefore the

Euler classes e1 and e2 are f -related. ♣

4 The basic spectral sequence

The Leray spectral sequence considered by Borel for the usual equivariant cohomology has been ex-

tended to the perverse framework in [1]. It converges to IH
∗

p,S
1
(X) and its second term is IH

∗

p
(X) ⊗ Λe.

We construct another spectral sequence converging to IH
∗

p,S
1
(X) whose third term is described in terms

of B. It is the basic spectral sequence. First of all, we present an auxiliary complex.

4.1 The co-Gysin complex. The third term of the spectral sequence is described in terms of the co-

Gysin complex9 K
∗

p
(B) =

Ω
∗

p
(B)

G
∗

p
(B)

. It fits into the long exact sequence

· · · → H
i
(
G
∗

p
(B)
) I

p

−→ IH
i

p
(B)

P
p

−→ H
i
(
K
∗

p
(B)
) ∂

p

−→ H
i+1
(
G
∗

p
(B)
)
→ · · · .

Here, I
p
[α] = [α], ∂

p
[α] = [dα] and P

p
[α] = [α]. Now, we can describe the basic spectral sequence.

Proposition 4.2. Consider a modelled action Φ : S
1

× X → X and fix a perversity p. There exists a

first quadrant spectral sequence
{(

E
p,r
, d

p,r

)}
r≥0

converging to the equivariant intersection cohomology

IH
∗

p,S
1
(X) such that

(a) E
i, j

p,r
= 0 if j is an odd number and r ≥ 1;

9An element of K
∗

p
(B) is written α where α ∈ Ω

∗

p
(B).
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(b) E
i,2 j

p,2s
= E

i,2 j

p,2s+1
if s ≥ 1;

(c) the second and third terms are E
i,2 j

p,3
= E

i,2 j

p,2
=


IH

i

p
(B) if j = 0

H
i
(
K
∗

p
(B)
)
⊗ R · e j if j > 0;

(d) the third differential d
p,3

: E
i,2 j

p,3
−→ E

i+3,2 j−2

p,3
is d

p,3
(w ⊗ e j) =



(
e

p
◦∂

p

)
(w) if j = 1

(
P

p
◦e

p
◦∂

p

)
(w) ⊗ e j−1 if j ≥ 2.

Proof. Consider the filtration · · · ⊂ F
i

Ω
∗

p,S
1
(X) ⊂ F

i−1

Ω
∗

p,S
1
(X) ⊂ · · · ⊂ F

0

Ω
∗

p,S
1
(X) = Ω

∗

p,S
1
(X) defined by

F
i

Ω
∗

p,S
1
(X) = {ω ∈ Ω

≥i

p
(X) ⊗ Λe / dω ∈ Ω

≥i

p
(X) ⊗ Λe}. That is,

F
i

Ω
i+2 j

p,S
1
(X) =

(
Ω

i

p
(B) ⊕ {0}

)
⊗ R · e j ⊕

j⊕

k=1

Ω
i+2k

p
(X) ⊗ R · e j−k, and

F
i

Ω
i+2 j+1

p,S
1

(X) = Ω
i+1

p
(X) ⊗ R · e j ⊕

j⊕

k=1

Ω
i+1+2k

p
(X) ⊗ R · e j−k

which verifies ∇

(
F

i

Ω
∗

p,S
1
(X)

)
⊂ F

i

Ω
∗+1

p,S
1
(X). Following the standard procedure (see for example [8]) one

constructs a spectral sequence
{(

E
p,r
, d

p,r

)}
converging to the equivariant cohomology IH

∗

p,S
1
(X). We have

E
i,2 j

p,0
=
(
Ω

i

p
(B) ⊕ {0}

)
⊗ e j and E

i,2 j+1

p,0
=

Ω
i+1

p
(X)

Ω
i+1

p
(B) ⊕ {0}

⊗ e j.

The differential d
p,0

: E
i,2 j

p,0
→ E

i,2 j+1

p,0
is zero, and the differential d

p,0
: E

i,2 j+1

p,0
→ E

i,2 j+2

p,0
is given by d

p,r

(
(α, β) ⊗ e j

)
=

(β, 0) ⊗ e j+1.We conclude that E
i, j′

p,1
=



Ω
i

p
(B) if j′ = 0

K
i

p
(B) ⊗ R · e j if j′ = 2 j > 0

0 if j′ is odd

. This gives (a), d
p,2s
= 0 if s ≥ 1

and (b).

The first differential d
p,1

: E
i,2 j

p,1
→ E

i+1,2 j

p,1
is given by d

p,1
(α) = dα and d

p,1

(
α ⊗ e j

)
= dα ⊗ e j. We

conclude that E
i,2 j

p,3
= E

i,2 j

p,2
=


IH

i

p
(B) if j = 0

H
i
(
K
∗

p
(B)
)
⊗ R · e j if j > 0.

. This gives (c).

Consider, for the computation of the third differential, [α] ∈ H
i
(
K
∗

p
(B)
)
. So, we have that [dα] ∈

H
i+1
(
G
∗

p
(B)
)

and e
p
([dα]) ∈ IH

i+3

p
(B). This gives d

p,3
([α] ⊗ e) = e

p
([dα]) = e

p
∂

p
([α]). For the general case

j ≥ 2 we have d
p,3

([α] ⊗ e j) = P
p
e

p
([dα]) ⊗ e j−1 = P

p
e

p
∂

p
([α]) ⊗ e j−1. This gives (d). ♣

4.3 The basic spectral sequence in the classic framework. We consider here the usual cohomology,

that is, the case p = 0. For the sake of simplicity we also suppose that X is normal.

In this context, the basic spectral sequence is a spectral sequence converging to H
∗

S
1
(X) whose third

term is described in terms of the cohomology of B and F, the union of fixed strata. In fact, as C. Allday

pointed out to us, this spectral sequence degenerates into the Skjelbred exact sequence (cf. [13]).

First of all, we fix some facts. The cohomology of the complex G
∗

−x
(B) = Ω

∗

−e
(B) = Ω

∗

−x
(B) = G

∗

0
(B) is

H
∗

(B, F) (cf. [12]). We shall write e : H
∗

(B, F) → H
∗+2

(B, F) the map induced from e
−x

. The long exact

sequence associated to the pair (B, F) is · · · → H
i

(B, F)
ι
−→ H

i

(B)
P
−→ H

i

(F)
∂
−→ H

i+1

(B, F)→ · · · .
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Lemma 4.4. Consider a modelled actionΦ : S
1

×X → X where X is normal. There exists a first quadrant

spectral sequence
{(

E
r
, d

r

)}
r≥0 converging to H

∗

S
1
(X) such that

(a) E
i, j

r
= 0 if j is an odd number and r ≥ 1;

(b) E
i,2 j

2s
= E

i,2 j

2s+1
if s ≥ 1;

(c) E
i,2 j

3
= E

i,2 j

2
=


H

i

(B) if j = 0

H
i

(F) ⊗ R · e j if j > 0;

(d) each E
∗,0

r
is a quotient of H

∗

(B) when r ≥ 3;

(e) for each s ≥ 1 and j , s, the differential d
2s+1

: E
i,2 j

2s+1
→ E

i+2s+1,2 j−2s

2s+1
is 0;

(f) for each s ≥ 1, the differential d
2s+1

: E
i,2s

2s+1
= H

i

(F) ⊗ R · es → E
i+2s+1,0

2s+1
is induced by (−1)s ι◦es◦ ∂.

Proof. Consider
{(

E
r
, d

r

)}
r≥0 the spectral sequence given by the above Proposition for p = 0. It converges

to IH
∗

0,S
1
(X) which is H

∗

S
1
(X) since X is normal. Let us verify the properties.

(a) and (b) Clear.

(c) Since X is normal, then B is normal and therefore IH
∗

0
(B) = H

∗

(B). The long exact sequence

associated to the short exact sequence 0→ Ω
∗

−x
(B)→ Ω

∗

0
(B)→ K

∗

0
(B)→ 0 becomes

· · · → H
i

(B, F)
ι
−→ H

i

(B)
P

0

−→ H
i
(
K
·

0
(B)
) ∂

0

−→ H
i+1

(B, F)→ · · · .

So, there exists an isomorphism ξ : H
∗
(
K
·

0
(B)
)
→ H

∗

(F) with ∂◦ξ = ∂
0

and ξ◦P
0
= P. The result comes

now directly from Proposition 4.2.

(d) For r = 2s + 1 ≥ 3 we have E
i,0

2s+1
=

Z
i,0

2s+1

B
i,0

2s

=
Ω

i

(B) ∩ d−1(0)

B
i,0

2s

=
H

i

(B)

B
i,0

2s

/
dΩ

i−1
(B)
.

To prove (e) and (f) , we proceed by induction on s. Taking s = 1, we have from Proposition 4.2 and

the above identifications: d
3
(w ⊗ e j) =


(ι◦e◦∂) (w) if j = 1

(
ξ◦P

0
◦ι◦e◦∂

)
(w) ⊗ e j−1 if j ≥ 2

=


(ι◦e◦∂) (w) if j = 1

0 if j ≥ 2.
.

Let us now suppose that the result is true for s′ < s. The case j < s is straightforward by dimension

reasons. Consider now j ≥ s. The induction hypothesis and (b) give the isomorphism chain

∇
j,s

: E
i,2 j

2s+1
=

Z
i,2 j

2s+1

Z
i+1,2 j−1

2s
+ B

i,2 j

2s

→ E
i,2 j

2s
→ E

i,2 j

2s−1
→ · · · → E

i,2 j

2
→ H

i

(F) ⊗ R · e j,

with ∇
j,s

ω j = (α0, 0) ⊗ e j +

j∑

k=1

(αk, βk) ⊗ e j−k

 = ξ
[
α0

]
⊗ e j. On the other hand, we have that the defi-

nition of the differential d
2s+1

: E
i,2 j

2s+1
=

Z
i,2 j

2s+1

Z
i+1,2 j−1

2s
+ B

i,2 j

2s

−→
Z

i+2s+1,2 j−2s

2s+1

Z
i+2s+2,2 j−2s−1

2s
+ B

i+2s+1,2 j−2s

2s

is

d
2s+1

(ω j) = (dαs + (−1)|βs |βs ∧ ǫ + (−1)|βs+1 |βs+1, 0) ⊗ e j−s +

j∑

k=s+1

(α′
k
, β′

k
) ⊗ e j−k,
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and therefore (∇
j−s,s
◦d

2s+1
)(ω j) = ξ

[
dαs + (−1)|βs |βs ∧ ǫ + (−1)|βs+1 |βs+1

]
⊗ e j−s = 0 since βs ∧ ǫ ∈ Ω

∗

−x
(B).

This implies d
2s+1

(ω j) = 0 for j > s. It remains the case j = s. For ωs = ∇
−1

s,s
([ω] ⊗ es) ∈ E

i,2s

2s+1
=

Z
i,2s

2s+1

B
i,2s

2s

we

have from (d)

d
2s+1

(ωs) =
[
dαs + (−1)|βs |βs ∧ ǫ

]
=


s∑

k=0

(−1)s−kdαk ∧ ǫ s−k

 = (−1)s[dα0 ∧ ǫ s] =

= (−1)s(ι◦es◦ ∂
0
)[α0] = (−1)s(ι◦es◦ ∂)ξ[α0] = (−1)s(ι◦es◦ ∂)[ω],

since

s∑

k=1

(−1)s−kdαk ∧ ǫ
s−k = d


s∑

k=1

αk, (−1)|αk |

k−1∑

j=1

(−1)k−1− jdα j ∧ ǫ
k−1− j

 ⊗ e
s−k

 belongs to B
i,0

2s
. ♣

The particular geometry of this spectral sequence gives rise to a Gysin sequence (in the sense of [8]).

Proposition 4.5. Consider a modelled action Φ : S
1

× X → X where X is normal. We have the Skjelbred

exact sequence

· · · −→
[
H
∗

(F) ⊗ Λ>0
e

]i β
−→ H

i+1

(B)
α
−→ IH

i+1

S
1

(X)
δ
−→
[
H
∗

(F) ⊗ Λ>0
e

]i+1 β
−→ H

i+2

(B) · · · ,

where

- α[α] = [(α, 0) ⊗ 1];

- β([ω] ⊗ es) = (−1)s (ι◦es
◦ ∂)[ω];

- δ


j∑

k=0

(αk, βk) ⊗ e
k

 =
j∑

k=1

ξ[αk] ⊗ e
k.

Proof. Consider the exact sequence 0 −→
⊕

s≥1

E
i−2s,2s

∞

∇
−→
⊕

s≥1

H
i−2s

(F) ⊗ es
β
−→ H

i+1

(B)
Proj
−→ E

i+1,0

∞
−→ 0,

where ∇ is induced by ∇
s,s+1

: E
i−2s,2s

∞
= E

i−2s,2s

2s+3
→ H

i−2s

(F) ⊗ R · es, and proceed as in [8, pag. 8]. ♣

5 Localization

The localization of the equivariant intersection cohomology is a cohomological theory introduced in

[1, 6]. In fact, it is a residual cohomology since it depends on a neighborhood of the fixed point set F. The

usual10 LocalizationTheorem establishes that the localization L
∗

S
1
(X) of H

∗

S
1
(X) is in fact H

∗

(F) ⊗ R(e).

This doesn’t hold for the generic case since the links of strata are no longer spheres.

10When X is a manifold, the family of strata SX is reduced to the regular stratum.
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5.1 Definition and properties. Denote by R(e) the field of fractions of Λe. The localization of the

equivariant intersection cohomology is IL
⋆

p,S
1
(X) = IH

∗

p,S
1
(X)⊗

Λe
R(e). It is not a graded R(e)-vector space

over Z but over Z2 by: IL
⋆

p,S
1
(X) = IL

even

p,S
1
(X)⊕ IL

odd

p,S
1
(X) = IH

even

p,S
1
(X)⊗

Λe
R(e)⊕ IH

odd

p,S
1
(X)⊗

Λe
R(e). It verifies the

following properties.

(a) The localization IL
⋆

0,S
1
(X) is the usual localization L

∗

S
1
(X) when X is normal.

(b) A perverse algebra is a perverse superalgebra when the coefficient ring is R(e) (instead of R) and

it is graded over Z2 (instead of over Z). In the same manner, we introduce the notions of perverse superal-

gebra morphism and perverse superalgebra isomorphism. The quadruple IL
S

1
(X) =


⊕

p∈PX

IL
p,S

1
(X), ι,∧, 0


is a perverse superalgebra. On the other hand, the operator π′′ : IH(B) ⊗ R(e) → IL

S
1
(X), defined by

π′′
p
(b ⊗ P) = π′

p
(b ⊗ 1)⊗

Λe
P , is a perverse superalgebra morphism.

(c) The localization of the equivariant intersection cohomology is a residual cohomology: the inclu-

sion induces a perverse superalgebra isomorphism IL
∗

p,S
1
(X) � IL

∗

p,S
1
(U) where U ⊂ X is any neighborhood

of the fixed point set F. In fact, IL
∗

p,S
1
(X) can be seen as the global sections of a sheaf H

p
defined on F.

This sheaf is constructible, that is, locally constant on each fixed stratum S . Its stalk is given by (2).

(d) Let us suppose that X is compact. Given two complementary perversities p and q the wedge prod-

uct induces the Poincaré Duality isomorphism: IH
∗

p,S
1
(X) � IH

dim X−∗

q,S
1

(X). This gives the R(e)-isomorphism:

IL
p
(X) � IL

q
(X) (cf. [1]). It preserves (resp. inverts) the superalgebra structure when dim X is even (resp.

odd).

(e) The equivariant Gysin sequence can be written in the following way

· · · → IH
∗

p
(B) ⊗ Λe

π′
p

−→ IH
∗

p,S
1
(X)

∮ ′
p

−→ H
∗
(
G
·

p
(B)
)
⊗ Λe

e
p
⊗1+I

p
⊗e

−−−−−−−→ IH
∗

p
(B) ⊗ Λe→ · · · ,

which is a long exact sequence in the category of Λe-modules. Since localization is an exact functor, we

get the localized Gysin sequence

· · · → IH
∗

p
(B) ⊗ R(e)

π′′
p

−→ IL
⋆

p,S
1
(X)

∮ ′′
p

−→ H
∗
(
G
·

p
(B)
)
⊗ R(e)

e
p
⊗1+I

p
⊗e

−−−−−−−→ IH
∗

p
(B) ⊗ R(e)→ · · · ,

where
∮ ′′

p
([c]⊗

Λe
R) =

∮ ′
p
[c]⊗

Λe
R. Thus, we get IL

⋆

p,S
1
(X) in terms of basic data.

The following result relates the Euler class with the localization of the equivariant intersection coho-

mology of X. It is obtained straightforwardly from Proposition 3.2.

Proposition 5.2. Let X1, X2 be two connected normal unfolded pseudomanifolds. Consider two modelled

actions Φ1 : S
1

× X1 → X1 and Φ2 : S
1

× X2 → X2. Let us suppose that there exists an unfolded isomor-

phism f : B1 → B2 between the associated orbit spaces. Then, the first following statement implies the

second one:

(a) The isomorphism f is optimal and the Euler classes e1 and e2 are f -related.

(b) There exists a perverse superalgebra isomorphism K : IL
S

1
(X2) → IL

S
1
(X1) verifying K◦π′′

2
=

π′′
1
◦( f ⊗ 1).

The reciprocal to this Theorem does not hold: just consider the Hopf action on S3 and the action by

multiplication on the second factor of S2 × S1. The Euler classes are different, but as the actions are free,

both localizations vanish.
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6 Examples

We illustrate the results of this work with some particular modelled actions Φ : S
1

×X → X. We present:

(a) the Gysin and co-Gysin terms, (b) the equivariant intersection cohomology and (c) the localization

of the equivariant intersection cohomology.

6.1 The pseudomanifold X is a manifold. Consider the case where 0 ≤ p ≤ t11.

(a) H
∗
(
G
·

p
(B)
)
= IH

∗

p−e
(B) (cf. [9, sec. 6.4]) and H

∗
(
K
·

p
(B)
)
= H

∗

p
p−e

(B) (cf. [7]). In particular,

H
∗
(
G
·

0
(B)
)
= H

∗

(B, F) and H
∗
(
K
·

0
(B)
)
= H

∗

(F).

(b) IH
i

p,S
1
(X) = H

∗

S
1
(X), E

i,0

p,2
= IH

i

p
(B) and E

i,2 j

p,2
=
∏

S ∈SX

H
i−2

[
p(S )

2

]

(S ) ⊗ e j, for j > 0.

(c) IL
⋆

p,S
1
(X) = H (F) ⊗ R(e) = L

∗

S
1
(X).

6.2 Free action. These actions are characterized by the condition e = x = 0.

(a) H
∗
(
G
·

p
(B)
)
= IH

∗

p
(B) and H

∗
(
K
·

p
(B)
)
= 0.

(b) The basic spectral sequence degenerates at the second term and we have IH
∗

p,S
1
(X) = IH

∗

p
(B). The

Λe-module structure is given by e · b = e ∧ b. The perverse super structure comes from that of B.

(c) IL
⋆

p,S
1
(X) = 0.We observe that neither the Euler class e nor the Euler perversity e are determined

by the localization of the intersection cohomology.

6.3 Action without perverse strata. These actions are characterized by the condition e = x.

(a) We have G
∗

p
(B) = Ω

∗

p−x
(B) and K

∗

p
(B) = Ω

∗

p
p−x

(B).

(b) E
i,2 j

p,2
=



H
i

p
(B) if j = 0

IH
i

p
p−x

(B) ⊗ e j if j > 0
.

(c) The perverse super structure comes from that of B.

6.4 The Euler class e is zero. In particular, all the fixed strata are non-perverse. We have

(a) H
∗
(
G
·

p
(B)
)
= IH

∗

p−x
(B) and H

∗
(
K
·

p
(B)
)
= H

∗

p
p−x

(B).

(b) IH
∗

p
(X) = IH

∗

p
(B) ⊕ IH

∗−1

p−x
(B). The basic spectral sequence degenerates at the second term and we

have IH
∗

p,S
1
(X) = IH

∗

p
(B) ⊕

{
IH
∗

p
p−x

(B) ⊗ Λ
>0

e

}
. The Λe-module struture is given by e · (b0, b1 ⊗ e

n) =

(0, b0 ⊗ e + b1 ⊗ e
n+1).

(c) IL
⋆

p,S
1
(X) = IH

∗

p
p−x

(B) ⊗ R(e). The perverse super structure comes from that of B.

11In this range the intersection cohomology of X coincides with its cohomology (see for example [12]).



Equivariant intersection . . . September 4, 2012˙ 13

6.5 Local calculation. Consider a chart (U, ϕ) of a fixed point x lying on a stratum S . The open

subset U is S
1

-invariant and describes the local geometry near x. It can be equivariantly retracted by

isomorphisms to cL
S
, endowed with the action ΦL

S
. So, it is enough to consider the case U = cL

S
. We

have

(a) H
i
(
G
·

p

(
U/S

1
))
=



H
i
(
G
·

p

(
L

S
/S

1
))

if i ≤ m − 2

Ker
{
e

p
: H

i
(
G
·

p

(
L

S
/S

1
))
−→ IH

i+2

p

(
L

S
/S

1
)}

if i = m − 1

0 if i ≥ m.

(cf. [9, sec. 7.2]).

(b) The computation of IH
∗

p,S
1
(U) is achieved through the following step-by-step procedure. Let q the

perversity defined by: q = p on U\S and q(U∩S ) = p(U∩S )−1 = m−1. We have IH
i

p,S
1
(U) = IH

i

q,S
1
(U),

for i , m,m + 1, and the exact sequence

0→ IH
m

q,S
1
(U) → IH

m

p,S
1
(U)→ IH

m

p

(
L

S

)
⊗ Λe→ IH

m+1

q,S
1
(U) → IH

m+1

p,S
1
(U)→ 0

For example, when the action ΦL
S

is free we get that

IH
∗

p,S
1
(U) = IH

≤m−1

p

(
L

S
/S

1
)
⊕
{
IH

m

p

(
L

S
/S

1
)
⊗ Λe

}
⊕


IH

m−1

p

(
L

S
/S

1
)

Ker
{
e

p
: IH

m−1

p

(
L

S
/S

1
)
→ IH

m+1

p

(
L

S
/S

1
)} ⊗ Λ>0

e


.

TheΛe-product is induced by e·(b1, b2⊗e
n, b3⊗e

n) =



(b1 ∧ e, b2 ⊗ e
n+1, b3 ⊗ e

n+1) if |b1| ≤ m − 3

(0, b1 ∧ e ⊗ 1 + b2 ⊗ e
n+1, b3 ⊗ e

n+1) if |b1| = m − 2

(0, b2 ⊗ e
n+1, b1 ⊗ e + b3 ⊗ e

n+1) if |b1| = m − 1.

(c) We have a long exact sequence

· · · → IL
⋆

q,S
1
(U)→ IL

⋆

p,S
1
(U) → IH

m

p

(
L

S

)
⊗ R(e) → IL

⋆

q,S
1
(U) → IL

⋆

p,S
1
(U) → · · · .

When ΦL
S

is free then

(2) IL
⋆

p,S
1
(U) =


IH

m−1

p

(
L

S
/S

1
)

Ker
{
e

p
: IH

m−1

p

(
L

S
/S

1
)
→ IH

m+1

p

(
L

S
/S

1
)} ⊕ IH

m

p

(
L

S
/S

1
)

⊗ R(e).

The perverse super structure comes from that of L
S
/S

1

.
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