

Equivariant intersection cohomology of the circle actions José Ignacio Royo Prieto, Martintxo Saralegi-Aranguren

▶ To cite this version:

José Ignacio Royo Prieto, Martintxo Saralegi-Aranguren. Equivariant intersection cohomology of the circle actions. 2011. hal-00579889v1

HAL Id: hal-00579889 https://univ-artois.hal.science/hal-00579889v1

Preprint submitted on 25 Mar 2011 (v1), last revised 4 Sep 2012 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Equivariant intersection cohomology of the circle actions

José Ignacio Royo Prieto*

Martintxo Saralegi-Aranguren[†]

Universidad del País Vasco Euskal Herriko Unibertsitatea Université d'Artois Artoiseko Unibertsitatea

March 25, 2011

Abstract

Circle actions on pseudomanifolds have been studied in [8] by using intersection cohomology (see also [4]). In this paper, we continue that study using a more powerful tool, the equivariant intersection cohomology [1, 2].

In this paper, we prove that the orbit space *B* and the Euler class of the action $\Phi: \mathbb{S}^1 \times X \to X$ determine both the equivariant intersection cohomology of the pseudomanifold *X* and its localization.

We also construct a spectral sequence converging to the equivariant intersection cohomology of

X whose third term is described in terms of the intersection cohomology of B.

We consider an action $\Phi: \mathbb{S}^1 \times X \to X$ of the circle on a pseudomanifold X whose orbit space B is again a pseudomanifold (cf. (1.1)). We have seen in [8] that the intersection cohomology of X is determined by B and the Euler class $e \in H^2_{\frac{2}{e}}(B)$. In this paper we prove that those two data determine some other structures. The main results of this work are the following:

→ The equivariant intersection cohomology¹ $\boldsymbol{H}_{s^1}(X)$ of *X* has a Λe-perverse algebra structure². We prove that this structure is determined by *B* and the Euler class $e \in \boldsymbol{H}_{\bar{r}}^2(B)$ (cf. Proposition 2.2).

↔ The localization¹ $\boldsymbol{L}_{s^1}(X)$ of $\boldsymbol{H}_{s^1}(X)$ has a perverse superalgebra structure. We prove that this structure is determined by *B* and the Euler class $e \in \boldsymbol{H}_{\overline{e}}^2(B)$ (cf. Proposition 4.2).

 \rightsquigarrow For each perversity \overline{p} we construct a spectral sequence converging to $H^*_{\overline{p},\mathbb{S}^1}(X)$ whose third term is described in terms of *B* (cf. Proposition 3.2)⁴.

In the Appendix, we illustrate the results of this work with some particular examples. In the sequel, any manifold will be considered connected, second countable, Haussdorff, without boundary and smooth (of class C^{∞}).

^{*}Departamento de Matemática Aplicada/Matematika Aplikatua Saila. UPV-EHU. Alameda de Urquijo s/n. 48013 BIL-BAO, SPAIN. *joseignacio.royo@ehu.es*.

[†]Univ Lille Nord de France F-59 000 LILLE, FRANCE. UArtois, Laboratoire de Mathématiques de Lens EA 2462. Fédération CNRS Nord-Pas-de-Calais FR 2956. Faculté des Sciences Jean Perrin. Rue Jean Souvraz, S.P. 18. F-62 300 LENS, FRANCE. saralegi@euler.univ-artois.fr.

¹See [1, 2].

² $\Lambda \mathbf{e} = H^*(\mathbb{CP}^\infty).$

⁴As C. Allday pointed out to us, this spectral sequence degenerates into the Skjelbred exact sequence of [11] when $\overline{p} = \overline{0}$ (cf. Proposition 3.5).

1 Equivariant intersection cohomology

We introduce in this section the equivariant intersection cohomology [1, 2] of a modelled action [7].

1.1 Modelled actions. Under some assumptions, the orbit space of an action of the circle on a stratified pseudomanifold is also a stratified pseudomanifold, which is called S^1 -pseudomanifold in [9, sec. 4]. In this work we shall use a variation of this concept: modelled actions of S^1 on unfolded pseudomanifolds⁵.

For the rest of this work, we fix a modelled action $\Phi \colon \mathbb{S}^1 \times X \to X$. We denote by *B* the orbit space X/\mathbb{S}^1 . The action Φ may induce two kind of strata of *X*:

- a stratum S is *mobile* when \mathbb{S}_{s}^{1} , the isotropy subgroup of any point of S, is finite and
- a stratum S is is *fixed* when \mathbb{S}_{s}^{1} , the isotropy subgroup of any point of S, is \mathbb{S}^{1} .

Recall that the regular stratum *R* is mobile with $\mathbb{S}_{R}^{1} = \{1\}$. In this work, we need the refinement of fixed strata introduced in [7, sec. 5.6]

• a fixed stratum S is *perverse*⁶ when the Euler class of the action $\Phi_{L_s} : \mathbb{S}^1 \times L_s \to L_s$ does not vanish, where L_s is the link of S.

1.2 Equivariant intersection cohomology. We fix \overline{p} a perversity of *X* and we write $\Omega_{\overline{p}}^{*}(X)$ the complex of intersection differential forms and $H_{\overline{p}}^{*}(X)$ the intersection cohomology⁷, relatively to the perversity \overline{p} . As \mathbb{S}^{1} is connected and compact, the cohomology of the subcomplex of \mathbb{S}^{1} -invariant forms $\underline{\Omega}_{\overline{p}}^{*}(X)$ is $H_{\overline{\tau}}^{*}(X)$.

Recall that the classifying space of \mathbb{S}^1 is just \mathbb{CP}^{∞} whose cohomology is the free dgca Λe where $|\mathbf{e}| = 2$ and $d\mathbf{e} = 0$. The *equivariant intersection cohomology* $\boldsymbol{H}^*_{\overline{p},\mathbb{S}^1}(X)$, relatively to the perversity \overline{p} , is the cohomology of the complex $(\underline{\Omega}^*_{\overline{n}}(X) \otimes \Lambda \mathbf{e}, \nabla)$, where ∇ is defined linearly from

$$\nabla((\alpha,\beta)\otimes \mathbf{e}^n) = D(\alpha,\beta)\otimes \mathbf{e}^n + (-1)^{|\beta|}(\beta,0)\otimes \mathbf{e}^{n+1}$$

The equivariant intersection cohomology generalizes the usual equivariant cohomology since $H^*_{\overline{0},\mathbb{S}^1}(X) = H^*_{-1}(X)$ when *X* is normal.

1.3 Ae-perverse algebras. We have introduced in [8, sec. 2] the notion of perverse algebra, perverse morphism and x perverse isomorphism. The coefficient ring of these objects is \mathbb{R} . When we replace this ring by Ae, we get the notions of Ae-perverse algebra, Ae-perverse morphism and Ae-perverse isomorphism. In this work, we deal with the following examples:

+ The quadruple
$$\Omega_{\mathbb{S}^1}(X) = \left(\bigoplus_{\overline{p}\in\mathcal{P}_X} \underline{\Omega}_{\overline{p}}(X) \otimes \Lambda \mathbf{e}, \iota, \wedge, \nabla\right)$$
 is a $\Lambda \mathbf{e}$ -perverse algebra. Here, the $\Lambda \mathbf{e}$ -structure is given by: $\mathbf{e} \cdot ((\alpha, \beta) \otimes \mathbf{e}^n) = (\alpha, \beta) \otimes \mathbf{e}^{n+1}$.

⁵ We refer the reader to [7, sec. 4] (see also [8, sec. 1.1]) for the notion of a modelled action. The reason why we work with unfolded pseudomanifolds instead of considering just pseudomanifolds is that they support the de Rham intersection cohomology we use in this work(cf. [10]).

⁶See [8, sec. 1.2] for some examples. Notice that, as G. Friedman pointed out in [3], there is a misprint in [8, sec. 1.1] in the definition of perverse stratum: it should be $H^*(L_S \setminus \Sigma_{L_S}) \neq H^*((L_S \setminus \Sigma_{L_S}) / \mathbb{S}^1) \otimes H^*(\mathbb{S}^1)$, where Σ_{L_S} is the singular part of the link L_S . That definition is equivalent to the one we give above.

⁷For the notions related with the intersection cohomology, we refer the reader to [10, sec. 3]

- + Its cohomology $\boldsymbol{H}_{\mathbb{S}^1}(X) = \left(\bigoplus_{\overline{p}\in\mathcal{P}_X} \boldsymbol{H}_{\overline{p},\mathbb{S}^1}(X), \iota, \wedge, 0\right)$ is the the *equivariant intersection cohomology algebra* which is a Ae-perverse algebra.
- + The operator $\pi' : H(B) \otimes \Lambda e \to H_{\mathbb{S}^1}(X)$, defined by $\pi'_{\overline{p}}([\alpha] \otimes e^n) = [(\alpha, 0) \otimes e^n]$, is a Λe -perverse morphism.

1.4 Equivariant Gysin sequence. The main tool we use for the classification of modelled actions is the Gysin sequence⁸ we construct now. Fix \overline{p} a perversity of *X*. Consider the short exact sequence

$$0 \to \left(\Omega^*_{\overline{p}}(B) \otimes \Lambda \mathbf{e}, d \otimes 1\right) \xrightarrow{\pi'_{\overline{p}}} \left(\underline{\Omega}^*_{\overline{p}}(X) \otimes \Lambda \mathbf{e}, \nabla\right) \xrightarrow{\phi'_{\overline{p}}} \left(\mathcal{G}^{*-1}_{\overline{p}}(B) \otimes \Lambda \mathbf{e}, d \otimes 1\right) \to 0,$$

where $\pi'_{\overline{p}}(\alpha \otimes e^n) = (\alpha, 0) \otimes e^n$ and $\oint'_{\overline{p}}(\alpha, \beta) \otimes e^n = \beta \otimes e^n$. Each term is a differential complex and a Ae-module with the natural structure. Moreover, the maps $\pi'_{\overline{p}}$ and $\oint'_{\overline{p}}$ preserve these structures. The *equivarian Gysin sequence* is the induced long exact sequence

$$\cdots \to \left[\boldsymbol{H}_{\overline{p}}^{*}(B) \otimes \Lambda \mathbf{e}\right]^{i} \xrightarrow{\pi'_{\overline{p}}} \boldsymbol{H}_{\overline{p},\mathbb{S}^{1}}^{i}(X) \xrightarrow{\oint_{\overline{p}}} \left[\boldsymbol{H}^{*}\left(\mathcal{G}_{\overline{p}}^{\cdot}(B)\right) \otimes \Lambda \mathbf{e}\right]^{i-1} \xrightarrow{\delta_{\overline{p}}} \left[\boldsymbol{H}_{\overline{p}}^{*}(B) \otimes \Lambda \mathbf{e}\right]^{i+1} \to \cdots$$

Here, $\delta_{\overline{p}}([\beta] \otimes \mathbf{e}^n) = [d\alpha + (-1)^{|\beta|} \beta \wedge \epsilon] \otimes \mathbf{e}^n + (-1)^{|\beta|} \iota_{\overline{p}-\overline{x},\overline{p}}^B[\beta] \otimes \mathbf{e}^{n+1}$. For short, we shall write $(-1)^{|\beta|} \iota_{\overline{p}-\overline{x},\overline{p}}^B = I_{\overline{p}}$. The connecting morphism becomes $\delta_{\overline{p}} = \mathbf{e}_{\overline{p}} \otimes 1 + I_{\overline{p}} \otimes \mathbf{e}$. Notice that the equivariant Gysin sequence permits us to obtain the equivariant intersection cohomology of X in terms of basic⁹ data.

2 Classification of modelled actions

In this section, we prove that B and the Euler class determine the equivariant intersection cohomology of X.

2.1 Fixing the orbit space¹⁰. Consider $\Phi_1 : \mathbb{S}^1 \times X_1 \to X_1$ and $\Phi_2 : \mathbb{S}^1 \times X_2 \to X_2$ two modelled actions and write B_1 and B_2 the corresponding orbit spaces.

An unfolded isomorphism $f: B_1 \to B_2$ is *optimal* when it preserves the nature of the strata. In this case, the two Euler perversities are equal: $\overline{e}_1(\pi_1(S)) = \overline{e}_2(f(\pi_1(S)))$ for each singular stratum S of X_1 . We shall write \overline{e} for this *Euler perversity*. Now we can compare the two Euler classes $e_1 \in H^2_{\overline{e}}(B_1)$ and $e_2 \in H^2_{\overline{e}}(B_2)$. We shall say that e_1 and e_2 are *f*-related if $f^*_{\overline{e}}e_2 = e_1$.

Proposition 2.2 Let X_1 , X_2 be two connected normal unfolded pseudomanifolds. Consider two modelled actions $\Phi_1: \mathbb{S}^1 \times X_1 \to X_1$ and $\Phi_2: \mathbb{S}^1 \times X_2 \to X_2$. Let us suppose that there exists an unfolded isomorphism $f: B_1 \to B_2$ between the associated orbit spaces. Then, the two following statements are equivalent:

- (a) The isomorphism f is optimal and the Euler classes e_1 and e_2 are f-related.
- (b) There exists a Ae-perverse isomorphism $G: H_1(X_2) \to H_1(X_1)$ verifying $G \circ \pi'_2 = \pi'_1 \circ (f \otimes 1)$.

⁸The Gysin sequence for intersection cohomology has been constructed in [7, sec. 6]. In this article we use the notations of [8, sec. 1.3]. Notice that, as G. Friedman pointed out in [3], in the definition of $\mathcal{G}_{\overline{p}}^*(B)$ given in [8, sec. 1.3], the degree should be shifted by 1, so that $\mathcal{G}_{\overline{n}}^*(B) \subset \Omega_{\overline{n}\overline{n}}^*(B)$.

⁹Of the orbit space B.

 $^{^{10}}$ See (cf. [8, sec. 3.1]) for details.

Proof. We proceed in two steps.

 $(a) \Rightarrow (b) \text{ Since } [f_{\overline{e}}^* \epsilon_2] = f_{\overline{e}}^* e_2 = e_1 = [\epsilon_1] \text{ then there exists } \gamma \in \Omega_{\overline{e}}^1(B_2) \text{ with } f_{\overline{e}}^* \epsilon_2 = \epsilon_1 - d(f_{\overline{e}}^* \gamma).$ Using this map γ , we construct for each perversity \overline{p} the map $G_{\overline{p}} = F_{\overline{p}} \otimes 1 : \Omega_{\overline{p},\mathbb{S}^1}^*(X_2) \longrightarrow \Omega_{\overline{p},\mathbb{S}^1}^*(X_1)$ (cf. [8, Proposition 3.2]). Since $F = \{F_{\overline{p}}\}$ is a perverse isomorphism, then $G = \{G_{\overline{p}}\} : \Omega_{\mathbb{S}^1}(X_2) \longrightarrow \Omega_{\mathbb{S}^1}(X_1)$ is a Λ e-perverse isomorphism. The equality $G \circ \pi'_2 = \pi'_1 \circ (f \times 1)$ comes from:

$$G_{\overline{p}}\left(\pi'_{2,\overline{p}}\left(\alpha\otimes\mathsf{e}^{n}\right)\right)=F_{\overline{p}}(\alpha,0)\otimes\mathsf{e}^{n}=\left(f_{\overline{p}}(\alpha),0\right)\otimes\mathsf{e}^{n}=\pi'_{1,\overline{p}}\left(f_{\overline{p}}(\alpha)\otimes\mathsf{e}^{n}\right),$$

where $\alpha \in \Omega_{\underline{n}}^*(B_2)$.

 $(b) \Rightarrow (a)$ Consider now the equivariant Gysin sequences associated to the actions Φ_1 and Φ_2 . The two Gysin terms are written $_{_1}\mathcal{G}$ and $_{_2}\mathcal{G}$ respectively. Since $G_{\overline{e_2}} \circ \pi'_{_{2,\overline{e_2}}} = \pi'_{_{1,\overline{e_2}}} \circ (f_{\overline{e_2}} \times 1)$ we can construct the commutative diagram

where $\ell: H^0({}_{_1}\mathcal{G}^*_{\overline{e_1}}(B)) \to H^0({}_{_2}\mathcal{G}^*_{\overline{e_1}}(B))$ is an isomorphism. Following the proof of [8, Proposition 3.2] we conclude that the isomorphism f is optimal, the operator ℓ is the multiplication by a number $\lambda \in \mathbb{R} \setminus \{0\}$ and $f_{\overline{e}}e_2 = \lambda \cdot e_1$. Finally, the commutativity $(f_{\overline{e}} \otimes 1) \circ \delta'_{2,\overline{e_2}} = \delta'_{1,\overline{e_2}} \circ \ell$ gives that $\lambda = 1$ and therefore the Euler classes e_1 and e_2 are f-related.

3 The basic spectral sequence

The Leray spectral sequence considered by Borel for the usual equivariant cohomology has been extended to the perverse framework in [1]. It converges to $H^*_{\frac{\pi}{p}}(X)$ and its second term is $H^*_{\frac{\pi}{p}}(X) \otimes \Lambda e$.

We construct another spectral sequence converging to $H_{\overline{p},\mathbb{S}^1}^*(X)$ whose third term is described in terms of *B*. It is the *basic spectral sequence*. First of all, we present an auxiliary complex.

3.1 The co-Gysin complex. The third term of the spectral sequence is described in terms of the *co-Gysin complex*¹¹ $\mathcal{K}_{\overline{p}}^{*}(B) = \frac{\Omega_{\overline{p}}^{*}(B)}{\mathcal{G}_{\overline{p}}^{*}(B)}$. It fits into the long exact sequence

$$\cdots \to H^{i}(\mathcal{G}_{\overline{p}}^{*}(B)) \xrightarrow{I_{\overline{p}}} H^{i}_{\overline{p}}(B) \xrightarrow{P_{\overline{p}}} H^{i}(\mathcal{K}_{\overline{p}}^{*}(B)) \xrightarrow{\partial_{\overline{p}}} H^{i+1}(\mathcal{G}_{\overline{p}}^{*}(B)) \to \cdots$$

Here, $I_{\overline{p}}[\alpha] = [\alpha], \partial_{\overline{p}}[\overline{\alpha}] = [d\alpha]$ and $P_{\overline{p}}[\alpha] = [\overline{\alpha}]$. Now, we can describe the basic spectral sequence.

¹¹An element of $\mathcal{K}_{\overline{\alpha}}^{*}(B)$ is written $\overline{\alpha}$ where $\alpha \in \Omega_{\overline{\alpha}}^{*}(B)$.

Proposition 3.2 Consider a modelled action $\Phi: \mathbb{S}^1 \times X \to X$ and fix a perversity \overline{p} . There exists a first quadrant spectral sequence $\{(E_{\overline{p},r}, d_{\overline{p},r})\}_{r\geq 0}$ converging to the equivariant intersection cohomology $H^*_{\overline{\pi}S^1}(X)$ such that

- (a) $E_{\pi_r}^{i,j} = 0$ if j is an odd number and $r \ge 1$; (b) $E_{\overline{p},2s}^{i,2j} = E_{\overline{p},2s+1}^{i,2j}$ if $s \ge 1$;
- (c) the second and third terms are $E_{\overline{p},3}^{i,2j} = E_{\overline{p},2}^{i,2j} = \begin{cases} \mathbf{H}_{\overline{p}}^{i}(B) & \text{if } j = 0\\ H^{i}(\mathcal{K}_{\overline{p}}^{*}(B)) \otimes \mathbb{R} \cdot \mathbf{e}^{j} & \text{if } j > 0; \end{cases}$

(d) the third differential $d_{\overline{p},3} \colon E_{\overline{p},3}^{i,2j} \longrightarrow E_{\overline{p},3}^{i+3,2j-2}$ is $d_{\overline{p},3}(w \otimes \mathbf{e}^j) = \begin{cases} \left(\mathbf{e}_{\overline{p}} \circ \partial_{\overline{p}}\right)(w) & \text{if } j = 1\\ \left(P_{\overline{n}} \circ \mathbf{e}_{\overline{n}} \circ \partial_{\overline{n}}\right)(w) \otimes \mathbf{e}^{j-1} & \text{if } i \geq 2. \end{cases}$

Proof. Consider the filtration $\cdots \subset F^{i}\Omega^{*}_{\overline{p,\mathbb{S}^{i}}}(X) \subset F^{i-1}\Omega^{*}_{\overline{p,\mathbb{S}^{i}}}(X) \subset \cdots \subset F^{0}\Omega^{*}_{\overline{p,\mathbb{S}^{i}}}(X) = \Omega^{*}_{\overline{p,\mathbb{S}^{i}}}(X)$ defined by $F^{i}\Omega^{*}_{\overline{p}\mathbb{S}^{1}}(X) = \{\omega \in \underline{\Omega}^{\geq i}_{\overline{p}}(X) \otimes \Lambda \mathsf{e} \ / \ d\omega \in \underline{\Omega}^{\geq i}_{\overline{p}}(X) \otimes \Lambda \mathsf{e}\}. \text{ That is,}$

$$F^{i}\Omega_{\overline{p},\mathbb{S}^{1}}^{i+2j}(X) = \left(\Omega_{\overline{p}}^{i}(B) \oplus \{0\}\right) \otimes \mathbb{R} \cdot \mathbf{e}^{j} \oplus \bigoplus_{k=1}^{J} \underline{\Omega}_{\overline{p}}^{i+2k}(X) \otimes \mathbb{R} \cdot \mathbf{e}^{j-k}, \text{ and}$$

$$F^{i}\Omega_{\overline{p},\mathbb{S}^{1}}^{i+2j+1}(X) = \underline{\Omega}_{\overline{p}}^{i+1}(X) \otimes \mathbb{R} \cdot \mathbf{e}^{j} \oplus \bigoplus_{k=1}^{j} \underline{\Omega}_{\overline{p}}^{i+1+2k}(X) \otimes \mathbb{R} \cdot \mathbf{e}^{j-k}$$

which verifies $\nabla \left(F^i \Omega^*_{\overline{p}, \mathbb{S}^1}(X) \right) \subset F^i \Omega^{*+1}_{\overline{p}, \mathbb{S}^1}(X)$. Following the standard procedure (see for example [6]) one constructs a spectral sequence $\{(E_{\overline{p},r}, d_{\overline{p},r})\}$ converging to the equivariant cohomology $H_{\pi^{e^1}}^*(X)$. We have

$$E_{\overline{p},0}^{i,2j} = \left(\Omega_{\overline{p}}^{i}(B) \oplus \{0\}\right) \otimes e^{j} \quad \text{and} \quad E_{\overline{p},0}^{i,2j+1} = \frac{\Omega_{\overline{p}}^{i+1}(X)}{\Omega_{\overline{p}}^{i+1}(B) \oplus \{0\}} \otimes e^{j}.$$

The differential $d_{\overline{p},0}: E_{\overline{p},0}^{i,2j} \to E_{\overline{p},0}^{i,2j+1}$ is zero, and the differential $d_{\overline{p},0}: E_{\overline{p},0}^{i,2j+1} \to E_{\overline{p},0}^{i,2j+2}$ is given by $d_{\overline{p},r}\left(\overline{(\alpha,\beta)}\otimes \mathbf{e}^{j}\right) = (\beta,0)\otimes \mathbf{e}^{j+1}$. We conclude that $E_{\overline{p},1}^{i,j'} = \begin{cases} \Omega_{\overline{p}}^{i}(B) & \text{if } j' = 0\\ \mathcal{K}_{\overline{p}}^{i}(B)\otimes \mathbb{R}\cdot\mathbf{e}^{j} & \text{if } j' = 2j > 0 \end{cases}$. This gives (a), $d_{\overline{p},2s} = 0$ if $s \ge 1$ 0 if j' is odd

and (b).

The first differential $d_{\overline{p},1}: E_{\overline{p},1}^{i,2j} \to E_{\overline{p},1}^{i+1,2j}$ is given by $d_{\overline{p},1}(\alpha) = d\alpha$ and $d_{\overline{p},1}(\overline{\alpha} \otimes e^j) = d\overline{\alpha} \otimes e^j$. We conclude that $E_{\overline{p},3}^{i,2j} = E_{\overline{p},2}^{i,2j} = \begin{cases} H_{\overline{p}}^i(B) & \text{if } j = 0\\ H^i(\mathcal{K}_{\overline{p}}^*(B)) \otimes \mathbb{R} \cdot e^j & \text{if } j > 0. \end{cases}$. This gives (c).

Consider, for the computation of the third differential, $[\overline{\alpha}] \in H^i(\mathcal{K}^*_{\overline{\alpha}}(B))$. So, we have that $[d\alpha] \in$ $H^{i+1}\left(\mathcal{G}^{*}_{\overline{p}}(B)\right) \text{ and } \mathbf{e}_{\overline{p}}([d\alpha]) \in H^{i+3}_{\overline{p}}(B). \text{ This gives } d_{\overline{p},3}([\overline{\alpha}] \otimes \mathbf{e}) = \mathbf{e}_{\overline{p}}([d\alpha]) = \mathbf{e}_{\overline{p}}\partial_{\overline{p}}([\overline{\alpha}]). \text{ For the general case } j \geq 2 \text{ we have } d_{\overline{p},3}([\overline{\alpha}] \otimes \mathbf{e}^{j}) = P_{\overline{p}}\mathbf{e}_{\overline{p}}([d\alpha]) \otimes \mathbf{e}^{j-1} = P_{\overline{p}}\mathbf{e}_{\overline{p}}\partial_{\overline{p}}([\overline{\alpha}]) \otimes \mathbf{e}^{j-1}. \text{ This gives (d).}$ **3.3** The basic spectral sequence in the classic framework. We consider here the usual cohomology, that is, the case $\overline{p} = \overline{0}$. For the sake of simplicity we also suppose that *X* is normal.

In this context, the basic spectral sequence is a spectral sequence converging to $H^*_{\mathbb{S}^1}(X)$ whose third term is described in terms of the cohomology of *B* and *F*, the union of fixed strata. In fact, as C. Allday pointed out to us, this spectral sequence degenerates into the Skjelbred exact sequence (cf. [11]).

First of all, we fix some facts. The cohomology of the complex $\mathcal{G}_{-\overline{x}}^{*}(B) = \Omega_{-\overline{x}}^{*}(B) = \mathcal{G}_{\overline{0}}^{*}(B) = \mathcal{G}_{\overline{0}}^{*}(B)$ is $H^{*}(B, F)$ (cf. [10]). We shall write $\mathbf{e} : H^{*}(B, F) \to H^{*+2}(B, F)$ the map induced from $\mathbf{e}_{-\overline{x}}$. The long exact sequence associated to the pair (B, F) is $\cdots \to H^{i}(B, F) \xrightarrow{\iota} H^{i}(B) \xrightarrow{P} H^{i}(F) \xrightarrow{\partial} H^{i+1}(B, F) \to \cdots$.

Lemma 3.4 Consider a modelled action $\Phi: \mathbb{S}^1 \times X \to X$ where X is normal. There exists a first quadrant spectral sequence $\{(E_r, d_r)\}_{r\geq 0}$ converging to $H^*_{\mathbb{R}^1}(X)$ such that

(a) $E_r^{i,j} = 0$ if j is an odd number and $r \ge 1$; (b) $E_{2s}^{i,2j} = E_{2s+1}^{i,2j}$ if $s \ge 1$; (c) $E_3^{i,2j} = E_2^{i,2j} = \begin{cases} H^i(B) & \text{if } j = 0 \\ H^i(F) \otimes \mathbb{R} \cdot e^j & \text{if } j > 0$; (d) each $E_r^{*,0}$ is a quotient of $H^*(B)$ when $r \ge 3$; (e) for each $s \ge 1$ and $j \ne s$, the differential $d_{2s+1} : E_{2s+1}^{i,2j} \rightarrow E_{2s+1}^{i+2s+1,2j-2s}$ is 0; (f) for each $s \ge 1$, the differential $d_{2s+1} : E_{2s+1}^{i,2s} = H^i(F) \otimes \mathbb{R} \cdot e^s \rightarrow E_{2s+1}^{i+2s+1,0}$ is induced by $(-1)^s \iota \circ e^s \circ \partial$.

Proof. Consider $\{(E_r, d_r)\}_{r \ge 0}$ the spectral sequence given by the above Proposition for $\overline{p} = \overline{0}$. It converges to $H^*_{\overline{n} \in \mathbb{T}}(X)$ which is $H^*_{\mathbb{T}^1}(X)$ since X is normal. Let us verify the properties.

(a) and (b) Clear.

(c) Since *X* is normal, then *B* is normal and therefore $H^*_{\overline{0}}(B) = H^*(B)$. The long exact sequence associated to the short exact sequence $0 \to \Omega^*_{\overline{\tau}}(B) \to \Omega^*_{\overline{\alpha}}(B) \to \mathcal{K}^*_{\overline{\alpha}}(B) \to 0$ becomes

$$\cdots \to H^{i}(B,F) \xrightarrow{\iota} H^{i}(B) \xrightarrow{P_{\overline{0}}} H^{i}(\mathcal{K}_{\overline{0}}(B)) \xrightarrow{\partial_{\overline{0}}} H^{i+1}(B,F) \to \cdots$$

So, there exists an isomorphism $\xi : H^*(\mathcal{K}_{\overline{0}}(B)) \to H^*(F)$ with $\partial \circ \xi = \partial_{\overline{0}}$ and $\xi \circ P_{\overline{0}} = P$. The result comes now directly from the Proposition 3.2.

(d) For
$$r = 2s + 1 \ge 3$$
 we have $E_{2s+1}^{i,0} = \frac{Z_{2s+1}^{i,0}}{B_{2s}^{i,0}} = \frac{\Omega^i(B) \cap d^{-1}(0)}{B_{2s}^{i,0}} = \frac{H^i(B)}{B_{2s}^{i,0}/d\Omega^{i-1}(B)}$.

To prove (e) and (f), we proceed by induction on s. Taking s = 1, we have from Proposition 3.2 and

the above identifications: $d_3(w \otimes e^j) = \begin{cases} (\iota \circ \mathbf{e} \circ \partial)(w) & \text{if } j = 1 \\ (\xi \circ P_{\overline{0}} \circ \iota \circ \mathbf{e} \circ \partial)(w) \otimes e^{j-1} & \text{if } j \ge 2 \end{cases} = \begin{cases} (\iota \circ \mathbf{e} \circ \partial)(w) & \text{if } j = 1 \\ 0 & \text{if } j \ge 2. \end{cases}$ Let us now suppose that the result is true for s' < s. The case j < s is straightforward by dimension reasons! Consider now $j \ge s$. The induction hypothesis and (b) give the isomorphism chain

$$\nabla_{j,s}: E_{2s+1}^{i,2j} = \frac{Z_{2s+1}^{i,2j}}{Z_{2s}^{i+1,2j-1} + B_{2s}^{i,2j}} \to E_{2s}^{i,2j} \to E_{2s-1}^{i,2j} \to \cdots \to E_{2}^{i,2j} \to H^{i}(F) \otimes \mathbb{R} \cdot e^{j},$$

with
$$\nabla_{j,s}\left(\omega_{j} = (\alpha_{0}, 0) \otimes \mathbf{e}^{j} + \sum_{k=1}^{j} (\alpha_{k}, \beta_{k}) \otimes \mathbf{e}^{j-k}\right) = \xi\left[\overline{\alpha_{0}}\right] \otimes \mathbf{e}^{j}$$
. On the other hand, we have that the definition of the differential d_{2s+1} : $E_{2s+1}^{i,2j} = \frac{Z_{2s+1}^{i,2j}}{Z_{2s}^{i+1,2j-1} + B_{2s}^{i,2j}} \longrightarrow \frac{Z_{2s+1}^{i+2s+1,2j-2s}}{Z_{2s}^{i+2s+2,2j-2s-1} + B_{2s}^{i+2s+1,2j-2s}}$ is
 $d_{2s+1}(\omega_{j}) = (d\alpha_{s} + (-1)^{|\beta_{s}|}\beta_{s} \wedge \epsilon + (-1)^{|\beta_{s+1}|}\beta_{s+1}, 0) \otimes \mathbf{e}^{j-s} + \sum_{k=s+1}^{j} (\alpha'_{k}, \beta'_{k}) \otimes \mathbf{e}^{j-k},$
and therefore $(\nabla_{j-s,s} \circ d_{2s+1})(\omega_{j}) = \xi\left[\overline{d\alpha_{s} + (-1)^{|\beta_{s}|}\beta_{s} \wedge \epsilon + (-1)^{|\beta_{s+1}|}\beta_{s+1}}\right] \otimes \mathbf{e}^{j-s} = 0$ since $\beta_{s} \wedge \epsilon \in \Omega_{-\pi}^{*}(B)$.
This implies $d_{2s+1}(\omega_{j}) = 0$ for $j > s$. It remains the case $j = s$. For $\omega_{s} = \nabla_{s,s}^{-1}([\omega] \otimes \mathbf{e}^{s}) \in E_{2s+1}^{i,2s} = \frac{Z_{2s+1}^{i,2s}}{B_{2s}^{i,2s}}$ we have from (d)

$$d_{2s+1}(\omega_s) = \overline{[d\alpha_s + (-1)^{|\beta_s|}\beta_s \wedge \epsilon]} = \overline{\left[\sum_{k=0}^{s} (-1)^{s-k} d\alpha_k \wedge \epsilon^{s-k}\right]} = (-1)^s \overline{[d\alpha_0 \wedge \epsilon^s]} = (-1)^s \overline{(\iota \circ \mathbf{e}^s \circ \partial_{\overline{0}})[\overline{\alpha_0}]} = (-1)^s \overline{(\iota \circ \mathbf{e}^s \circ \partial)\xi[\overline{\alpha_0}]} = (-1)^s \overline{(\iota \circ \mathbf{e}^s \circ \partial)[\omega]},$$

since $\sum_{k=1}^{s} (-1)^{s-k} d\alpha_k \wedge \epsilon^{s-k} = d\left(\sum_{k=1}^{s} \left(\alpha_k, (-1)^{|\alpha_k|} \sum_{j=1}^{k-1} (-1)^{k-1-j} d\alpha_j \wedge \epsilon^{k-1-j}\right) \otimes \mathbf{e}^{s-k}\right)$ belongs to $B_{2s}^{i,0}$.

The particular geometry of this spectral sequence gives rise to a *Gysin sequence* (in the sense of [6]). **Proposition 3.5** Consider a modelled action $\Phi : \mathbb{S}^1 \times X \to X$ where X is normal. We have the Skjelbred exact sequence

$$\cdots \longrightarrow \left[H^*(F) \otimes \Lambda^{>0} \mathbf{e} \right]^i \xrightarrow{\boldsymbol{\beta}} H^{i+1}(B) \xrightarrow{\boldsymbol{\alpha}} H^{i+1}_{\mathbb{S}^1}(X) \xrightarrow{\boldsymbol{\delta}} \left[H^*(F) \otimes \Lambda^{>0} \mathbf{e} \right]^{i+1} \xrightarrow{\boldsymbol{\beta}} H^{i+2}(B) \cdots,$$

where

- $\alpha[\alpha] = [(\alpha, 0) \otimes 1];$

-
$$\boldsymbol{\beta}([\omega] \otimes \mathbf{e}^s) = (-1)^s (\iota \circ \mathbf{e}^s \circ \partial)[\omega];$$

-
$$\delta\left[\sum_{k=0}^{j} (\alpha_k, \beta_k) \otimes \mathbf{e}^k\right] = \sum_{k=1}^{j} \xi[\overline{\alpha_k}] \otimes \mathbf{e}^k.$$

Proof. Consider the exact sequence $0 \longrightarrow \bigoplus_{\substack{s \ge 1 \\ \infty}} E_{\infty}^{i-2s,2s} \xrightarrow{\nabla} \bigoplus_{s \ge 1} H^{i-2s}(F) \otimes e^s \xrightarrow{\beta} H^{i+1}(B) \xrightarrow{\text{Proj}} E_{\infty}^{i+1,0} \longrightarrow 0$, where ∇ is induced by $\nabla_{s,s+1} : E_{\infty}^{i-2s,2s} = E_{2s+3}^{i-2s,2s} \longrightarrow H^{i-2s}(F) \otimes \mathbb{R} \cdot e^s$, and proceed as in [6, pag. 8].

4 Localization

The localization of the equivariant intersection cohomology is a cohomological theory introduced in [1, 2]. In fact, it is a residual cohomology since it depends on a neighborhood of the fixed point set *F*. The usual¹² LocalizationTheorem establishes that the localization $L^*_{s^1}(X)$ of $H^*_{s^1}(X)$ is in fact $H^*(F) \otimes \mathbb{R}(e)$. This doesn't hold for the generic case since the links of strata are no longer spheres.

¹²When *X* is a manifold, the family of strata S_X is reduced to the regular stratum.

4.1 Definition and properties. Denote by $\mathbb{R}(\mathbf{e})$ the field of fractions of $\Lambda \mathbf{e}$. The localization of the equivariant intersection cohomology is $\boldsymbol{L}_{\overline{p},\mathbb{S}^1}^*(X) = \boldsymbol{H}_{\overline{p},\mathbb{S}^1}^*(X) \otimes_{\Lambda \mathbf{e}} \mathbb{R}(\mathbf{e})$. It is not a graded $\mathbb{R}(\mathbf{e})$ -vector space over \mathbb{Z} but over \mathbb{Z}_2 by: $\boldsymbol{L}_{\overline{p},\mathbb{S}^1}^*(X) \oplus \boldsymbol{L}_{\overline{p},\mathbb{S}^1}^{odd}(X) = \boldsymbol{H}_{\overline{p},\mathbb{S}^1}^{even}(X) \otimes_{\Lambda \mathbf{e}} \mathbb{R}(\mathbf{e}) \oplus \boldsymbol{H}_{\overline{p},\mathbb{S}^1}^{odd}(X) \otimes_{\Lambda \mathbf{e}} \mathbb{R}(\mathbf{e})$. It verifies the following properties.

(a) The localization $L^{\star}_{\overline{\alpha}, 1}(X)$ is the usual localization $L^{*}_{\alpha, 1}(X)$ when X is normal.

(b) A perverse algebra is a *perverse superalgebra* when the coefficient ring is $\mathbb{R}(e)$ (instead of \mathbb{R}) and it is graded over \mathbb{Z}_2 (instead of over \mathbb{Z}). In the same manner, we introduce the notions of *perverse superal*-

gebra morphism and perverse superalgebra isomorphism. The quadruple $\mathbf{L}_{\mathbb{S}^1}(X) = \left(\bigoplus_{\overline{p} \in \mathcal{P}_X} \mathbf{L}_{\overline{p}, \mathbb{S}^1}(X), \iota, \wedge, 0\right)$ is a perverse superalgebra. In the other hand, the operator $\pi'' : \mathbf{H}(B) \otimes \mathbb{R}(\mathbf{e}) \to \mathbf{L}_{\mathbb{S}^1}(X)$, defined by $\pi''_{\overline{n}}(b \otimes P) = \pi'_{\overline{n}}(b \otimes 1) \otimes_{A^{\mathbf{e}}} P$, is a perverse superalgebra morphism.

(c) The localization of the equivariant intersection cohomology is a residual cohomology: the inclusion induces a perverse superalgebra isomorphism $L^*_{\overline{p},\mathbb{S}^1}(X) \cong L^*_{\overline{p},\mathbb{S}^1}(U)$ where $U \subset X$ is any neighborhood of the fixed point set *F*. In fact, $L^*_{\overline{p},\mathbb{S}^1}(X)$ can be seen as the global sections of a sheaf $\mathcal{H}_{\overline{p}}$ defined on *F*. This sheaf is *constructible*, that is, locally constant on each fixed stratum *S*. Its stalk is given by (1).

(d) Let us suppose that *X* is compact. Given two complementary perversities \overline{p} and \overline{q} the wedge product induces the Poincaré Duality isomorphism: $H^*_{\overline{p},\mathbb{S}^1}(X) \cong H^{\dim X - *}_{\overline{q},\mathbb{S}^1}(X)$. This gives the $\mathbb{R}(e)$ -isomorphism: $L_{\overline{p}}(X) \cong L_{\overline{q}}(X)$ (cf. [1]). It preserves (resp. inverts) the superalgebra structure when dim *X* is even (resp. odd).

(e) The equivariant Gysin sequence can be written in the following way

$$\cdots \to H^*_{\overline{p}}(B) \otimes \Lambda e \xrightarrow{\pi'_{\overline{p}}} H^*_{\overline{p},\mathbb{S}^1}(X) \xrightarrow{\oint'_{\overline{p}}} H^*(\mathcal{G}_{\overline{p}}(B)) \otimes \Lambda e \xrightarrow{\mathbf{e}_{\overline{p}} \otimes 1 + I_{\overline{p}} \otimes \mathbf{e}} H^*_{\overline{p}}(B) \otimes \Lambda e \to \cdots,$$

which is a long exact sequence in the category of Λ e-modules. Since localization is an exact functor, we get the *localized Gysin sequence*

$$\cdots \to H^*_{\overline{p}}(B) \otimes \mathbb{R}(\mathsf{e}) \xrightarrow{\pi''_{\overline{p}}} L^*_{\overline{p},\mathbb{S}^1}(X) \xrightarrow{\phi''_{\overline{p}}} H^*(\mathcal{G}_{\overline{p}}(B)) \otimes \mathbb{R}(\mathsf{e}) \xrightarrow{\mathbf{e}_{\overline{p}} \otimes 1 + I_{\overline{p}} \otimes \mathbf{e}} H^*_{\overline{p}}(B) \otimes \mathbb{R}(\mathsf{e}) \to \cdots,$$

where $\oint_{\overline{p}}''([c]\otimes_{A^{e}}R) = \oint_{\overline{p}}'[c]\otimes_{A^{e}}R$. Thus, we get $L_{\overline{p},\mathbb{S}^{1}}^{\star}(X)$ in terms of basic data.

The following result relates the Euler class with the localization of the equivariant intersection cohomology of X. It is obtained straightforward from Proposition 2.2.

Proposition 4.2 Let X_1, X_2 be two connected normal unfolded pseudomanifolds. Consider two modelled actions $\Phi_1: \mathbb{S}^1 \times X_1 \to X_1$ and $\Phi_2: \mathbb{S}^1 \times X_2 \to X_2$. Let us suppose that there exists an unfolded isomorphism $f: B_1 \to B_2$ between the associated orbit spaces. Then, the first following statement implies the second one:

(a) The isomorphism f is optimal and the Euler classes e_1 and e_2 are f-related.

(b) There exists a perverse superalgebra isomorphism $\mathbf{K}: \mathbf{L}_{\mathbb{S}^1}(X_2) \to \mathbf{L}_{\mathbb{S}^1}(X_1)$ verifying $\mathbf{K} \circ \pi_2'' = \pi_1'' \circ (f \otimes 1)$.

The reciprocal to this Theorem does not hold: just consider the Hopf action on \mathbb{S}^3 and the action by multiplication on the second factor of $\mathbb{S}^2 \times \mathbb{S}^1$. The Euler classes are different, but as the actions are free, both localizations vanish.

5 Appendix.

We illustrate the results of this work with some particular modelled actions $\Phi \colon \mathbb{S}^1 \times X \to X$. We present: (a) the Gysin and co-Gysin terms, (b) the equivariant intersection cohomology and (c) the localization of the equivariant intersection cohomology.

5.1 The pseudomanifold X is a manifold. Consider the case where $\overline{0} \le \overline{p} \le \overline{t}^{13}$.

(a)
$$H^*(\mathcal{G}_{\overline{p}}(B)) = H^*_{\overline{p}-\overline{e}}(B)$$
 (cf. [7, sec. 6.4]) and $H^*(\mathcal{K}_{\overline{p}}(B)) = H^*_{\frac{\overline{p}}{\overline{p}-\overline{e}}}(B)$ (cf. [5]). In particular,
 $H^*(\mathcal{G}_{\overline{0}}(B)) = H^*(B, F)$ and $H^*(\mathcal{K}_{\overline{0}}(B)) = H^*(F)$.
(b) $H^i_{\overline{p},\mathbb{S}^1}(X) = H^*_{\mathbb{S}^1}(X), E^{i,0}_{\overline{p},2} = H^i_{\overline{p}}(B)$ and $E^{i,2j}_{\overline{p},2} = \prod_{S \in \mathcal{S}_X} H^{i-2[\frac{\overline{p}(S)}{2}]}(S) \otimes e^j$, for $j > 0$.
(c) $L^*_{\overline{p},\mathbb{S}^1}(X) = H(F) \otimes \mathbb{R}(e) = L^*_{\mathbb{S}^1}(X)$.

5.2 Free action. These actions are characterized by the condition $\overline{e} = \overline{x} = \overline{0}$.

(a) $H^*\left(\mathcal{G}_{\overline{p}}(B)\right) = H^*_{\overline{p}}(B)$ and $H^*\left(\mathcal{K}_{\overline{p}}(B)\right) = 0.$

(b) The basic spectral sequence degenerates at the second term and we have $H^*_{\overline{p}S^1}(X) = H^*_{\overline{p}}(B)$. The Λ e-module structure is given by $\mathbf{e} \cdot b = e \wedge b$. The perverse super structure comes from that of *B*.

(c) $L_{\overline{p},\mathbb{S}^1}^{\star}(X) = 0$. We observe that neither the Euler class *e* nor the Euler perversity \overline{e} are determined by the localization of the intersection cohomology.

5.3 Action without perverse strata. These actions are characterized by the condition $\overline{e} = \overline{x}$.

(a) We have
$$\mathcal{G}_{\overline{p}}^{*}(B) = \Omega_{\overline{p}-\overline{x}}^{*}(B)$$
 and $\mathcal{K}_{\overline{p}}^{*}(B) = \Omega_{\overline{p}-\overline{x}}^{*}(B)$.
(b) $E_{\overline{p},2}^{i,2j} = \begin{cases} H_{\overline{p}}^{i}(B) & \text{if } j = 0\\ H_{\overline{p}-\overline{x}}^{i}(B) \otimes e^{j} & \text{if } j > 0 \end{cases}$.

(c) The perverse super structure comes from that of *B*.

5.4 The euler class *e* is zero. In particular, all the fixed strata are non-perverse. We have

(a)
$$H^*\left(\mathcal{G}_{\overline{p}}(B)\right) = H^*_{\overline{p-x}}(B)$$
 and $H^*\left(\mathcal{K}_{\overline{p}}(B)\right) = H^*_{\overline{p-x}}(B)$

(b) $H^*_{\overline{p}}(X) = H^*_{\overline{p}}(B) \oplus H^{*-1}_{\overline{p}-\overline{x}}(B)$. The basic spectral sequence degenerates at the second term and we have $H^*_{\overline{p},\mathbb{S}^1}(X) = H^*_{\overline{p}}(B) \oplus \left\{ H^*_{\overline{p}-\overline{x}}(B) \otimes \Lambda^{>0} \mathbf{e} \right\}$. The Λ e-module struture is given by $\mathbf{e} \cdot (b_0, \overline{b_1} \otimes \mathbf{e}^n) = (0, \overline{b_0} \otimes \mathbf{e} + \overline{b_1} \otimes \mathbf{e}^{n+1})$.

(c) $L_{\overline{p},\mathbb{S}^1}^{\star}(X) = H_{\overline{p},\overline{X}}^{*}(B) \otimes \mathbb{R}(e)$. The perverse super structure comes from that of *B*.

¹³In this range the intersection cohomology of X coincides with its cohomology (see for exemple [10]).

5.5 Local calculation. Consider a chart (U, φ) of a fixed point *x* lying on a stratum *S*. The open subset *U* is \mathbb{S}^1 -invariant and describes the local geometry near *x*. It can be equivariantly retracted by isomorphisms to cL_s , endowed with the action Φ_{L_s} . So, it is enough to consider the case $U = cL_s$. We have

(a)
$$H^{i}\left(\mathcal{G}_{\overline{p}}(U/\mathbb{S}^{1})\right) = \begin{cases} H^{i}\left(\mathcal{G}_{\overline{p}}(L_{s}/\mathbb{S}^{1})\right) & \text{if } i \leq m-2 \\ \text{Ker}\left\{\mathbf{e}_{\overline{p}} \colon H^{i}\left(\mathcal{G}_{\overline{p}}(L_{s}/\mathbb{S}^{1})\right) \longrightarrow H^{i+2}_{\overline{p}}\left(L_{s}/\mathbb{S}^{1}\right)\right\} & \text{if } i = m-1 \\ 0 & \text{if } i \geq m. \end{cases}$$

(cf. [7, sec. 7.2]).

(b) The computation of $H^*_{\overline{p},\mathbb{S}^1}(U)$ is achieved through the following step-by-step procedure. Let \overline{q} the perversity defined by: $\overline{q} = \overline{p}$ on $U \setminus S$ and $\overline{q}(U \cap S) = \overline{p}(U \cap S) - 1 = m - 1$. We have $H^i_{\overline{p},\mathbb{S}^1}(U) = H^i_{\overline{q},\mathbb{S}^1}(U)$, for $i \neq m, m + 1$, and the exact sequence

$$0 \to \boldsymbol{H}_{\overline{q},\mathbb{S}^1}^m(U) \to \boldsymbol{H}_{\overline{p},\mathbb{S}^1}^m(U) \to \boldsymbol{H}_{\overline{p}}^m(L_s) \otimes \Lambda \mathbf{e} \to \boldsymbol{H}_{\overline{q},\mathbb{S}^1}^{m+1}(U) \to \boldsymbol{H}_{\overline{p},\mathbb{S}^1}^{m+1}(U) \to 0$$

For example, when the action Φ_{L_s} is free we get that

$$\boldsymbol{H}_{\overline{p},\mathbb{S}^{1}}^{*}(U) = \boldsymbol{H}_{\overline{p}}^{\leq m-1}\left(\boldsymbol{L}_{S}/\mathbb{S}^{1}\right) \oplus \left\{\boldsymbol{H}_{\overline{p}}^{m}\left(\boldsymbol{L}_{S}/\mathbb{S}^{1}\right) \otimes \Lambda \mathbf{e}\right\} \oplus \left\{\frac{\boldsymbol{H}_{\overline{p}}^{m-1}\left(\boldsymbol{L}_{S}/\mathbb{S}^{1}\right)}{\operatorname{Ker}\left\{\mathbf{e}_{\overline{p}} \colon \boldsymbol{H}_{\overline{p}}^{m-1}\left(\boldsymbol{L}_{S}/\mathbb{S}^{1}\right) \to \boldsymbol{H}_{\overline{p}}^{m+1}\left(\boldsymbol{L}_{S}/\mathbb{S}^{1}\right)\right\}} \otimes \Lambda^{>0} \mathbf{e}\right\}.$$

The Λ e-product is induced by $\mathbf{e} \cdot (b_1, \overline{b_2} \otimes \mathbf{e}^n, b_3 \otimes \mathbf{e}^n) = \begin{cases} (b_1 \wedge e, \overline{b_2} \otimes \mathbf{e}^{n+1}, b_3 \otimes \mathbf{e}^{n+1}) & \text{if } |b_1| \leq m-3\\ (0, \overline{b_1} \wedge \mathbf{e} \otimes 1 + \overline{b_2} \otimes \mathbf{e}^{n+1}, b_3 \otimes \mathbf{e}^{n+1}) & \text{if } |b_1| = m-2\\ (0, \overline{b_2} \otimes \mathbf{e}^{n+1}, b_1 \otimes \mathbf{e} + b_3 \otimes \mathbf{e}^{n+1}) & \text{if } |b_1| = m-1. \end{cases}$

(c) We have a long exact sequence

$$\cdots \to \boldsymbol{L}_{\overline{q},\mathbb{S}^1}^{\star}(U) \to \boldsymbol{L}_{\overline{p},\mathbb{S}^1}^{\star}(U) \to \boldsymbol{H}_{\overline{p}}^{m}(L_{S}) \otimes \mathbb{R}(e) \to \boldsymbol{L}_{\overline{q},\mathbb{S}^1}^{\star}(U) \to \boldsymbol{L}_{\overline{p},\mathbb{S}^1}^{\star}(U) \to \cdots$$

When Φ_{L_s} is free then

(1)
$$\boldsymbol{L}_{\overline{p},\mathbb{S}^{1}}^{\star}(U) = \left\{ \frac{\boldsymbol{H}_{\overline{p}}^{m-1}(\boldsymbol{L}_{S}/\mathbb{S}^{1})}{\operatorname{Ker}\left\{\mathbf{e}_{\overline{p}} \colon \boldsymbol{H}_{\overline{p}}^{m-1}(\boldsymbol{L}_{S}/\mathbb{S}^{1}) \to \boldsymbol{H}_{\overline{p}}^{m+1}(\boldsymbol{L}_{S}/\mathbb{S}^{1})\right\}} \oplus \boldsymbol{H}_{\overline{p}}^{m}(\boldsymbol{L}_{S}/\mathbb{S}^{1}) \right\} \otimes \mathbb{R}(\mathbf{e}).$$

The perverse super structure comes from that of L_s/\mathbb{S}^1 .

References

- [1] J.L. Brylinsky: Equivariant intersection cohomology. Contemporary Math. 139 (1999), 5–32.
- [2] R. Joshua: Vanishing of odd-dimensional intersection cohomology. Math. Z. 195 (1987), 239–253.
- [3] G. Friedman: MR2344739 (2008h:55009). Review in Mathematical Reviews of the A.M.S.
- [4] G. Hector and M. Saralegi: *Intersection cohomology of* \mathbb{S}^1 -*actions.* Transactions of the A.M.S. **338** (1993), 263-288.

- [5] H. King: *Topology invariance of intersection homology without sheaves*. Topology **20** (1985), 149-160.
- [6] J. McCleary: User's guide to spectral sequences . Math. Lect. Series 12 (1985). Publish or Perish.
- [7] G. Padilla: The Gysin Sequence for S¹-actions on stratified pseudomanifolds. Illinois J. Math. 49 (2005), 659-685.
- [8] G. Padilla and M. Saralegi-Aranguren: *Intersection cohomology of the circle actions*. Topology and its Applications **254** (2007), 2764-2770.
- [9] R. Popper: Compact Lie group actions on pseudomanifolds. Illinois J. Math. 44 (2000), 1-19.
- [10] M. Saralegi: De Rham intersection cohomology for general perversities. Illinois J. Math. 49 (2005), 737-758.
- [11] C. Skjelbred: *Cohomology eigenvalues of equivariant maps* Comment. Math. Helv. **53** (1978), 634-642.